Sustainability of RNA-interference in Rule Based Modelling

Masahiro HAMANO

PRESTO, JST (Japan Science and Technology Agency)

SASB, Deauville 2012

Table of Contents

- RNA interference (RNAi) (primer dependent/indep. polymerization to dsRNA)
- Kappa Modelling
- Multitype Branching Processes for siRNAs
- Invariance under Model Refinement

RNA interference

- RNAi (also known as RNA silencing) is a mechanism in which short interfering RNA's (siRNA's) (21~26 nt's) directly control gene expression.
- RNAi consists of three fundamental biochemical processes:

Step 1 RNAi

Formation of double stranded RNA (dsRNA)

 dsRNA

Dicer enzyme cleaves dsRNA into siRNA's:

ds siRNA's

Step 3 RNAi

Incorporation of siRNA into RNA-induced silencing complex (RISC), targeting a long single-stranded mRNA by complementarity.

Finally, RISC degrades mRNA or cleaves it into siRNA's.

Motivation

Analyze circularity of RNAi, explaining how RNAi is sustained!

difference of RNAi between plant and animal

• David Baulcombe, RNA silencing in plants, Nature. (2004)

• Julia Pak and Andrew Fire, Distinct Populations of Primary and Secondary Effectors During RNAi in C. elegans, Science. (2007)

Circularity of RNAi (with primer dependent polymerization)

Circularity of RNAi (with primer dependent polymerization)

Circularity of RNAi (with primer **in**dependent polymerization)

Circularity of RNAi (with primer **in**dependent polymerization)

siRNA as Primitive Agent

siRNA=S(l, h, r)

- Land r for phosphate bonds.
- h for a segment of hydrogen bond

$$Q S_{n} p_{r}$$

Moreover, siRNA Has a Type.

 $siRNA = S_k(l, h, r)$

 The type k ∈ {1,2,, M } designates its position inside dsRNA, from which siRNA is cleaved.

RNA and dsRNA as Complexes of siRNAs

RNA= ..., $S_{n+1}(l^{n+2}, r^{n+1}), S_n(l^{n+1}, r^n), ..., S_2(l^3, r^2), S_1(l^2, r)$

dsRNA =

 $\dots, S_{n+1}(l^{n+2}, h^{1_{n+1}}, r^{n+1}), S_n(l^{n+1}, h^{1_n}, r^n), \dots, S_2(l^3, h^{1_2}, r^2), S_1(l^2, h^{1_1}, r) \\\dots, S_{n+1}(l^{\overline{n+2}}, h^{1_{n+1}}, r^{\overline{n+1}}), S_n(l^{\overline{n+1}}, h^{1_n}, r^{\overline{n}}), \dots, S_2(l^{\overline{3}}, h^{1_2}, r^{\overline{2}}), S_1(l^{\overline{2}}, h^{1_1}, r)$

Reactions of RNAi as Rules

(i) Polymerization

$$S_k(l, h^{1_k}, r^k) \longrightarrow S_{k+1}(l, h^{1_{k+1}}, r^{k+1}), S_k(l^{k+1}, h^{1_k}, r^k)$$

compact description !

Reactions of RNAi as Rules (ii) cleavage

$$\prod_{i \in T} (S_i(l^{i+1}, h^{1_i}, r^i) \mid S_i(l^{i+1}, h^{1_i}, r^i)) \longrightarrow \prod_{i \in T} (S_i(l, h^{1_i}, r) \mid S_i(l, h^{1_i}, r))$$

Reactions of RNAi as Rules (iii) degradation

$$\mathsf{RISC}(h^{1_k}), \quad S_k(l^{k+1}, h^{1_k}, r^k) \mid \prod_{i \in T \setminus \{k\}} S_i(l^{n+1}, r^n) \longrightarrow \mathsf{RISC}(h), \ 0$$

Purpose of this work

Show:

- the difference between the two synthesis paths of dsRNA in terms of their effectiveness for sustainability (by κ's semantics of Markov branching processes).
- validity of the compact description of polymerization-rule
 (by κ's rule refinement).

