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RNA interference

• RNAi (also known as RNA silencing) is a 
mechanism in which short interfering 
RNA’s (siRNA’s)  (21～26 nt’s) directly 
control gene expression.

• RNAi consists of three fundamental 
biochemical processes:
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Step 1 RNAi
 Formation of double stranded RNA (dsRNA)
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Step 2 RNAi

Dicer enzyme cleaves dsRNA into siRNA’s:

ds siRNA’s

2012年9月10日月曜日



Step 3 RNAi
Incorporation of siRNA into RNA-induced silencing complex (RISC), targeting 
a long single-stranded mRNA by complementarity.
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Finally, RISC degrades mRNA or cleaves 
it  into siRNA’s.

 

m
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Motivation

Analyze circularity of RNAi, explaining 
how RNAi is sustained!
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circularity 

mRNA is transcribed 
constantly

m
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Amplification is NOT Bi-Directional
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(ii) primer independent
 polymerization

(i) primer dependent
 polymerization

Two circulatory paths for the synthesis:

Synthesis  of dsRNA by RdRp mediation

difference of RNAi between plant and animal
・David Baulcombe, RNA silencing in plants, Nature. (2004)  
・Julia Pak and Andrew Fire, Distinct Populations of Primary and Secondary                 
Effectors During RNAi in C. elegans, Science.  (2007) 

mRNA aberrant
mRNA
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Circularity of RNAi (with primer dependent polynerization)
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Circularity of RNAi  (with primer dependent 
polymerization)

mRNA

m
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siRNA is a trigger

Circularity of RNAi  (with primer dependent 
polymerization)

mRNA

m
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Circularity of RNAi (with primer independent polynerization)
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Circularity of RNAi  (with primer independent 
polymerization)

m
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aberrant mRNA

Circularity of RNAi  (with primer independent 
polymerization)

m
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•  l and r  for phosphate bonds.

• h for a segment of hydrogen bond

siRNA as Primitive Agent

siRNA= 

HAMANO

We show that with the primer dependent synthesis only, the populations
of siRNA of each types extinct, hence RNAi ceases being unable to be sus-
tained. The probabilities of the extinctions are proved to be 1 by compact
description of rules and the probabilities are shown to remain invariant under
plausible class of model refinements, which refinements globalize the compact
rules by incorporating contextual traits of complexes. Then as soon as primer
independent synthesis is augmented, RNAi is shown to become sustainable in
that the probabilities of extinctions become less than 1.

2 Rule Based Modelling of RNAi

In our rule based modelling of RNAi, each siRNA is declared to be a primi-
tive agent denoted by Sk, whose index k (called type) designates its position
inside dsRNA, from which the agent originates. Types are natural numbers
1, 2, . . . ,m from downstream to upstream (3′ to 5′ of mRNA). T denotes the
set of all types. Each primitive agent has three sites

siRNA = Sk(l, h, r),

where r and l are for phosphate bonds and h for a segment of series of hydrogen
bonds sitting in 21∼26 nts. Binding of two sites is represented by a common
superscript. Other agents mRNA and dsRNA are represented as complexes
consisting of primitive Sks with appropriate bonds.

mRNA =

. . . , Sn+1(ln+2, rn+1), Sn(ln+1, rn), . . . , S2(l3, r2), S1(l2, r)

dsRNA =

. . . , Sn+1(ln+2, h1n+1 , rn+1), Sn(ln+1, h1n , rn), . . . , S2(l3, h12 , r2), S1(l2, h11 , r)

. . . , Sn+1(ln+2, h1n+1 , rn+1), Sn(ln+1, h1n , rn), . . . , S2(l3, h12 , r2), S1(l2, h11 , r)

Note that in the definition of mRNA the site h for each Sk is not written,
while it is in the definition of dsRNA. See Figure 3 for visual notations of each
agents with sites, where bound (res. unbound) sites are represented by black
(res. white) circles.
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Moreover, siRNA Has a Type.

• The type! k ∈ {1,2, .............., M } designates its 
position inside dsRNA, from which siRNA is 
cleaved.
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RNA and dsRNA as Complexes of siRNAs 

HAMANO
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description of rules and the probabilities are shown to remain invariant under
plausible class of model refinements, which refinements globalize the compact
rules by incorporating contextual traits of complexes. Then as soon as primer
independent synthesis is augmented, RNAi is shown to become sustainable in
that the probabilities of extinctions become less than 1.

