
 Stochastic Transcription Elongation 
         via Rule Based Modelling

                     Masahiro HAMANO
                   hamano@jaist.ac.jp               
              
                             SASB, Saint Malo 2015    

1

mailto:hamano@jaist.ac.jp
mailto:hamano@jaist.ac.jp


Purpose of This Talk

• Equilibrium Kinetics and Steady State 
Dynamics of Transcription Elongation                                           
such as                                                                                                              

• Michaelis-Menten Enzyme Kinetics via   
Probability/Energy of Boltzmann 
Distribution

 

detailed balance (reversibility)      
Wegscheider condition
{

Rule based investigation for
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mechano-chemical TE  as Rule Based 

Modelling 

• TE is a stochastic mechano-chemical 
interaction consisting of                          
-Brownian ratchet mechanism                        
-Chemical Reactions :NTP hydrolysis/catalysis 
and PPi release                                       

• This mechano-chemical principle is 
represented by rule based κ-calculus 
syntactically and semantically

 

RNAn         RNAn+1

NTP            PPi
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Transcription Elongation (TE)

• RNAp moves along the template DNA 

• (polymerization ) NTP unit is added to the (3'-end       
of ) the nascent RNA. 

Structure of Transcription Elongation Complex (TEC) 

HAMANO

Poisson time consuming and decay of particular biological events are typically seen
due to non-uniform combination of biochemical interactions with various rates. For
this purpose, we model transcription, which is a typical molecular multi-step in-
teraction. Transcription is the first phase of gene expression and is well known to
involve only very small numbers of reacting molecules in the cells. Thus for the
modelling, stochastic method is favorable, which the rule based modelling naturally
provides, rather than the deterministic method of law of mass-action. Stochastic
and discrete nature of chemical reactions of the elongation is directly described in
the rule based modelling whereby primitive agents are put to be (hundred or thou-
sands of) base pairs contained in a single gene and (a similar number of) NTP to
be added to the transcript through the action of RNA polymerase.
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Fig. 1. Structure of TEC

Transcription is divided into
three sequential stages: Initiation,
Elongation and Termination. Elon-
gation is a main stage of tran-
scription (synthesis of mRNA) from
the corresponding unzipped single-
stranded DNA template. RNAP is
a mechano-chemical coupling mech-
anism capable of converting chemi-
cal energy derived from NTP hydrol-
ysis into mechanical work together
with random Brownian motion in-
volving back-tracked and forward-
tracked modes. The RNAP kinetics
and the mechano-chemical motion are realized by Transcription Elongation Complex
(TEC) [14], formed by RNAP together with the template DNA and the nascent RNA
(cf. Fig 1). The principal kinetic feature is mechano-chemical cycle of NTP binding:
The nucleotide incorporation brings TEC to pre-translocation and TEC must move
forward on the DNA template by 1 bp, returning to post-trans location. Stochastic
fluctuation and time decay, peculiarly seen in transcription regulation, are due to
that the initiation is much faster than elongation, and moreover that in the elonga-
tion phase, processive mRNA synthesis is often disrupted by transcriptional pauses,
which are linked with the reverse translocation of RNA along DNA.

Based on recent single molecule experiment (such as magnetic and optical tweez-
ers and single molecule fluorescent), theoretical biochemical models have been pro-
posed to explain kinetic dynamism of elongation in terms of individual biochemical
reaction events dominating the behaviour [28,2,11,22,4,19]. Such theoretical mod-
ellings of transcription have focused on how RNA couples chemical catalysis energy
to translocation and mechanical work. The starting of this present paper is that
rule based modelling conveniently captures a fundamental notion explaining the
dynamism–that is– thermodynamical stability of TEC along various stages of the
elongation [28,2]. Our rule based framework is able to represent biochemical inter-
action via TEC’s adjacent active sites, and is able to capture the stability of multiple
variant formation of TEC arisen by the interaction during mechano-chemical move-
ment. As a semantical counterpart of our rule based description, systems of master
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• Back- and forward-track of TEC                                                            
(The active sites of)TEC moves back (toward 3‘end of DNA) and 
forth (toward 5’-end) along the DNA template without polymerzing 
and depolymerizing the transcript.

• Pre- and post-translocation of TEC                                            
pre-translocation = the state immediately after the polymerization                                                                                     
post-translocation = one forward track step from pre-translocation 
so that the active site is in position to catalyze the next nucleotide.

Translocations of TEC (terminology)

forwardback

TT

T

post

pre

T

T|  |  |  | | | |  | |

|  |  |  |  
|  |  |  |  

|  |  |  | | | |  | |

|  |  |  | | | |  | |

active sites

Tnucleotide
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Brownian Ratchet Mechanism of Elongation

HAMANO

elongation is explained as follows, in which TEC(n,∗) represents the TEC with tran-
script size n at the stage ∗. (Pre and post are short for pre- and post-translocation.)
The pathway shows how to convert chemical energy into the mechanical energy that
is needed to move RNAP in the back-track and forward-track direction:

(Brownian Ratchet Model [2,3])

TEC(n,fwdtrack)

NTP! "PPi
TEC(n,pre)

!

"

k1 #$
k−1

TEC(n,post)

"

! k2 #$
k−2

TEC(n,post) · NTP #$ TEC(n+1,pre)

TEC(n,backtrack)

(1)

The first reaction is translocation and the middle-most reaction is NTP binding and
recognition when the active site becomes located at the growing tip of mRNA. The
right most reaction is a combination of the following successive two reactions, in
which the first reaction is NTP hydrolysis and the second one is release of pyrophos-
phate PPi:

"PPi
TEC(n,post) · NTP

k3 #$
k−3

TEC(n+1,pre) · PPi
k4 #$
k−4

TEC(n+1,pre)

(2)

The combination is under the assumption that NTP hydrolysis rates are much larger
than the PPi release rate so that the two steps could be combined into one step with
a single effective rate.

The pathway (1) is described in terms of rule based modelling of κ calculus, in
which agents and rules are specified as follows:

(Agents)

A nucleotide N(", r) for monomeric subunit with phosphate bonds " and r. Binding
of two sites is represented by a common superscript.

The agent W represents a window frame of TEC’s multi-partite active sites (P) and
(A), where (P) site is for holding the RNA 3’-nucleotide and (A) site is for holding
the substrate NTP [14]. W has a site for associating PPi. The agent W as the
window frame, slides both along the template DNA and RNA transcript so that the
active site slides back and forth. Null agent is denoted by ∅. The substrate NTP is
an agent parallel to N but without any site for bonding. See the left of Fig 2.

N(", r) W Wm
n

N#
l

#
r

Psite
!"#$%&Asite

#$%&'(
PPi)*+,-./0 Psite

!"#$%&Asite
#$%&'(

PPi)*+,-./0
(n,m)

W

m < 0 m = 0 m > 0

3′

5′ ︸ ︷︷ ︸
n

123456345678 123456345678 123456345678
Fig. 2. Agents and position (n,m) of Wm

n

These agents yield to discriminate TEC’s post-translocation and pre-
translocation as well as loading as follows:
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Bai et al,  Sequence-dependent kinetic model for transcription elongation by RNA 

polymerase, J Mol Biol. (2004)

k+-3 >> k+-4 
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Stochastic Process Calculi
and their Markov Semantics

 
Stochastic π (Priami, Regev, et al )
Rule based κ (Danos, Feret, Harmer, Krivine, et al)

Their Semantical Counterpart of 
Chemical Master Equations and Markov processes 

Stochastic Petri Nets                                
(e.g., mass action semantics for chemical reactions 
 among species by Danos-Oury)

Each channel (site) is equipped with an interaction rate of exponential 
time distribution.