Multytype Branching Process (Galton-Watson)

Multitype Branching Process

 random variables for the n-th generation of each type

$$\mathbf{Z}(n) = (Z_1(n), \dots, Z_m(n))$$

• The mean matrix $M = (m_{ij})$ describes the evolution of the process.

$$m_{ij} = E[Z_j(1) \mid \mathbf{Z}(0) = \mathbf{e}_j]$$

$$u(n) = E[\mathbf{Z}(n)] = (E[Z_1(n)], \dots, E[Z_m(n)])$$

$$u(n) = u(0)M^n$$

Irreducible Branching Process

Each type i of individual eventually may have progeny of any other type j

$\forall (i, j) \exists n \ge 1$ $P[Z_j(n) > 1 \mid \mathbf{Z}(0) = \mathbf{e}_i] > 0.$

Any initial configuration cam lead to any composition !

Irreducibility is a criterion discriminating the two kind of synthesis of dsRNA

- RNAi with primer dep. synthesis is reducible.
- RNAi with primer indep. synthesis is irreducible.

Our Slogan

To capture sustainability of RNAi in terms of (non-)extinction of siRNA population

Extinction of siRNA

The probability **q** of eventual **extinctions** of SIRNA of type i (initiated with a single particle)

$$q_i = \lim_{n \to \infty} q_i(n)$$

with $q_i(n) = P[\mathbf{Z}(n) = \mathbf{0} | \mathbf{Z}(0) = \mathbf{e}_i]$

The growth/extinctions of irred. B.P is characterized by Perron-Frobenius root *p*

A mean matrix M of irreducible B.P. has a maximal eigenvalue ρ so that

$$M^n = \rho^n M_1 + o(\rho^n)$$

determined by right/left eigenvectors of M

The growth/extinction of irred. B.P is characterized by Perron-Frobenius root *p*

Thm (irreducible branching process) For qi extinction probability of type i ,

- If $\rho \leq 1$, then qi=1 for all types i=1, ..., M.
- If $\rho > 1$, then qi < 1 for all types i=1, ..., M.

Although intrinsically heterogeneous, uniform extinction for red. B.P

Thm (reducible branching process)

If $\rho \leq 1$, then the extinction probability qi =1 for all types i=1, ..., M.

$$u_n = (0, \dots, 0, s_n, m_{n,n+1}, \dots, m_{nm})$$

$$S1, \dots Sn, \dots SM$$

 \mathbb{I} \mathbb{I}

$$u_n = (0, \dots, 0, s_n, m_{n,n+1}, \dots, m_{nm})$$

$$S1, \dots Sn, \dots SM$$

 $\lim_{d \land P \land d} \rightarrow$

 $M_{dep} = \begin{pmatrix} s_1 & * \\ s_2 & \\ & \ddots & \\ 0 & & s_m \end{pmatrix}$

The mean matrix M_{dep} is triangular

$$u_n = (0, \dots, 0, s_n, m_{n,n+1}, \dots, m_{nm}) \qquad \qquad \begin{array}{c} \mathsf{S1}, \dots \mathsf{Sn}, & \dots & \mathsf{SM} \\ & & & & & & \\ & & & & & & \\ & &$$

 $M_{dep} = \begin{pmatrix} s_1 & * \\ s_2 & \\ & \ddots & \\ 0 & & s_m \end{pmatrix}$

The mean matrix M_{dep} is triangular

$$u_n = (0, \dots, 0, s_n, m_{n,n+1}, \dots, m_{nm}) \qquad \qquad S1, \dots Sn, \qquad \dots \qquad SM$$
no children of these types $,\epsilon$ $,\epsilon$ $,s$

 $M_{dep} = \begin{pmatrix} s_1 & * \\ s_2 & \\ & \ddots & \\ 0 & & s_m \end{pmatrix}$

The mean matrix M_{dep} is triangular

$$u_n = (0, \dots, 0, s_n, m_{n,n+1}, \dots, m_{nm}) \qquad \qquad S1, \dots Sn, \qquad \dots \qquad SM$$
no children of these types $s_{produced} !$

 $M_{dep} = \begin{pmatrix} s_1 & & * \\ & s_2 & \\ & & \ddots & \\ & & & \ddots & \\ 0 & & & s_m \end{pmatrix}$

The mean matrix M_{dep} is triangular

L

The n-th row un describes the birth-probabilities of children Si of types i $(i=1, \dots, M)$:

$$u_n = (0, \dots, 0, s_n, m_{n,n+1}, \dots, m_{nm}) \qquad \qquad \text{S1}, \dots \text{Sn}, \qquad \dots \qquad \text{SM}$$
no children of these types produced !