2 Rule Based Modelling of RNAi

In our rule based modelling of RNAi, each siRNA is declared to be a primi-
tive agent denoted by Sk, whose index k (called type) designates its position
inside dsRNA, from which the agent originates. Types are natural numbers
1, 2, . . . ,m from downstream to upstream (3′ to 5′ of mRNA). T denotes the
set of all types. Each primitive agent has three sites

siRNA = Sk(l, h, r),

where r and l are for phosphate bonds and h for a segment of series of hydrogen
bonds sitting in 21∼26 nts. Binding of two sites is represented by a common
superscript. Other agents mRNA and dsRNA are represented as complexes
consisting of primitive Sks with appropriate bonds.

mRNA =

. . . , Sn+1(ln+2, rn+1), Sn(ln+1, rn), . . . , S2(l3, r2), S1(l2, r)

dsRNA =

. . . , Sn+1(ln+2, h1n+1 , rn+1), Sn(ln+1, h1n , rn), . . . , S2(l3, h12 , r2), S1(l2, h11 , r)

. . . , Sn+1(ln+2, h1n+1 , rn+1), Sn(ln+1, h1n , rn), . . . , S2(l3, h12 , r2), S1(l2, h11 , r)

Note that in the definition of mRNA the site h for each Sk is not written,
while it is in the definition of dsRNA. See Figure 3 for visual notations of each
agents with sites, where bound (res. unbound) sites are represented by black
(res. white) circles.
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Reactions of RNAi as Rules 
(i) Polymerization

HAMANO

Three fundamental reactions of RNAi are described by the following rules:

Definition 2.1

(i) polymerization

Sk(l, h
1k , rk) −→ Sk+1(l, h

1k+1 , rk+1), Sk(l
k+1, h1k , rk)

The rule describes how siRNA of type k+1 is produced from its predeces-
sor type. The bounded site h (res. r) of L.H.S gives the condition for the
rule that the hydrogen (res. ligation) bond must connect to the template
mRNA (res. to the predecessor of Sk). This rule is compact in that only
the local part of the domains and the ranges of the rule are specified and
whole contextual siRNAs so far produced (i.e., Si with i < k) and the
template mRNA (i.e., the upper strand mRNA having the complementary
site for the hydrogen bond h of Sk) do not matter.

(ii) cleavage

∏

i∈T

Si(l
i+1, h1i , ri) | Si(l

i+1, h1i , ri) −→
∏

i∈T

Si(l, h
1i , r) | Si(l, h

1i , r)

where L.H.S. of the rule is dsRNA written | in place of , and
∏

for
compositions of |. All the phosphate bonds in R.H.S. are released by the
rule.

(iii) degradation

RISC(h1k), Sk(l
k+1, h1k , rk) |

∏

i∈T \ {k}

Si(l
n+1, rn) −→ RISC(h), 0

where RISC is an agent with a site for hydrogen bond to a complementary
sequence of mRNA. The second agent of L.H.S. is mRNA with one bound
site for hydrogen bonds. RISC is recycled in that it occurs both in L.H.S
and R.H.S.

See Figure 4 for visual notations for each rules.
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Reactions of RNAi as Rules
(ii) cleavage

HAMANO

Three fundamental reactions of RNAi are described by the following rules:
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Purpose of this work

• the difference between the two 
synthesis paths of dsRNA in terms of 
their effectiveness for sustainability                                
(by κ's semantics of Markov  
branching processes).

• validity of the compact description of 
polymerization-rule                              
(by κ's rule refinement).

Show:
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Multytype Branching Process
(Galton-Watson)
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•  random variables for the n-th generation of 
each type  

• The mean matrix                    describes     
the evolution of the process.

HAMANO

3 RNAi as Multitype Branching Processes for Typed
siRNAs

In this section, we show that the two syntheses of dsRNA described in Sec-
tion 1 are captured and discriminated by Galton-Watson multitype branching
processes [17,13] for the typed siRNAs introduced in Section 2.

A sequence {Z(n)} of vector random variables represents the number of
individuals of the various types of siRNA in the n-th generation n

Z(n) = (Z1(n), . . . , Zm(n))

so that Zi is a random variable for Si (i.e., for siRNA of type i).
The m×m-matrix M = (mij), called mean matrix , is defined by

mij = E[Zj(1) | Z(0) = ej]

for all i, j = 1, 2, . . . ,m, where ej denotes the vector whose j-th component is
1 and whose other components are 0. That is, each element mij gives a type
i individual’s expected number of children of type j. Let us put

u(n) = E[Z(n)] = (E[Z1(n)], . . . , E[Zm(n)])

so that
u(n) = u(0)Mn.

Corresponding to the sequence of vector-valued random variables is the se-
quence f(s) = (f1(s), . . . , fm(s)) of generating functions for s = (s1, . . . , sm) ∈
[0, 1]T , defined by

fi(s) =
∑

r

P [Z(n) = r | Z(0) = ei]s
r1
1 sr22 · · · srmM .

For example, the generating functions characterize trivial processes without
any branching such that each individual has exactly one offspring of any type
with probability 1. The characterization of such process, called singular pro-
cess, is f(s) = AsT for some matrix A.

In this paper, we are interested in the probability qi of eventual extinctions
of the process initiated with a single particle of type i. They are defined by

qi = lim
n→∞

qi(n) where qi(n) = P [Z(n) = 0 | Z = ei].

The generating functions fi(s) yields a recursive definition of the probability
qi(n) such that

qi(1) = fi(0) and qi(n+ 1) = fi(q(n))
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Irreducible Branching Process

Each type i of individual eventually may have 
progeny of any other type j  

HAMANO

for q(n) = (q1(n), . . . , qm(n)). By taking the limit on the recursion, we have
(i ∈ {1, . . . ,m})

qi = f(q) for q = (q1, . . . , qm).