∪

∪

Theory of Waiting Queues                         
(e.g., Poisson time consuming for customers waiting line)

composable but not enough descriptrive !
splitting of customers

synchronization
blocking (inhibition)
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 Multi-step but non-uniform molecular interaction for

In this talk,  

•stochastic fluctuation
•non Poisson time consuming
•decay of particular events

Stochastic Process Calculi Provide  

Discrete/Stochastic Modelling  in Biology

Transcription  ⎨

⎨

•Termination

•Initiation
•Elongation
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Single-nucleotide-level description 

E.g., my preceding paper in SASB'12
    RNAi was represented by κ:
      agent =  
                
   
      The description yields semantically
      multitype branching processes
      determining (non)extinction of certain 
      classes of agents

N N N.......... .......
5' 3'

single nucleotide N with phosphate 
and hydrogen bondings

1 nucleotide as an agent (process) 
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Nucleotide and TEC’s Muti-Partite Active Sites
 as Agents

HAMANO
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post-translocation: W [N(r), ∅] schematically NOH
!"#$%&#$%&'(

pre-translocation: W
[
N(r1), N(!1, r)

]
schematically N!"#$%&NOH

#$%&'(
loading: W [N(r),NTP] schematically NOH

!"#$%&NTP#$%&'(
OH in the subscript of N designates the 3′ OH for the next nucleotide reaction
to extend the RNA chain: That is, the OH indicates that the r site of N is not
bounded. In pre-translocation, the line between N and NOH designates a phosphate
bond between r of N and ! of NOH so that the r site and the ! site are connected
by the phosphate bond.

An additional site is augmented for counting the position (n,m) ∈ N × Z, where
n indicates the length of nascent RNA (the position either of the last nucleotide or
of the loaded NTP) and m indicates the back (m < 0) and forward (m > 1) track
positions. Although redundant for m = 0, 1, the position m = 0 (res. m = 1)
indicates pre-translocated (res. post-translocated) position. See the left of Fig 2.

In the following, three kinds of rules ElongZN, ElongN and Elong are presented
accordingly to the degree of abstraction for the agent W: That is, while forgetting
the counter, Wm

n is abstracted first to Wn, and then to W. Let us start with the
finest grained rules ElongZN.

(Rules of ElongZN)

...

W3
n [∅, ∅]!!

""

""

!!

W2
n [∅, ∅]!!

""

Wn+1
[
N(r1), N(!1, r)

]

Wn
[
N(r1), N(!1, r)

]
## $$Wn [N(r), ∅] ## $$Wn+1 [N(r),NTP] ## $$WPPi

n+1

[
N(r1), N(!1, r)

]""

!!

W−1
n

[
N(r1), N(!1, r1)

]""

!!

W−2
n

[
N(r1), N(!1, r1)

]""

!!

!!
""
...

In these rules, the left downward-successive
rules correspond to the back-track pathway
of (1). The middle upward-successive rules
correspond to the forward-track pathway of
(1). The other rules are for the main pathway
(that is the horizontal one) of (1).

When the counter m of Wm
n is forgotten to Wn, the two horizontal pathways for

the forward-track and back-track are reduced respectively as follows:

5

This yields discriminating:

n

m<0  m=0   m> 0   

HAMANO

elongation is explained as follows, in which TEC(n,∗) represents the TEC with tran-
script size n at the stage ∗. (Pre and post are short for pre- and post-translocation.)
The pathway shows how to convert chemical energy into the mechanical energy that
is needed to move RNAP in the back-track and forward-track direction:

(Brownian Ratchet Model [2,3])

TEC(n,fwdtrack)

NTP! "PPi
TEC(n,pre)

!

"

k1 #$
k−1

TEC(n,post)

"

! k2 #$
k−2

TEC(n,post) · NTP #$ TEC(n+1,pre)

TEC(n,backtrack)

(1)

The first reaction is translocation and the middle-most reaction is NTP binding and
recognition when the active site becomes located at the growing tip of mRNA. The
right most reaction is a combination of the following successive two reactions, in
which the first reaction is NTP hydrolysis and the second one is release of pyrophos-
phate PPi:

"PPi
TEC(n,post) · NTP

k3 #$
k−3

TEC(n+1,pre) · PPi
k4 #$
k−4

TEC(n+1,pre)

(2)

The combination is under the assumption that NTP hydrolysis rates are much larger
than the PPi release rate so that the two steps could be combined into one step with
a single effective rate.

The pathway (1) is described in terms of rule based modelling of κ calculus, in
which agents and rules are specified as follows:

(Agents)

A nucleotide N(", r) for monomeric subunit with phosphate bonds " and r. Binding
of two sites is represented by a common superscript.

The agent W represents a window frame of TEC’s multi-partite active sites (P) and
(A), where (P) site is for holding the RNA 3’-nucleotide and (A) site is for holding
the substrate NTP [14]. W has a site for associating PPi. The agent W as the
window frame, slides both along the template DNA and RNA transcript so that the
active site slides back and forth. Null agent is denoted by ∅. The substrate NTP is
an agent parallel to N but without any site for bonding. See the left of Fig 2.

N(", r) W Wm
n

N#
l

#
r

Psite
!"#$%&Asite

#$%&'(
PPi)*+,-./0 Psite

!"#$%&Asite
#$%&'(

PPi)*+,-./0
(n,m)

W

m < 0 m = 0 m > 0

3′

5′ ︸ ︷︷ ︸
n

123456345678 123456345678 123456345678
Fig. 2. Agents and position (n,m) of Wm

n

These agents yield to discriminate TEC’s post-translocation and pre-
translocation as well as loading as follows:

4

HAMANO

Poisson time consuming and decay of particular biological events are typically seen
due to non-uniform combination of biochemical interactions with various rates. For
this purpose, we model transcription, which is a typical molecular multi-step in-
teraction. Transcription is the first phase of gene expression and is well known to
involve only very small numbers of reacting molecules in the cells. Thus for the
modelling, stochastic method is favorable, which the rule based modelling naturally
provides, rather than the deterministic method of law of mass-action. Stochastic
and discrete nature of chemical reactions of the elongation is directly described in
the rule based modelling whereby primitive agents are put to be (hundred or thou-
sands of) base pairs contained in a single gene and (a similar number of) NTP to
be added to the transcript through the action of RNA polymerase.

direction of transcription−→

unzipped DNA

nascent RNA
5′

RNA exit channel secondary channel

↘ ↖
PPi NTP

release entry

!" #$! #
" $active site

3′!
!!

"
""

!
!!