р

The mean matrix M_{dep} is triangular

$$u_n = (0, \dots, 0, s_n, m_{n,n+1}, \dots, m_{nm})$$

no children of
these types
produced !

The mean matrix for primer dep. polymerization

The n-th row u_n describes the birth-probabilities of children Si of types i (i=1,..., M):

The mean matrix for primer dep. polymerization

The n-th row u_n describes the birth-probabilities of children Si of types i (i=1,..., M):

$$u_n = (0, \dots, 0, s_n, m_{n,n+1}, \dots, m_{nm})$$

no children of
these types
produced !
• s_n determined by
sites of Sn
• $m_{n,i}$ determined by
sites of Si-1 and Si

The mean matrix for primer dep. polymerization

The n-th row u_n describes the birth-probabilities of children Si of types i (i=1,..., M):

Prop.

The populations of siRNAs Si's of all types i eventually extinct with primer dep. synthesis only.

Proof.

Since the eigenvalues of the triangular M_{dep} (whose maximal is Perron-Frobenius) are given by the diagonal elements ≤ 1 . The mean matrix for primer indep. polymerization

$$\begin{split} M_{indep} &= \sum_{j=1}^{m} \mathbf{u} \otimes^{t} \mathbf{e}_{j} \\ \mathbf{u} &= (q, \ qc, \ qc^{2}, \dots, qc^{m-1}) \\ \swarrow \\ \mathbf{q} \text{ the probability of RdRp mediation} \\ \mathbf{c} \text{ a certain constant, e.g., } \mathbf{c} &= (1-h)(1-r) \end{split}$$

Prop.

RNAi may sustain with primer indep. synthesis. The probability qi of extinction < 1 for every type i.

Proof.

Perron-Frobenius root of Mindep is given by

$$\rho = \sum_{i=1}^{m} u_i = q \frac{1 - c^m}{1 - c}$$

, which is made > 1 with appropriate q and c.

Model Refinement for Polymerization

$$S_k(l, h^{1_k}, r^k), \longrightarrow S_{k+1}(l, h^{1_{k+1}}, r^{k+1}), S_k(l^{k+1}, h^{1_k}, r^k),$$
$$\prod_{j < k} S_j, \operatorname{mRNA}(h^{1_k}, h) \longrightarrow \prod_{j < k} S_j, \operatorname{mRNA}(h^{1_k}, h^{1_{k+1}})$$

The original rule of polymerization

2012年9月10日月曜日

The original compact rule is globalized !

Adding Context 1 : mRNA

Adding Context 2: Sj's

 $S_k(l, h^{1_k}, r^k), \longrightarrow S_{k+1}(l, h^{1_{k+1}}, r^{k+1}), S_k(l^{k+1}, h^{1_k}, r^k),$ $\prod_{j < k} S_j, \operatorname{mRNA}(h^{1_k}, h) \longrightarrow \prod_{j < k} S_j, \operatorname{mRNA}(h^{1_k}, h^{1_{k+1}})$

The mean matrix for the refined rule is again triangular, but whose n-th row

$$u_n = (0, \dots, 0, s_n, m_{n,n+1}, \dots, m_{nm})$$

is given by
 $s_n = \operatorname{site}_n(S_n, \operatorname{mRNA})$

 $m_{n,i} = \operatorname{site}_{n,i}(S_n, S_{n+1}, \ldots, S_{i-1}, S_i, \operatorname{mRNA})$

2012年9月10日月曜日

invariance

Thm.

The extinction property is invariant under the rule refinement of polymerization.

Proof.

Throughout the refinement, Perron-Frobenius root does not increase.

Conclusion

- [Sustainability of RNAi] (Primer dep. synthesis) siRNAs eventually become extinct (with the probability 1) hence RNAi cannot sustain. (Primer indep. synthesis) RNAi may sustain since the probability of siRNA-extinction is less than 1.
- [Invariance under refinement]
 - Rule refinement for polymerization preserves extinction of siRNAs.
 - \cdot Compact description of κ is valid for capturing the sustainability of RNAI.

Future Works

- Heterogeneity, peculiar to reducible branching process ?
 E.g., distribution of spreading of concentrations of each typed siRNA in primer dep. polymerization.
- Model abstraction as a dual notion of model refinement ?