In irreducible branching process, each type of individual eventually may
have progeny of any other types. Every pair (i, j) of types, there exist an
integer n ≥ 1 such that

P [Zj(n) > 1 | Z(0) = ei] > 0.

That is, (i, j) element of Mn is strictly positive.

The irreducibility is a criterion to discriminate primer ind. synthesis from
primer dep. one:

Example 3.1

(1) RNAi with primer dep. synthesis yields a reducible branching process.

(2) RNAi with primer indep. synthesis yields a irreducible branching process.

Proof. In the primer dep. synthesis, it is directly observed that no types of
children Sk with k < n are produced by a parent of the type Sn. While, in
primer ind. synthesis, every types of offspring are produced immediately, thus
becomes irreducible. !

The well known Perron-Frobenius theorem for the classical theory of ma-
trices (cf. Theorem 6.1 of [17]) says that for every irreducible process, its mean
matrix M has a unique positive eigenvalue ρ (called its Perron-Frobenius root)
that is greater in absolute value than any other eigenvalue and the powers of
M have the property that

Mn = ρnM1 + o(ρn),

whereM1 is the matrix whose (i, j) element is given by ui·vj for the normalized
right and left eigenvectors tu and v such that ρv = vM and Mu = ρu.

Irreducibility is the property that any initial configuration can lead to any
other composition. Hence in irreducible populations all types grow at the
same rate, given by the single parameter ρ of the Perron-Frobenius root so
that the parameter completely characterize the extinction and growth:

Lemma 3.2 (Theorem 7.1 of pg. 16 [17] for irreducible process)
For a non-singular and irreducible process, the probability of extinctions is
the solution of

f(s) = s

that is closest to the origin in the unit cube [0, 1]T . Moreover

7

∀ (i, j) ∃n ≥ 1 

Any initial configuration cam lead 
to any composition  !
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   Irreducibility is a criterion discriminating
the two kind of synthesis of dsRNA

• RNAi with primer dep. synthesis is 
reducible.

• RNAi with primer indep. synthesis is 
irreducible.
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The probability qi of eventual extinctions of
SIRNA of type i (initiated with a single particle)

HAMANO
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The growth/extinctions of  irred. B.P 
is characterized by

Perron-Frobenius root ρ

A mean matrix M of irreducible  B.P. has a 
maximal eigenvalue ρ so that
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The growth/extinction  of  irred. B.P 
is characterized by

Perron-Frobenius root ρ

Thm (irreducible branching process)

• If ρ ≤ 1, then qi=1 for all types i=1, ..., M.

• If ρ > 1, then qi < 1 for all types  i=1, ..., M.

For qi extinction probability of type i ,
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Although intrinsically heterogeneous, 
uniform extinction for red. B.P 

Thm (reducible branching process)

If ρ ≤ 1, then the extinction probability qi =1        
for all types i=1, ..., M.
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The mean matrix for primer dep. polymerization

HAMANO

(i) If ρ ≤ 1, then qi = 1 for all i = 1, . . . ,m.

(ii) If ρ > 1, then qi < 1 for all i = 1, . . . ,m.

In reducible processes, distinct groups of types that do not produce types
of other groups can be distinguished. Reducible systems in general can display
great heterogeneity. One type may become extinct whereas another thrives
and different types may grow at different rates. Nevertheless uniform extinc-
tions are given in the following case, with λ given by the maximal eigenvalue
of the mean matrix:

Lemma 3.3 (Theorem 3.1 of pg. 65 [17] for reducible process) If a
reducible multitype branching process is non-singular and λ ≤ 1, then the
population becomes extinct with probability 1 given that Z(0) = ei for all i.

The primer dependent polymerization of RNAi determines the following
mean matrix Mdep, which is triangular with lower left elements being 0.

Mdep =





s1 ∗

s2
. . .

0 sm




(1)

Let un denote the n-th row of the matrix (1):

un = (0, . . . 0, sn,mn,n+1, . . . ,mnm)

Then each element of un (from left, respectively) corresponds to the rate
of the birth of a child Si of type i (with i = 1, 2, . . . ,M , respectively) by
polymerization triggered by the agent Sn of type n. The front 0s indicate that
no child Sj of type j(1 ≤ j < n) is produced by the polymerization triggered
by Sn. Then the element mn,i, which is the rate of the birth of the individual
Si is determined by the immediate predecessor Si−1. for the polymerization
rule of Definition 4. Thus we have

sn = siten(Sn) and mn,i = siten,i(Si−1, Si),

where the notations of site indicate that sn and mn,i are determined by states
of all the sites of agents inside the arguments.

Example 3.4 Each siRNA of type k decays with probability s
′
k. Then with

probability q, siRNA binds to a complementary mRNA to trigger RdRp to copy
the template mRNA. With probability h, denaturation takes place between Sk

and the mRNA to break hydrogen bonds. With probability r, ligation breaks

8

The mean matrix Mdep is triangular

HAMANO

(i) If ρ ≤ 1, then qi = 1 for all i = 1, . . . ,m.

(ii) If ρ > 1, then qi < 1 for all i = 1, . . . ,m.