""

Fig. 1. Structure of TEC

Transcription is divided into
three sequential stages: Initiation,
Elongation and Termination. Elon-
gation is a main stage of tran-
scription (synthesis of mRNA) from
the corresponding unzipped single-
stranded DNA template. RNAP is
a mechano-chemical coupling mech-
anism capable of converting chemi-
cal energy derived from NTP hydrol-
ysis into mechanical work together
with random Brownian motion in-
volving back-tracked and forward-
tracked modes. The RNAP kinetics
and the mechano-chemical motion are realized by Transcription Elongation Complex
(TEC) [14], formed by RNAP together with the template DNA and the nascent RNA
(cf. Fig 1). The principal kinetic feature is mechano-chemical cycle of NTP binding:
The nucleotide incorporation brings TEC to pre-translocation and TEC must move
forward on the DNA template by 1 bp, returning to post-trans location. Stochastic
fluctuation and time decay, peculiarly seen in transcription regulation, are due to
that the initiation is much faster than elongation, and moreover that in the elonga-
tion phase, processive mRNA synthesis is often disrupted by transcriptional pauses,
which are linked with the reverse translocation of RNA along DNA.

Based on recent single molecule experiment (such as magnetic and optical tweez-
ers and single molecule fluorescent), theoretical biochemical models have been pro-
posed to explain kinetic dynamism of elongation in terms of individual biochemical
reaction events dominating the behaviour [28,2,11,22,4,19]. Such theoretical mod-
ellings of transcription have focused on how RNA couples chemical catalysis energy
to translocation and mechanical work. The starting of this present paper is that
rule based modelling conveniently captures a fundamental notion explaining the
dynamism–that is– thermodynamical stability of TEC along various stages of the
elongation [28,2]. Our rule based framework is able to represent biochemical inter-
action via TEC’s adjacent active sites, and is able to capture the stability of multiple
variant formation of TEC arisen by the interaction during mechano-chemical move-
ment. As a semantical counterpart of our rule based description, systems of master

2

nucleotide N
window frame W  for 
TEC m-p  act sts

W with counters (n,m)

Cf. Landick, The regulatory roles and mechanism 
of transcriptional pausing, Biochem Society 

Transactions (2006)
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 The ratchet pathway as Rules I

Finest grained rules

HAMANO

post-translocation: W [N(r), ∅] schematically NOH
!"#$%&#$%&'(

pre-translocation: W
[
N(r1), N(!1, r)

]
schematically N!"#$%&NOH

#$%&'(
loading: W [N(r),NTP] schematically NOH

!"#$%&NTP#$%&'(
OH in the subscript of N designates the 3′ OH for the next nucleotide reaction
to extend the RNA chain: That is, the OH indicates that the r site of N is not
bounded. In pre-translocation, the line between N and NOH designates a phosphate
bond between r of N and ! of NOH so that the r site and the ! site are connected
by the phosphate bond.

An additional site is augmented for counting the position (n,m) ∈ N × Z, where
n indicates the length of nascent RNA (the position either of the last nucleotide or
of the loaded NTP) and m indicates the back (m < 0) and forward (m > 1) track
positions. Although redundant for m = 0, 1, the position m = 0 (res. m = 1)
indicates pre-translocated (res. post-translocated) position. See the left of Fig 2.

In the following, three kinds of rules ElongZN, ElongN and Elong are presented
accordingly to the degree of abstraction for the agent W: That is, while forgetting
the counter, Wm

n is abstracted first to Wn, and then to W. Let us start with the
finest grained rules ElongZN.

(Rules of ElongZN)

...

W3
n [∅, ∅]!!

""

""

!!

W2
n [∅, ∅]!!

""

Wn+1
[
N(r1), N(!1, r)

]

Wn
[
N(r1), N(!1, r)

]
## $$Wn [N(r), ∅] ## $$Wn+1 [N(r),NTP] ## $$WPPi

n+1

[
N(r1), N(!1, r)

]""

!!

W−1
n

[
N(r1), N(!1, r1)

]""

!!

W−2
n

[
N(r1), N(!1, r1)

]""

!!

!!
""
...

In these rules, the left downward-successive
rules correspond to the back-track pathway
of (1). The middle upward-successive rules
correspond to the forward-track pathway of
(1). The other rules are for the main pathway
(that is the horizontal one) of (1).

When the counter m of Wm
n is forgotten to Wn, the two horizontal pathways for

the forward-track and back-track are reduced respectively as follows:
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(that is the horizontal one) of (1).

When the counter m of Wm
n is forgotten to Wn, the two horizontal pathways for

the forward-track and back-track are reduced respectively as follows:

5
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To coaser/coarsets  grained rules

Accordingly to forgetting the sites  m and n of W

  rules are abstracted (collapsed) into:
W n

m W n W, 

HAMANO

(Rules of ElongN)

Wn
[
N(r1), N(!1, r)

]

and

Wn
[
N(r1), N(!1, r1)

]!!

""

##

Wn [∅, ∅]""

!!

$$

Wn [N(r), ∅)]

Finally, if the agent W is given of its simplest form without the counter, the above
rules are abstracted into the following, which makes a mechano-chemical cycle of
NTP binding explicit during the elongation stage:

(Rules of Elong)

W [∅, ∅]""

!!

$$

W [N(r), ∅]%%

&&!!!
!!!!

!!!!
!!!

W
[
N(r1), N(!1, r)

]''

((""""""""""""""
W [N(r),NTP]))

**####
####

####
#

W
[
N(r1), N(!1, r1)

]!!

""

##
WPPi

[
N(r1), N(!1, r)

]&&

%%$$$$$$$$$$$$$$

There is a complex version of the above simple Brownian ratchet model to allow
NTP binding not only to post-translocated but also to pre-translocated positions.
(Complex Brownian Ratchet Model with an Auxiliary Binding Site [3])

NTP !
TEC(n,pre) · NTP

!

"

ki1 +,
k−i1

TEC(n,post) · NTP"

!

followed by (2)

"NTP

TEC(n,pre)

ki2 +,
k−i2

TEC(n,post)

(3)

Adding one auxiliary site to the agent W allows to realize the complex pathway (3)
in our rule based modelling as follows: When (E) site for NTP-entry can be aug-
mented to W as follows, the complex ratchet model is realized by the following rules:

(Agent) (Rules )

W = Psite
!"#$%&Asite

#%$&Esite
#$%&'( Wn

[
N(r1), N(!1, r),NTP

]
,+ +,Wn [N(r),NTP, ∅]

Wn
[
N(r1), N(!1, r), ∅

]!!

""

,+ +,Wn [N(r), ∅, ∅]
!!

""

3 Semantics and Abstraction

This section concerns constructing semantics for the rule based description of the
elongation of Section 2. Three semantics are constructed respectively for ElongZN,
ElongN and for Elong in terms of master equations. Starting from a finest grained
semantics of ElongZN, a coarser grained semantics of ElongN and a coarsest semantics

6

HAMANO

post-translocation: W [N(r), ∅] schematically NOH
!"#$%&#$%&'(

pre-translocation: W
[
N(r1), N(!1, r)

]
schematically N!"#$%&NOH

#$%&'(
loading: W [N(r),NTP] schematically NOH

!"#$%&NTP#$%&'(
OH in the subscript of N designates the 3′ OH for the next nucleotide reaction
to extend the RNA chain: That is, the OH indicates that the r site of N is not
bounded. In pre-translocation, the line between N and NOH designates a phosphate
bond between r of N and ! of NOH so that the r site and the ! site are connected
by the phosphate bond.

An additional site is augmented for counting the position (n,m) ∈ N × Z, where
n indicates the length of nascent RNA (the position either of the last nucleotide or
of the loaded NTP) and m indicates the back (m < 0) and forward (m > 1) track
positions. Although redundant for m = 0, 1, the position m = 0 (res. m = 1)
indicates pre-translocated (res. post-translocated) position. See the left of Fig 2.

In the following, three kinds of rules ElongZN, ElongN and Elong are presented
accordingly to the degree of abstraction for the agent W: That is, while forgetting
the counter, Wm

n is abstracted first to Wn, and then to W. Let us start with the
finest grained rules ElongZN.

(Rules of ElongZN)

...

W3
n [∅, ∅]!!

""

""

!!

W2
n [∅, ∅]!!

""

Wn+1
[
N(r1), N(!1, r)

]

Wn
[
N(r1), N(!1, r)

]
## $$Wn [N(r), ∅] ## $$Wn+1 [N(r),NTP] ## $$WPPi

n+1

[
N(r1), N(!1, r)

]""

!!

W−1
n

[
N(r1), N(!1, r1)

]""

!!

W−2
n

[
N(r1), N(!1, r1)

]""

!!

!!
""
...

In these rules, the left downward-successive
rules correspond to the back-track pathway
of (1). The middle upward-successive rules
correspond to the forward-track pathway of
(1). The other rules are for the main pathway
(that is the horizontal one) of (1).

When the counter m of Wm
n is forgotten to Wn, the two horizontal pathways for

the forward-track and back-track are reduced respectively as follows:

5

HAMANO

(Rules of ElongN)

Wn
[
N(r1), N(!1, r)

]

and

Wn
[
N(r1), N(!1, r1)

]!!

""

##

Wn [∅, ∅]""

!!

$$

Wn [N(r), ∅)]

Finally, if the agent W is given of its simplest form without the counter, the above
rules are abstracted into the following, which makes a mechano-chemical cycle of
NTP binding explicit during the elongation stage:

(Rules of Elong)

W [∅, ∅]""

!!

$$

W [N(r), ∅]%%

&&!!!
!!!!

!!!!
!!!

W
[
N(r1), N(!1, r)

]''

((""""""""""""""
W [N(r),NTP]))

**####
####

####
#

W
[
N(r1), N(!1, r1)

]!!

""

##
WPPi

[
N(r1), N(!1, r)

]&&

%%$$$$$$$$$$$$$$

There is a complex version of the above simple Brownian ratchet model to allow
NTP binding not only to post-translocated but also to pre-translocated positions.
(Complex Brownian Ratchet Model with an Auxiliary Binding Site [3])

NTP !
TEC(n,pre) · NTP

!

"

ki1 +,
k−i1

TEC(n,post) · NTP"

!

followed by (2)

"NTP

TEC(n,pre)

ki2 +,
k−i2

TEC(n,post)

(3)

Adding one auxiliary site to the agent W allows to realize the complex pathway (3)
in our rule based modelling as follows: When (E) site for NTP-entry can be aug-
mented to W as follows, the complex ratchet model is realized by the following rules:

(Agent) (Rules )

W = Psite
!"#$%&Asite

#%$&Esite
#$%&'( Wn

[
N(r1), N(!1, r),NTP

]
,+ +,Wn [N(r),NTP, ∅]

Wn
[
N(r1), N(!1, r), ∅

]!!

""

,+ +,Wn [N(r), ∅, ∅]
!!

""

3 Semantics and Abstraction

This section concerns constructing semantics for the rule based description of the
elongation of Section 2. Three semantics are constructed respectively for ElongZN,
ElongN and for Elong in terms of master equations. Starting from a finest grained
semantics of ElongZN, a coarser grained semantics of ElongN and a coarsest semantics

6

 The ratchet pathway as Rules II:
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(Rules of ElongN)

Wn
[
N(r1), N(!1, r)

]

and

Wn
[
N(r1), N(!1, r1)

]!!

""

##

Wn [∅, ∅]""

!!

$$

Wn [N(r), ∅)]

Finally, if the agent W is given of its simplest form without the counter, the above
rules are abstracted into the following, which makes a mechano-chemical cycle of
NTP binding explicit during the elongation stage:

(Rules of Elong)

W [∅, ∅]""

!!

$$

W [N(r), ∅]%%

&&!!!
!!!!

!!!!
!!!

W
[
N(r1), N(!1, r)

]''

((""""""""""""""
W [N(r),NTP]))

**####
####

####
#

W
[
N(r1), N(!1, r1)

]!!

""

##
WPPi

[
N(r1), N(!1, r)

]&&

%%$$$$$$$$$$$$$$

There is a complex version of the above simple Brownian ratchet model to allow
NTP binding not only to post-translocated but also to pre-translocated positions.
(Complex Brownian Ratchet Model with an Auxiliary Binding Site [3])

NTP !
TEC(n,pre) · NTP

!

"

ki1 +,
k−i1

TEC(n,post) · NTP"

!

followed by (2)

"NTP

TEC(n,pre)

ki2 +,
k−i2

TEC(n,post)

(3)

Adding one auxiliary site to the agent W allows to realize the complex pathway (3)
in our rule based modelling as follows: When (E) site for NTP-entry can be aug-
mented to W as follows, the complex ratchet model is realized by the following rules:

(Agent) (Rules )

W = Psite
!"#$%&Asite

#%$&Esite
#$%&'( Wn

[
N(r1), N(!1, r),NTP

]
,+ +,Wn [N(r),NTP, ∅]

Wn
[
N(r1), N(!1, r), ∅

]!!

""

,+ +,Wn [N(r), ∅, ∅]
!!

""

3 Semantics and Abstraction

This section concerns constructing semantics for the rule based description of the
elongation of Section 2. Three semantics are constructed respectively for ElongZN,
ElongN and for Elong in terms of master equations. Starting from a finest grained
semantics of ElongZN, a coarser grained semantics of ElongN and a coarsest semantics

6

HAMANO

(Rules of ElongN)

Wn
[
N(r1), N(!1, r)

]

and

Wn
[
N(r1), N(!1, r1)

]!!

""

##

Wn [∅, ∅]""

!!

$$

Wn [N(r), ∅)]

Finally, if the agent W is given of its simplest form without the counter, the above
rules are abstracted into the following, which makes a mechano-chemical cycle of
NTP binding explicit during the elongation stage:

(Rules of Elong)

W [∅, ∅]""

!!

$$

W [N(r), ∅]%%

&&!!!
!!!!

!!!!
!!!

W
[
N(r1), N(!1, r)

]''

((""""""""""""""
W [N(r),NTP]))

**####
####

####
#

W
[
N(r1), N(!1, r1)

]!!

""

##
WPPi

[
N(r1), N(!1, r)

]&&

%%$$$$$$$$$$$$$$

There is a complex version of the above simple Brownian ratchet model to allow
NTP binding not only to post-translocated but also to pre-translocated positions.
(Complex Brownian Ratchet Model with an Auxiliary Binding Site [3])

NTP !
TEC(n,pre) · NTP

!

"

ki1 +,
k−i1

TEC(n,post) · NTP"

!

followed by (2)

"NTP

TEC(n,pre)

ki2 +,
k−i2

TEC(n,post)

(3)

Adding one auxiliary site to the agent W allows to realize the complex pathway (3)
in our rule based modelling as follows: When (E) site for NTP-entry can be aug-
mented to W as follows, the complex ratchet model is realized by the following rules:

(Agent) (Rules )

W = Psite
!"#$%&Asite

#%$&Esite
#$%&'( Wn

[
N(r1), N(!1, r),NTP

]
,+ +,Wn [N(r),NTP, ∅]

Wn
[
N(r1), N(!1, r), ∅

]!!