In reducible processes, distinct groups of types that do not produce types
of other groups can be distinguished. Reducible systems in general can display
great heterogeneity. One type may become extinct whereas another thrives
and different types may grow at different rates. Nevertheless uniform extinc-
tions are given in the following case, with λ given by the maximal eigenvalue
of the mean matrix:

Lemma 3.3 (Theorem 3.1 of pg. 65 [17] for reducible process) If a
reducible multitype branching process is non-singular and λ ≤ 1, then the
population becomes extinct with probability 1 given that Z(0) = ei for all i.

The primer dependent polymerization of RNAi determines the following
mean matrix Mdep, which is triangular with lower left elements being 0.

Mdep =





s1 ∗

s2
. . .

0 sm




(1)

Let un denote the n-th row of the matrix (1):

un = (0, . . . 0, sn,mn,n+1, . . . ,mnm)

Then each element of un (from left, respectively) corresponds to the rate
of the birth of a child Si of type i (with i = 1, 2, . . . ,M , respectively) by
polymerization triggered by the agent Sn of type n. The front 0s indicate that
no child Sj of type j(1 ≤ j < n) is produced by the polymerization triggered
by Sn. Then the element mn,i, which is the rate of the birth of the individual
Si is determined by the immediate predecessor Si−1. for the polymerization
rule of Definition 4. Thus we have

sn = siten(Sn) and mn,i = siten,i(Si−1, Si),

where the notations of site indicate that sn and mn,i are determined by states
of all the sites of agents inside the arguments.

Example 3.4 Each siRNA of type k decays with probability s
′
k. Then with

probability q, siRNA binds to a complementary mRNA to trigger RdRp to copy
the template mRNA. With probability h, denaturation takes place between Sk

and the mRNA to break hydrogen bonds. With probability r, ligation breaks

8

......

RNAiandTermination

AmplificationisNOTBi-Directional

5′3′

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

←−RdRp||||||||

⇓RdRp

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

|||||||||||||||||||||||||||||||||||||||||||||||||||||

⇓Dicer

||||||||||||||

||||||||||||||

||||||||||||||

||||||||||||||

||||||||||||||

||||||||||||||

||||||||||||||

ABCDE

浜野正浩(JSTさきがけ専任研究員)RNAinterference:RegisterMachineandTermination06/24/201116/1

The n-th row  un  describes the birth-probabilities of children Si of types i　
(i=1,••• , M):

S1 ,•••Sn,        •••　　　SM

2012年9月10日月曜日
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The mean matrix for primer dep. polymerization

HAMANO

(i) If ρ ≤ 1, then qi = 1 for all i = 1, . . . ,m.

(ii) If ρ > 1, then qi < 1 for all i = 1, . . . ,m.

In reducible processes, distinct groups of types that do not produce types
of other groups can be distinguished. Reducible systems in general can display
great heterogeneity. One type may become extinct whereas another thrives
and different types may grow at different rates. Nevertheless uniform extinc-
tions are given in the following case, with λ given by the maximal eigenvalue
of the mean matrix:

Lemma 3.3 (Theorem 3.1 of pg. 65 [17] for reducible process) If a
reducible multitype branching process is non-singular and λ ≤ 1, then the
population becomes extinct with probability 1 given that Z(0) = ei for all i.

The primer dependent polymerization of RNAi determines the following
mean matrix Mdep, which is triangular with lower left elements being 0.

Mdep =





s1 ∗

s2
. . .

0 sm




(1)

Let un denote the n-th row of the matrix (1):

un = (0, . . . 0, sn,mn,n+1, . . . ,mnm)

Then each element of un (from left, respectively) corresponds to the rate
of the birth of a child Si of type i (with i = 1, 2, . . . ,M , respectively) by
polymerization triggered by the agent Sn of type n. The front 0s indicate that
no child Sj of type j(1 ≤ j < n) is produced by the polymerization triggered
by Sn. Then the element mn,i, which is the rate of the birth of the individual
Si is determined by the immediate predecessor Si−1. for the polymerization
rule of Definition 4. Thus we have

sn = siten(Sn) and mn,i = siten,i(Si−1, Si),

where the notations of site indicate that sn and mn,i are determined by states
of all the sites of agents inside the arguments.

Example 3.4 Each siRNA of type k decays with probability s
′
k. Then with

probability q, siRNA binds to a complementary mRNA to trigger RdRp to copy
the template mRNA. With probability h, denaturation takes place between Sk

and the mRNA to break hydrogen bonds. With probability r, ligation breaks
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The mean matrix for primer dep. polymerization
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The mean matrix for primer dep. polymerization

HAMANO
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Prop.
The populations of siRNAs Si's of all types i 
eventually extinct with primer dep. 
synthesis only.
Proof.
Since the eigenvalues of the triangular Mdep 
(whose maximal is Perron-Frobenius ) are given 
by the diagonal elements ≤ 1.
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The mean matrix for primer indep. polymerization

HAMANO

between two siRNAs of types k−1 and k. In such condition, un for (1) is given
by the following, where x̄ = 1− x:

sn = 1− s
′

n and mn,i = h̄(h̄r̄)i−1 q sn

Proposition 3.5 (siRNAs extinc in primer dependent synthesis only)
The populations of siRNAs of all types S1, . . . , Sm eventually extinct.

Proof. The eigenvalues of (1) are given by its diagonal elements, hence the
Perron-Frobenius root is their maximum, which is less than or equal to 1.
Thus the assertion follows from Lemma 3.3. !

As soon as primer indep. synthesis is enabled, we have the following:

Proposition 3.6 (RNAi may sustain with primer ind. synthesis)
The probabilities of extinctions of every types S1, . . . , Sm become less than 1.

Proof. The mean matrix Mindep for the primer independent synthesis is of
the following form:

Mindep = Mdep +
m∑

j=1

u⊗ tej

where

u = (q, qc, qc2, . . . , qcm−1)

is given by a geometric sequence whose initial term q denotes the probability
of RdRp mediation. Each element (from left respectively) represents the rate
of birth of corresponding type S1, . . . , Sm respectively. In the convention of
Example 3.4, the common ratio c is given by c = h̄r̄.

The Perron-Frobenius root of Mindep −Mdep is given by

ρ =
∑m

i=1 ui = q
1− cm

1− c

With appropriate q and c, it is possible to make ρ > 1. By Lemma 3.2 for
irreducible process, the assertion holds. !

4 Invariance under Model Refinements

The original rule of polymerization is local in that the creation of Sk+1 of
the lower strand is determined only by local knowledge on the immediate
predecessor Sk. The knowledge is whether Sk’s two sites h and r are bound to
the upper strand and to the predecessor by hydrogen and by phosphate bonds

9
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q the probability of RdRp mediation

c a certain constant, e.g.,  c = (1-h)(1-r)
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Prop.
RNAi may sustain with primer indep. synthesis.
The probability qi of extinction < 1 
for every type i.

Proof.

HAMANO

between two siRNAs of types k−1 and k. In such condition, un for (1) is given
by the following, where x̄ = 1− x:

sn = 1− s
′

n and mn,i = h̄(h̄r̄)i−1 q sn

Proposition 3.5 (siRNAs extinct in primer dependent synthesis only)
The populations of siRNAs of all types S1, . . . , Sm eventually extinct.

Proof. The eigenvalues of (1) are given by its diagonal elements, hence the
Perron-Frobenius root is their maximum, which is less than or equal to 1.
Thus the assertion follows from Lemma 3.3. !

As soon as primer indep. synthesis is enabled, we have the following:

Proposition 3.6 (RNAi may sustain with primer ind. synthesis)
The probabilities of extinctions of every types S1, . . . , Sm become less than 1.

Proof. The mean matrix Mindep for the primer independent synthesis is of
the following form:

Mindep = Mdep +
m∑

j=1

u⊗ tej

where

u = (q, qc, qc2, . . . , qcm−1)

is given by a geometric sequence whose initial term q denotes the probability
of RdRp mediation. Each element (from left respectively) represents the rate
of birth of corresponding type S1, . . . , Sm respectively. In the convention of
Example 3.4, the common ratio c is given by c = h̄r̄.

The Perron-Frobenius root of Mindep −Mdep is given by

ρ =
∑m

i=1 ui = q
1− cm

1− c

With appropriate q and c, it is possible to make ρ > 1. By Lemma 3.2 for
irreducible process, the assertion holds. !

4 Invariance under Model Refinements

The original rule of polymerization is local in that the creation of Sk+1 of
the lower strand is determined only by local knowledge on the immediate
predecessor Sk. The knowledge is whether Sk’s two sites h and r are bound to
the upper strand and to the predecessor by hydrogen and by phosphate bonds

9

Perron-Frobenius root of Mindep is given by 

, which is made > 1 with appropriate q and c. 
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Model Refinement for Polymerization
HAMANO

respectively. A rule refinement makes this local description of the rule global
so as to incorporate contextual knowledge on all the predecessor of siRNA (i.e.
Sj with j ≤ k) as well as on the template mRNA.

Definition 4.1 The polymerization rule is refined as follows:

Sk(l, h1k , rk),
∏

j<k Sj, mRNA(h1k , h)
−→

Sk+1(l, h1k+1 , rk+1), Sk(lk+1, h1k , rk),
∏

j<k Sj, mRNA(h1k , h1k+1)

Although the states of their sites are accounted, no bonding condition on Sj

for j < k is required for the hydrogen and the phosphate sites. See Figure 5
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The original rule of polymerization
HAMANO

respectively. A rule refinement makes this local description of the rule global
so as to incorporate contextual knowledge on all the predecessor of siRNA (i.e.
Sj with j ≤ k) as well as on the template mRNA.

Definition 4.1 The polymerization rule is refined as follows:

Sk(l, h1k , rk),
∏

j<k Sj, mRNA(h1k , h)
−→

Sk+1(l, h1k+1 , rk+1), Sk(lk+1, h1k , rk),
∏

j<k Sj, mRNA(h1k , h1k+1)

Although the states of their sites are accounted, no bonding condition on Sj

for j < k is required for the hydrogen and the phosphate sites. See Figure 5
for the refined rule.