""

,+ +,Wn [N(r), ∅, ∅]
!!

""

3 Semantics and Abstraction

This section concerns constructing semantics for the rule based description of the
elongation of Section 2. Three semantics are constructed respectively for ElongZN,
ElongN and for Elong in terms of master equations. Starting from a finest grained
semantics of ElongZN, a coarser grained semantics of ElongN and a coarsest semantics

6

HAMANO

post-translocation: W [N(r), ∅] schematically NOH
!"#$%&#$%&'(

pre-translocation: W
[
N(r1), N(!1, r)

]
schematically N!"#$%&NOH

#$%&'(
loading: W [N(r),NTP] schematically NOH

!"#$%&NTP#$%&'(
OH in the subscript of N designates the 3′ OH for the next nucleotide reaction
to extend the RNA chain: That is, the OH indicates that the r site of N is not
bounded. In pre-translocation, the line between N and NOH designates a phosphate
bond between r of N and ! of NOH so that the r site and the ! site are connected
by the phosphate bond.

An additional site is augmented for counting the position (n,m) ∈ N × Z, where
n indicates the length of nascent RNA (the position either of the last nucleotide or
of the loaded NTP) and m indicates the back (m < 0) and forward (m > 1) track
positions. Although redundant for m = 0, 1, the position m = 0 (res. m = 1)
indicates pre-translocated (res. post-translocated) position. See the left of Fig 2.

In the following, three kinds of rules ElongZN, ElongN and Elong are presented
accordingly to the degree of abstraction for the agent W: That is, while forgetting
the counter, Wm

n is abstracted first to Wn, and then to W. Let us start with the
finest grained rules ElongZN.

(Rules of ElongZN)

...

W3
n [∅, ∅]!!

""

""

!!

W2
n [∅, ∅]!!

""

Wn+1
[
N(r1), N(!1, r)

]

Wn
[
N(r1), N(!1, r)

]
## $$Wn [N(r), ∅] ## $$Wn+1 [N(r),NTP] ## $$WPPi

n+1

[
N(r1), N(!1, r)

]""

!!

W−1
n

[
N(r1), N(!1, r1)

]""

!!

W−2
n

[
N(r1), N(!1, r1)

]""

!!

!!
""
...

In these rules, the left downward-successive
rules correspond to the back-track pathway
of (1). The middle upward-successive rules
correspond to the forward-track pathway of
(1). The other rules are for the main pathway
(that is the horizontal one) of (1).

When the counter m of Wm
n is forgotten to Wn, the two horizontal pathways for

the forward-track and back-track are reduced respectively as follows:

5

HAMANO

(Rules of ElongN)

Wn
[
N(r1), N(!1, r)

]

and

Wn
[
N(r1), N(!1, r1)

]!!

""

##

Wn [∅, ∅]""

!!

$$

Wn [N(r), ∅)]

Finally, if the agent W is given of its simplest form without the counter, the above
rules are abstracted into the following, which makes a mechano-chemical cycle of
NTP binding explicit during the elongation stage:

(Rules of Elong)

W [∅, ∅]""

!!

$$

W [N(r), ∅]%%

&&!!!
!!!!

!!!!
!!!

W
[
N(r1), N(!1, r)

]''

((""""""""""""""
W [N(r),NTP]))

**####
####

####
#

W
[
N(r1), N(!1, r1)

]!!

""

##
WPPi

[
N(r1), N(!1, r)

]&&

%%$$$$$$$$$$$$$$

There is a complex version of the above simple Brownian ratchet model to allow
NTP binding not only to post-translocated but also to pre-translocated positions.
(Complex Brownian Ratchet Model with an Auxiliary Binding Site [3])

NTP !
TEC(n,pre) · NTP

!

"

ki1 +,
k−i1

TEC(n,post) · NTP"

!

followed by (2)

"NTP

TEC(n,pre)

ki2 +,
k−i2

TEC(n,post)

(3)

Adding one auxiliary site to the agent W allows to realize the complex pathway (3)
in our rule based modelling as follows: When (E) site for NTP-entry can be aug-
mented to W as follows, the complex ratchet model is realized by the following rules:

(Agent) (Rules )

W = Psite
!"#$%&Asite

#%$&Esite
#$%&'( Wn

[
N(r1), N(!1, r),NTP

]
,+ +,Wn [N(r),NTP, ∅]

Wn
[
N(r1), N(!1, r), ∅

]!!

""

,+ +,Wn [N(r), ∅, ∅]
!!

""

3 Semantics and Abstraction

This section concerns constructing semantics for the rule based description of the
elongation of Section 2. Three semantics are constructed respectively for ElongZN,
ElongN and for Elong in terms of master equations. Starting from a finest grained
semantics of ElongZN, a coarser grained semantics of ElongN and a coarsest semantics

6

HAMANO

post-translocation: W [N(r), ∅] schematically NOH
!"#$%&#$%&'(

pre-translocation: W
[
N(r1), N(!1, r)

]
schematically N!"#$%&NOH

#$%&'(
loading: W [N(r),NTP] schematically NOH

!"#$%&NTP#$%&'(
OH in the subscript of N designates the 3′ OH for the next nucleotide reaction
to extend the RNA chain: That is, the OH indicates that the r site of N is not
bounded. In pre-translocation, the line between N and NOH designates a phosphate
bond between r of N and ! of NOH so that the r site and the ! site are connected
by the phosphate bond.

An additional site is augmented for counting the position (n,m) ∈ N × Z, where
n indicates the length of nascent RNA (the position either of the last nucleotide or
of the loaded NTP) and m indicates the back (m < 0) and forward (m > 1) track
positions. Although redundant for m = 0, 1, the position m = 0 (res. m = 1)
indicates pre-translocated (res. post-translocated) position. See the left of Fig 2.

In the following, three kinds of rules ElongZN, ElongN and Elong are presented
accordingly to the degree of abstraction for the agent W: That is, while forgetting
the counter, Wm

n is abstracted first to Wn, and then to W. Let us start with the
finest grained rules ElongZN.

(Rules of ElongZN)

...

W3
n [∅, ∅]!!

""

""

!!

W2
n [∅, ∅]!!

""

Wn+1
[
N(r1), N(!1, r)

]

Wn
[
N(r1), N(!1, r)

]
## $$Wn [N(r), ∅] ## $$Wn+1 [N(r),NTP] ## $$WPPi

n+1

[
N(r1), N(!1, r)

]""

!!

W−1
n

[
N(r1), N(!1, r1)

]""

!!

W−2
n

[
N(r1), N(!1, r1)

]""

!!

!!
""
...

In these rules, the left downward-successive
rules correspond to the back-track pathway
of (1). The middle upward-successive rules
correspond to the forward-track pathway of
(1). The other rules are for the main pathway
(that is the horizontal one) of (1).

When the counter m of Wm
n is forgotten to Wn, the two horizontal pathways for

the forward-track and back-track are reduced respectively as follows:

5
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Finally, coarsest  grained rules

HAMANO

(Rules of ElongN)

Wn
[
N(r1), N(!1, r)

]

and

Wn
[
N(r1), N(!1, r1)

]!!

""

##

Wn [∅, ∅]""

!!

$$

Wn [N(r), ∅)]

Finally, if the agent W is given of its simplest form without the counter, the above
rules are abstracted into the following, which makes a mechano-chemical cycle of
NTP binding explicit during the elongation stage:

(Rules of Elong)

W [∅, ∅]""

!!

$$

W [N(r), ∅]%%

&&!!!
!!!!