.......... Sk+1
!
l

!
r !hSk

!
l

!
r Sk−1

!
l

!
r
.......... S1

!
l!h

Sk
"
l

!
r Sk−1

!
l

.......... S1

=⇒

.......... !hSk+1
!
l

!
r !hSk

!
l

!
r Sk−1

!
l

!
r
.......... S1

!
l!h

Sk+1
!
r

!h
Sk

!
l

!
r Sk−1

!
l

.......... S1

Fig. 5. Rule refinement for polymerization

The branching process for the refined rule is given by the mean matrix
Mref(dep) of the same form as (1) but whose each n-th row un is now given by

sn = siten(Sn,mRNA) and mn,i = siten,i(Sn, Sn+1, . . . , Si−1, Si,mRNA).

Note that arguments of site are enlarged to accommodate all Sj (j ≤ n) as
well as mRNA.

Proposition 4.2 (invariance under the rule refinements) The extinc-
tion property of Proposition 3.5 is invariant under the rule refinement of Def-
inition 4.1.

Proof. The Perron-Frobenius roots of the mean matrices do not increase
under the refinement. That is, ρMdep

≥ ρMref(dep)
for any model refinement

ref(dep) defined to the primer dep. synthesis. This is because the diagonal
elements of matrices decrease siten(Sn) ≥ siten(Sn,mRNA) for 1 ≤ n ≤ m,
whose elements are sufficient to determine the root, given that Mref(dep) as
well as Mdep are triangular. !

10

HAMANO

respectively. A rule refinement makes this local description of the rule global
so as to incorporate contextual knowledge on all the predecessor of siRNA (i.e.
Sj with j ≤ k) as well as on the template mRNA.

Definition 4.1 The polymerization rule is refined as follows:

Sk(l, h1k , rk),
∏

j<k Sj, mRNA(h1k , h)
−→

Sk+1(l, h1k+1 , rk+1), Sk(lk+1, h1k , rk),
∏

j<k Sj, mRNA(h1k , h1k+1)

Although the states of their sites are accounted, no bonding condition on Sj

for j < k is required for the hydrogen and the phosphate sites. See Figure 5
for the refined rule.

.......... Sk+1
!
l

!
r !hSk

!
l

!
r Sk−1

!
l

!
r
.......... S1

!
l!h

Sk
"
l

!
r Sk−1

!
l

.......... S1

=⇒

.......... !hSk+1
!
l

!
r !hSk

!
l

!
r Sk−1

!
l

!
r
.......... S1

!
l!h

Sk+1
!
r

!h
Sk

!
l

!
r Sk−1

!
l

.......... S1

Fig. 5. Rule refinement for polymerization

The branching process for the refined rule is given by the mean matrix
Mref(dep) of the same form as (1) but whose each n-th row un is now given by

sn = siten(Sn,mRNA) and mn,i = siten,i(Sn, Sn+1, . . . , Si−1, Si,mRNA).

Note that arguments of site are enlarged to accommodate all Sj (j ≤ n) as
well as mRNA.

Proposition 4.2 (invariance under the rule refinements) The extinc-
tion property of Proposition 3.5 is invariant under the rule refinement of Def-
inition 4.1.

Proof. The Perron-Frobenius roots of the mean matrices do not increase
under the refinement. That is, ρMdep

≥ ρMref(dep)
for any model refinement

ref(dep) defined to the primer dep. synthesis. This is because the diagonal
elements of matrices decrease siten(Sn) ≥ siten(Sn,mRNA) for 1 ≤ n ≤ m,
whose elements are sufficient to determine the root, given that Mref(dep) as
well as Mdep are triangular. !

10

2012年9月10日月曜日



The original compact rule is 
globalized !

2012年9月10日月曜日



Adding Context 1 : mRNA 
HAMANO

respectively. A rule refinement makes this local description of the rule global
so as to incorporate contextual knowledge on all the predecessor of siRNA (i.e.
Sj with j ≤ k) as well as on the template mRNA.

Definition 4.1 The polymerization rule is refined as follows:

Sk(l, h1k , rk),
∏

j<k Sj, mRNA(h1k , h)
−→

Sk+1(l, h1k+1 , rk+1), Sk(lk+1, h1k , rk),
∏

j<k Sj, mRNA(h1k , h1k+1)

Although the states of their sites are accounted, no bonding condition on Sj

for j < k is required for the hydrogen and the phosphate sites. See Figure 5
for the refined rule.

.......... Sk+1
!
l

!
r !hSk

!
l

!
r Sk−1

!
l

!
r
.......... S1

!
l!h

Sk
"
l

!
r Sk−1

!
l

.......... S1

=⇒

.......... !hSk+1
!
l

!
r !hSk

!
l

!
r Sk−1

!
l

!
r
.......... S1

!
l!h

Sk+1
!
r

!h
Sk

!
l

!
r Sk−1

!
l

.......... S1

Fig. 5. Rule refinement for polymerization

The branching process for the refined rule is given by the mean matrix
Mref(dep) of the same form as (1) but whose each n-th row un is now given by

sn = siten(Sn,mRNA) and mn,i = siten,i(Sn, Sn+1, . . . , Si−1, Si,mRNA).

Note that arguments of site are enlarged to accommodate all Sj (j ≤ n) as
well as mRNA.

Proposition 4.2 (invariance under the rule refinements) The extinc-
tion property of Proposition 3.5 is invariant under the rule refinement of Def-
inition 4.1.

Proof. The Perron-Frobenius roots of the mean matrices do not increase
under the refinement. That is, ρMdep

≥ ρMref(dep)
for any model refinement

ref(dep) defined to the primer dep. synthesis. This is because the diagonal
elements of matrices decrease siten(Sn) ≥ siten(Sn,mRNA) for 1 ≤ n ≤ m,
whose elements are sufficient to determine the root, given that Mref(dep) as
well as Mdep are triangular. !

10

HAMANO

respectively. A rule refinement makes this local description of the rule global
so as to incorporate contextual knowledge on all the predecessor of siRNA (i.e.
Sj with j ≤ k) as well as on the template mRNA.

Definition 4.1 The polymerization rule is refined as follows:

Sk(l, h1k , rk),
∏

j<k Sj, mRNA(h1k , h)
−→

Sk+1(l, h1k+1 , rk+1), Sk(lk+1, h1k , rk),
∏

j<k Sj, mRNA(h1k , h1k+1)

Although the states of their sites are accounted, no bonding condition on Sj

for j < k is required for the hydrogen and the phosphate sites. See Figure 5
for the refined rule.

.......... Sk+1
!
l

!
r !hSk

!
l

!
r Sk−1

!
l

!
r
.......... S1

!
l!h

Sk
"
l

!
r Sk−1

!
l

.......... S1

=⇒

.......... !hSk+1
!
l

!
r !hSk

!
l

!
r Sk−1

!
l

!
r
.......... S1

!
l!h

Sk+1
!
r

!h
Sk

!
l

!
r Sk−1

!
l

.......... S1

Fig. 5. Rule refinement for polymerization

The branching process for the refined rule is given by the mean matrix
Mref(dep) of the same form as (1) but whose each n-th row un is now given by

sn = siten(Sn,mRNA) and mn,i = siten,i(Sn, Sn+1, . . . , Si−1, Si,mRNA).

Note that arguments of site are enlarged to accommodate all Sj (j ≤ n) as
well as mRNA.

Proposition 4.2 (invariance under the rule refinements) The extinc-
tion property of Proposition 3.5 is invariant under the rule refinement of Def-
inition 4.1.

Proof. The Perron-Frobenius roots of the mean matrices do not increase
under the refinement. That is, ρMdep

≥ ρMref(dep)
for any model refinement

ref(dep) defined to the primer dep. synthesis. This is because the diagonal
elements of matrices decrease siten(Sn) ≥ siten(Sn,mRNA) for 1 ≤ n ≤ m,
whose elements are sufficient to determine the root, given that Mref(dep) as
well as Mdep are triangular. !

10

2012年9月10日月曜日



HAMANO

respectively. A rule refinement makes this local description of the rule global
so as to incorporate contextual knowledge on all the predecessor of siRNA (i.e.
Sj with j ≤ k) as well as on the template mRNA.

Definition 4.1 The polymerization rule is refined as follows:

Sk(l, h1k , rk),
∏

j<k Sj, mRNA(h1k , h)
−→

Sk+1(l, h1k+1 , rk+1), Sk(lk+1, h1k , rk),
∏

j<k Sj, mRNA(h1k , h1k+1)

Although the states of their sites are accounted, no bonding condition on Sj

for j < k is required for the hydrogen and the phosphate sites. See Figure 5
for the refined rule.

.......... Sk+1
!
l

!
r !hSk

!
l

!
r Sk−1

!
l

!
r
.......... S1

!
l!h

Sk
"
l

!
r Sk−1

!
l

.......... S1

=⇒

.......... !hSk+1
!
l

!
r !hSk

!
l

!
r Sk−1

!
l

!
r
.......... S1

!
l!h

Sk+1
!
r

!h
Sk

!
l

!
r Sk−1

!
l

.......... S1

Fig. 5. Rule refinement for polymerization

The branching process for the refined rule is given by the mean matrix
Mref(dep) of the same form as (1) but whose each n-th row un is now given by

sn = siten(Sn,mRNA) and mn,i = siten,i(Sn, Sn+1, . . . , Si−1, Si,mRNA).

Note that arguments of site are enlarged to accommodate all Sj (j ≤ n) as
well as mRNA.

Proposition 4.2 (invariance under the rule refinements) The extinc-
tion property of Proposition 3.5 is invariant under the rule refinement of Def-
inition 4.1.

Proof. The Perron-Frobenius roots of the mean matrices do not increase
under the refinement. That is, ρMdep

≥ ρMref(dep)
for any model refinement

ref(dep) defined to the primer dep. synthesis. This is because the diagonal
elements of matrices decrease siten(Sn) ≥ siten(Sn,mRNA) for 1 ≤ n ≤ m,
whose elements are sufficient to determine the root, given that Mref(dep) as
well as Mdep are triangular. !