!!!!
!!!

W
[
N(r1), N(!1, r)

]''

((""""""""""""""
W [N(r),NTP]))

**####
####

####
#

W
[
N(r1), N(!1, r1)

]!!

""

##
WPPi

[
N(r1), N(!1, r)

]&&

%%$$$$$$$$$$$$$$

There is a complex version of the above simple Brownian ratchet model to allow
NTP binding not only to post-translocated but also to pre-translocated positions.
(Complex Brownian Ratchet Model with an Auxiliary Binding Site [3])

NTP !
TEC(n,pre) · NTP

!

"

ki1 +,
k−i1

TEC(n,post) · NTP"

!

followed by (2)

"NTP

TEC(n,pre)

ki2 +,
k−i2

TEC(n,post)

(3)

Adding one auxiliary site to the agent W allows to realize the complex pathway (3)
in our rule based modelling as follows: When (E) site for NTP-entry can be aug-
mented to W as follows, the complex ratchet model is realized by the following rules:

(Agent) (Rules )

W = Psite
!"#$%&Asite

#%$&Esite
#$%&'( Wn

[
N(r1), N(!1, r),NTP

]
,+ +,Wn [N(r),NTP, ∅]

Wn
[
N(r1), N(!1, r), ∅

]!!

""

,+ +,Wn [N(r), ∅, ∅]
!!

""

3 Semantics and Abstraction

This section concerns constructing semantics for the rule based description of the
elongation of Section 2. Three semantics are constructed respectively for ElongZN,
ElongN and for Elong in terms of master equations. Starting from a finest grained
semantics of ElongZN, a coarser grained semantics of ElongN and a coarsest semantics

6
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(Rules of ElongN)

Wn
[
N(r1), N(!1, r)

]

and

Wn
[
N(r1), N(!1, r1)

]!!

""

##

Wn [∅, ∅]""

!!

$$

Wn [N(r), ∅)]

Finally, if the agent W is given of its simplest form without the counter, the above
rules are abstracted into the following, which makes a mechano-chemical cycle of
NTP binding explicit during the elongation stage:

(Rules of Elong)

W [∅, ∅]""

!!

$$

W [N(r), ∅]%%

&&!!!
!!!!

!!!!
!!!

W
[
N(r1), N(!1, r)

]''

((""""""""""""""
W [N(r),NTP]))

**####
####

####
#

W
[
N(r1), N(!1, r1)

]!!

""

##
WPPi

[
N(r1), N(!1, r)

]&&

%%$$$$$$$$$$$$$$

There is a complex version of the above simple Brownian ratchet model to allow
NTP binding not only to post-translocated but also to pre-translocated positions.
(Complex Brownian Ratchet Model with an Auxiliary Binding Site [3])

NTP !
TEC(n,pre) · NTP

!

"

ki1 +,
k−i1

TEC(n,post) · NTP"

!

followed by (2)

"NTP

TEC(n,pre)

ki2 +,
k−i2

TEC(n,post)

(3)

Adding one auxiliary site to the agent W allows to realize the complex pathway (3)
in our rule based modelling as follows: When (E) site for NTP-entry can be aug-
mented to W as follows, the complex ratchet model is realized by the following rules:

(Agent) (Rules )

W = Psite
!"#$%&Asite

#%$&Esite
#$%&'( Wn

[
N(r1), N(!1, r),NTP

]
,+ +,Wn [N(r),NTP, ∅]

Wn
[
N(r1), N(!1, r), ∅

]!!

""

,+ +,Wn [N(r), ∅, ∅]
!!

""

3 Semantics and Abstraction

This section concerns constructing semantics for the rule based description of the
elongation of Section 2. Three semantics are constructed respectively for ElongZN,
ElongN and for Elong in terms of master equations. Starting from a finest grained
semantics of ElongZN, a coarser grained semantics of ElongN and a coarsest semantics
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Conversely, more complicated pathway by 

augmenting sites on W 

HAMANO

(Rules of ElongN)

Wn
[
N(r1), N(!1, r)

]

and

Wn
[
N(r1), N(!1, r1)

]!!

""

##

Wn [∅, ∅]""

!!

$$

Wn [N(r), ∅)]

Finally, if the agent W is given of its simplest form without the counter, the above
rules are abstracted into the following, which makes a mechano-chemical cycle of
NTP binding explicit during the elongation stage:

(Rules of Elong)

W [∅, ∅]""

!!

$$

W [N(r), ∅]%%

&&!!!
!!!!

!!!!
!!!

W
[
N(r1), N(!1, r)

]''

((""""""""""""""
W [N(r),NTP]))

**####
####

####
#

W
[
N(r1), N(!1, r1)

]!!

""

##
WPPi

[
N(r1), N(!1, r)

]&&

%%$$$$$$$$$$$$$$

There is a complex version of the above simple Brownian ratchet model to allow
NTP binding not only to post-translocated but also to pre-translocated positions.
(Complex Brownian Ratchet Model with an Auxiliary Binding Site [3])

NTP !
TEC(n,pre) · NTP

!

"

ki1 +,
k−i1

TEC(n,post) · NTP"

!

followed by (2)

"NTP

TEC(n,pre)

ki2 +,
k−i2

TEC(n,post)

(3)

Adding one auxiliary site to the agent W allows to realize the complex pathway (3)
in our rule based modelling as follows: When (E) site for NTP-entry can be aug-
mented to W as follows, the complex ratchet model is realized by the following rules:

(Agent) (Rules )

W = Psite
!"#$%&Asite

#%$&Esite
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,+ +,Wn [N(r),NTP, ∅]

Wn
[
N(r1), N(!1, r), ∅

]!!
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,+ +,Wn [N(r), ∅, ∅]
!!
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3 Semantics and Abstraction

This section concerns constructing semantics for the rule based description of the
elongation of Section 2. Three semantics are constructed respectively for ElongZN,
ElongN and for Elong in terms of master equations. Starting from a finest grained
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Bai et al, Kinetic modeling of transcription elongation, In “ RNA polymerases as molecular motors ”  in 

the Royal Society of Chemistry (2009)

 The ratchet pathway as Rules V:

In  our rule based framework
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• Rule based κ syntax  has uniformly 
derived variation of pathway of TEC.

• How about semantical counterpart ?
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• Transcription Elongation Complex (TEC) 

• Rule Based Description  in Terms of TEC's 
Compact Active Sites

• Master Equation Semantics and Abstraction

• Michaelis-Menten Kinetics for TE via 
Boltzmann distribution (energy/probability)
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　Markov Process and Stationary Distribution

πQ = 0

π(j)
∑

k

q(j, k) =
∑

k

π(k) q(k, j)

π(j) q(j, k) = π(k) q(k, j)

∏

(i,j)∈φ

q(i, j)

q(j, i)
= 1

∑

(i,j)∈φ

log
q(i, j)

q(j, i)
= 1

d

dt
πt(x) =

∑

k

{λk(x− (µ′
k − µk)) πt(x− (µ′

k − µk))− λk(x) πt(x)}

1

πQ = 0

π(j)
∑

k

q(j, k) =
∑

k

π(k) q(k, j)

π(j) q(j, k) = π(k) q(k, j)

∏

(i,j)∈φ

q(i, j)

q(j, i)
= 1

∑

(i,j)∈φ

log
q(i, j)

q(j, i)
= 1

d

dt
πt(x) =

∑

k

{λk(x− (µ′
k − µk)) πt(x− (µ′

k − µk))− λk(x) πt(x)}

1

 

k
k

k

k

rate of  leaving j = rate of arriving j
                      

j k

LHS

RHS

jk

k
RHSLHS

Transition probability pt(i,j) of Markov process is governed by               

(Kolmogorov fwd equation)                         with an infinitesimal matrix Q.