10

HAMANO

respectively. A rule refinement makes this local description of the rule global
so as to incorporate contextual knowledge on all the predecessor of siRNA (i.e.
Sj with j ≤ k) as well as on the template mRNA.

Definition 4.1 The polymerization rule is refined as follows:

Sk(l, h1k , rk),
∏

j<k Sj, mRNA(h1k , h)
−→

Sk+1(l, h1k+1 , rk+1), Sk(lk+1, h1k , rk),
∏

j<k Sj, mRNA(h1k , h1k+1)

Although the states of their sites are accounted, no bonding condition on Sj

for j < k is required for the hydrogen and the phosphate sites. See Figure 5
for the refined rule.

.......... Sk+1
!
l

!
r !hSk

!
l

!
r Sk−1

!
l

!
r
.......... S1

!
l!h

Sk
"
l

!
r Sk−1

!
l

.......... S1

=⇒

.......... !hSk+1
!
l

!
r !hSk

!
l

!
r Sk−1

!
l

!
r
.......... S1

!
l!h

Sk+1
!
r

!h
Sk

!
l

!
r Sk−1

!
l

.......... S1

Fig. 5. Rule refinement for polymerization

The branching process for the refined rule is given by the mean matrix
Mref(dep) of the same form as (1) but whose each n-th row un is now given by

sn = siten(Sn,mRNA) and mn,i = siten,i(Sn, Sn+1, . . . , Si−1, Si,mRNA).

Note that arguments of site are enlarged to accommodate all Sj (j ≤ n) as
well as mRNA.

Proposition 4.2 (invariance under the rule refinements) The extinc-
tion property of Proposition 3.5 is invariant under the rule refinement of Def-
inition 4.1.

Proof. The Perron-Frobenius roots of the mean matrices do not increase
under the refinement. That is, ρMdep

≥ ρMref(dep)
for any model refinement

ref(dep) defined to the primer dep. synthesis. This is because the diagonal
elements of matrices decrease siten(Sn) ≥ siten(Sn,mRNA) for 1 ≤ n ≤ m,
whose elements are sufficient to determine the root, given that Mref(dep) as
well as Mdep are triangular. !

10

Adding Context  2:  Sj's 

2012年9月10日月曜日



The mean matrix for the refined rule
is again triangular, but whose n-th row

HAMANO

(i) If ρ ≤ 1, then qi = 1 for all i = 1, . . . ,m.

(ii) If ρ > 1, then qi < 1 for all i = 1, . . . ,m.

In reducible processes, distinct groups of types that do not produce types
of other groups can be distinguished. Reducible systems in general can display
great heterogeneity. One type may become extinct whereas another thrives
and different types may grow at different rates. Nevertheless uniform extinc-
tions are given in the following case, with λ given by the maximal eigenvalue
of the mean matrix:

Lemma 3.3 (Theorem 3.1 of pg. 65 [17] for reducible process) If a
reducible multitype branching process is non-singular and λ ≤ 1, then the
population becomes extinct with probability 1 given that Z(0) = ei for all i.

The primer dependent polymerization of RNAi determines the following
mean matrix Mdep, which is triangular with lower left elements being 0.

Mdep =





s1 ∗

s2
. . .

0 sm




(1)

Let un denote the n-th row of the matrix (1):

un = (0, . . . 0, sn,mn,n+1, . . . ,mnm)

Then each element of un (from left, respectively) corresponds to the rate
of the birth of a child Si of type i (with i = 1, 2, . . . ,M , respectively) by
polymerization triggered by the agent Sn of type n. The front 0s indicate that
no child Sj of type j(1 ≤ j < n) is produced by the polymerization triggered
by Sn. Then the element mn,i, which is the rate of the birth of the individual
Si is determined by the immediate predecessor Si−1. for the polymerization
rule of Definition 4. Thus we have

sn = siten(Sn) and mn,i = siten,i(Si−1, Si),

where the notations of site indicate that sn and mn,i are determined by states
of all the sites of agents inside the arguments.

Example 3.4 Each siRNA of type k decays with probability s
′
k. Then with

probability q, siRNA binds to a complementary mRNA to trigger RdRp to copy
the template mRNA. With probability h, denaturation takes place between Sk

and the mRNA to break hydrogen bonds. With probability r, ligation breaks

8
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invariance
Thm.
The extinction property is invariant 
under the rule refinement of polymerization.

Proof.
Throughout the refinement, Perron-Frobenius 
root does not increase.
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Conclusion
• [Sustainability of RNAi]                            

(Primer dep. synthesis)                       
siRNAs eventually become extinct (with the 
probability 1 ) hence RNAi cannot sustain.                           
(Primer indep. synthesis)                        
RNAi may sustain since the probability of 
siRNA-extinction is less than 1. 

• [Invariance under refinement]                       
• Rule refinement for polymerization   
preserves extinction of siRNAs.                　
• Compact description of κ is valid for 
capturing the sustainability of RNAI.
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Future Works

• Heterogeneity, peculiar to reducible 
branching process ?                               
E.g., distribution of spreading of 
concentrations of each typed siRNA 
in primer dep. polymerization.

•Model abstraction as a dual notion of 
model refinement ?                     
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