πQ = 0

π(j)
∑

k

q(j, k) =
∑

k

π(k) q(k, j)

π(j) q(j, k) = π(k) q(k, j)

∏

(i,j)∈φ

q(i, j)

q(j, i)
= 1

∑

(i,j)∈φ

log
q(i, j)

q(j, i)
= 0

d

dt
pt(x) =

∑

k

{λk(x − (ν ′
k − νk)) pt(x − (ν ′

k − νk)) − λk(x) pt(x)}

< xi(t) >=
∑

x

xipt(x)

d

dt
< xi(t) >=

∑

k

(ν ′
ik − νik) < λk(x(t)) >

=
∑

k

(ν ′
ik − νik)λk(x(t))

p′t = ptQ

π pt = π for all t

(
∑

x

π(x)pt(x, y) = π(y) for all y and t)

1

πQ = 0

π(j)
∑

k

q(j, k) =
∑

k

π(k) q(k, j)

π(j) q(j, k) = π(k) q(k, j)

∏

(i,j)∈φ

q(i, j)

q(j, i)
= 1

∑

(i,j)∈φ

log
q(i, j)

q(j, i)
= 0

d

dt
pt(x) =

∑

k

{λk(x − (ν ′
k − νk)) pt(x − (ν ′

k − νk)) − λk(x) pt(x)}

< xi(t) >=
∑

x

xipt(x)

d

dt
< xi(t) >=

∑

k

(ν ′
ik − νik) < λk(x(t)) >

=
∑

k

(ν ′
ik − νik)λk(x(t))

p′t = ptQ

π pt = π for all t

(i.e.,
∑

x

π(x)pt(x, y) = π(y) for all y and t)

1

• stationary distribution  
π is a solution  of     
(invariance) 

i.e., 

πQ = 0

π(j)
∑

k

q(j, k) =
∑

k

π(k) q(k, j)

π(j) q(j, k) = π(k) q(k, j)

∏

(i,j)∈φ

q(i, j)

q(j, i)
= 1

∑

(i,j)∈φ

log
q(i, j)

q(j, i)
= 0

d

dt
pt(x) =

∑

k

{λk(x − (ν ′
k − νk)) pt(x − (ν ′

k − νk)) − λk(x) pt(x)}

< xi(t) >=
∑

x

xipt(x)

d

dt
< xi(t) >=

∑

k

(ν ′
ik − νik) < λk(x(t)) >

=
∑

k

(ν ′
ik − νik)λk(x(t))

p′t = ptQ

π pt = π for all t

(
∑

x

π(x)pt(x, y) = π(y) for all y and t)

1

• detailed balance, i.e., 
reversibility (invariance under 
time-reversing) 
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Wegscheider Condition  Is
 Chemist's Algorithm to Check  Reversibility

For every cycle path ϕ

rewritten by
i

j

ii
ϕ

πQ = 0

π(j)
∑

k

q(j, k) =
∑

k

π(k) q(k, j)

π(j) q(j, k) = π(k) q(k, j)

∏

(i,j)∈φ

q(i, j)

q(j, i)
= 1

∑

(i,j)∈φ

log
q(i, j)

q(j, i)
= 0

d

dt
πt(x) =

∑

k

{λk(x − (ν ′
k − νk)) πt(x − (ν ′

k − νk)) − λk(x) πt(x)}

< xi(t) >=
∑

x

xiπt(x)

d

dt
< xi(t) >=

∑

k

(ν ′
ik − νik) < λk(x(t)) >

=
∑

k

(ν ′
ik − νik)λk(x(t))

1

cf. Danos-Oury's undecidability of the W condition
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Chemical Master Equation (CME) :

Kolmogorov Eq Arisen from Chemical Reactions

λK   propensity function 
(ν’K - νK )k stoichiometry (state-change ) matrix

Though analytically  unsolvable CME 

Behaviour of average yields a continuous model

reaction rate equation

i for a chemical specie

CME

no fluctuation hypothesis

arriving  x  by the reaction k leaving x by the k

πQ = 0

π(j)
∑

k

q(j, k) =
∑

k

π(k) q(k, j)

π(j) q(j, k) = π(k) q(k, j)

∏

(i,j)∈φ

q(i, j)

q(j, i)
= 1

∑

(i,j)∈φ

log
q(i, j)

q(j, i)
= 1

d

dt
πt(x) =

∑

k

{λk(x− (ν ′
k − νk)) πt(x− (ν ′

k − νk))− λk(x) πt(x)}

< xi(t) >=
∑

x

xiπt(x)

d

dt
< xi(t) >=

∑

k

(ν ′
ik − νik) < λk(x(t)) >

=
∑

k

(ν ′
ik − νik)λk(x(t))

1

πQ = 0

π(j)
∑

k

q(j, k) =
∑

k

π(k) q(k, j)

π(j) q(j, k) = π(k) q(k, j)

∏

(i,j)∈φ

q(i, j)

q(j, i)
= 1

∑

(i,j)∈φ

log
q(i, j)

q(j, i)
= 1

d

dt
πt(x) =

∑

k

{λk(x− (ν ′
k − νk)) πt(x− (ν ′

k − νk))− λk(x) πt(x)}

< xi(t) >=
∑

x

xiπt(x)

d

dt
< xi(t) >=

∑

k

(ν ′
ik − νik) < λk(x(t)) >

=
∑

k

(ν ′
ik − νik)λk(x(t))

1

πQ = 0

π(j)
∑

k

q(j, k) =
∑

k

π(k) q(k, j)

π(j) q(j, k) = π(k) q(k, j)

∏

(i,j)∈φ

q(i, j)

q(j, i)
= 1

∑

(i,j)∈φ

log
q(i, j)

q(j, i)
= 0

d

dt
pt(x) =

∑

k

{λk(x − (ν ′
k − νk)) pt(x − (ν ′

k − νk)) − λk(x) pt(x)}

< xi(t) >=
∑

x

xipt(x)

d

dt
< xi(t) >=

∑

k

(ν ′
ik − νik) < λk(x(t)) >

=
∑

k

(ν ′
ik − νik)λk(x(t))

1

πQ = 0

π(j)
∑

k

q(j, k) =
∑

k

π(k) q(k, j)

π(j) q(j, k) = π(k) q(k, j)

∏

(i,j)∈φ

q(i, j)

q(j, i)
= 1

∑

(i,j)∈φ

log
q(i, j)

q(j, i)
= 0

d

dt
pt(x) =

∑

k

{λk(x − (ν ′
k − νk)) pt(x − (ν ′

k − νk)) − λk(x) pt(x)}

< xi(t) >=
∑

x

xipt(x)

d

dt
< xi(t) >=

∑

k

(ν ′
ik − νik) < λk(x(t)) >

=
∑

k

(ν ′
ik − νik)λk(x(t))

1
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State Transition for

HAMANO

Fig 3 is globally projected into the flat diagram of Fig 4 with boundary states.
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n

$$## ##
α3β3

$$
,,

%%%%%

W •
n+1

## $$ · · ·

Fig. 4. Global diagram of Fig 3 for Elong
Z−
N

The finest grained seman-
tics for the finest rule ElongZ−

N
of Section 2 is given in terms
of master equations:

(Semantics for ElongZ−
N )

For j ∈ {0, 1, •}, let w[j]
n is the

probability π(Wj
n, t) of find-

ing Wj
n at time t. The mas-

ter equation [24] is a gain-
loss equation for the probabili-

ties w[j]
n among separate states

Wj
n. In the following equa-

tions, the first term in right is
the gain probability that the
system arrives at the state for
the left. The second term in
the right is the loss probabil-
ity that the system leaves the
state for the left.

(evolution on main pathway)

d

dt
w[0]
n =

(
aw[−1]

n + α4w
[0]
n−1 + β4w

[0]
n+1 + α2w

[•]
n + bw[1]

n

)

−(α4 + β2 + a+ b+ β4)w
[0]
n (4)

d

dt
w[•]
n =

(
α3w

[•]
n−1 + β3w

[•]
n+1 + β2w

[0]
n + α1w

[1]
n−1

)

−(α3 + β3 + α2 + β1)w
[•]
n (5)

d

dt
w[1]
n =

(
β1w

[•]
n+1 + aw[0]

n

)
− (b+ α1)w

[1]
n (6)

(evolution on back-track pathway)

d

dt
w[−(n−1)]
n = bw[−(n−2)]

n − aw[−(n−1)]
n (7)

d

dt
w[−j]
n =

(
aw[−(j+1)]

n + bw[−(j−1)]
n

)
− (a+ b)w[−j]

n for 1 ≤ j < n− 1 (8)

(normalization constraint)
∑

(n,j)

(
w[0]
n + w[1]

n + w[•]
n + w[−j]

n

)
= 1 where (n,−j) ∈ N× Z− s.t. 1 ≤ j ≤ n− 1

(Semantics for ElongN)
In the rules of abstracted ElongN when superscripts −j’s of W−j

n ’s are forgotten
for j ≥ 1. Then under the similar convention of the beginning of Section 3.1, the
abstracted W−j

n ’s are written of the form W−
n : To be precise, we define W−

n =

Wn
[
N(r1), N($1, r1)

]
. Then the probability w[−]

n of finding W−
n at time t is given

as follows together with the master equation.
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The finest grained seman-
tics for the finest rule ElongZ−

N
of Section 2 is given in terms
of master equations:

(Semantics for ElongZ−
N )

For j ∈ {0, 1, •}, let w[j]
n is the

probability π(Wj
n, t) of find-

ing Wj
n at time t. The mas-

ter equation [24] is a gain-
loss equation for the probabili-

ties w[j]
n among separate states

Wj
n. In the following equa-

tions, the first term in right is
the gain probability that the
system arrives at the state for
the left. The second term in
the right is the loss probabil-
ity that the system leaves the
state for the left.

(evolution on main pathway)

d

dt
w[0]
n =

(
aw[−1]

n + α4w
[0]
n−1 + β4w

[0]
n+1 + α2w

[•]
n + bw[1]

n

)

−(α4 + β2 + a+ b+ β4)w
[0]
n (4)

d

dt
w[•]
n =

(
α3w

[•]
n−1 + β3w

[•]
n+1 + β2w

[0]
n + α1w

[1]
n−1

)

−(α3 + β3 + α2 + β1)w
[•]
n (5)

d

dt
w[1]
n =

(
β1w

[•]
n+1 + aw[0]

n

)
− (b+ α1)w

[1]
n (6)

(evolution on back-track pathway)

d

dt
w[−(n−1)]
n = bw[−(n−2)]

n − aw[−(n−1)]
n (7)

d

dt
w[−j]
n =

(
aw[−(j+1)]

n + bw[−(j−1)]
n

)
− (a+ b)w[−j]

n for 1 ≤ j < n− 1 (8)

(normalization constraint)
∑

(n,j)

(
w[0]
n + w[1]

n + w[•]
n + w[−j]

n

)
= 1 where (n,−j) ∈ N× Z− s.t. 1 ≤ j ≤ n− 1

(Semantics for ElongN)
In the rules of abstracted ElongN when superscripts −j’s of W−j

n ’s are forgotten
for j ≥ 1. Then under the similar convention of the beginning of Section 3.1, the
abstracted W−j

n ’s are written of the form W−
n : To be precise, we define W−

n =

Wn
[
N(r1), N($1, r1)

]
. Then the probability w[−]

n of finding W−
n at time t is given

as follows together with the master equation.
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Evolution on Main Pathway 

Evolution on Back-Track  Pathway 

HAMANO

of Elong are obtained by certain simplification of the construction. Our stochastic
semantics of chemical master equations is to describe time evolution of the agent
Ws with varying configurations, arisen in rules of Section 2.

We remind that all the rules of Section 2 are local in that global condition on any
agents lying outside TEC’s active sites does not matter in describing the chemical
interactions. In other words, it is not necessary to specify any contextual details
on agents outside the window frame represented by W. (E.g., such details are poly-
merization/depolymerization between contiguous nucleotides down away from W to
5′-end of RNA, and their hybridization to the template DNA, etc.) Consequently,
local interaction via adjacent sites inside the window W is enough to capture the
biochemical pathways. This locality allows us to construct a compact system of
master equations by avoiding combinatorial blow-up of the number of transition-
states. This is important to make master equation tractable for extracting certain
mean and approximation [20]. It is in general difficult to solve master equations
directly, although our master equations happen to be of finite dimension because
TEC behaviour does not involve mass population of molecules. The locality stems
biologically from thermodynamic stability of TEC with respect both to the DNA
template and to the RNA transcript [27].

3.1 Master Equation Semantics

We start this subsection with the following convention owing to the locality of the
rules: The agent W’s located in the back-(m > 2) and forward-(m < 0) tracked
positions are sufficiently determined by their counting states on the site (n,m) of
Wm

n . This is also the case for the main reaction pathway under the convention that
m = 1 (res. m = 0) designates the pre-translocation (res. post-translocation) as
follows:

W 0
n = Wn

[
N(r1), N(!1, r)

]
W 1

n = Wn [N(r), ∅] W •
n = Wn [N(r),NTP]

These W j
n’s with varying (n, j) constitute the state transition to represent TEC’s

local interaction during elongation.

W •
n!!
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""

## α3β3 $$%%

&&

W •
n+1!!

""

. . .W−1
n ''

((!
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· · · · · · · · · W 0
n ))

a
b **"
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"
## β4

α4
$$W 0

n+1 '' ((##

W 1
n

++

α1

β1

%%

W 1
n+1

,,

--

Fig. 3. local state transition for Elong
Z−
N

The state transition is locally described
by the stereographic diagram of Fig 3 2 ,
in which the transition probability is iden-
tified with the rate constant of the cor-
responding reaction of the pathways (1)
and (2) so that a = k1 b = k−1,α1 =
k2,β1 = k−2, α2 = k4k3, and β2 =
k−3k−4. In the diagram, the vertical ar-
rows represent loading and unloading of
NTP. The horizontal arrows represent
polymerization and depolymerization. The arrows from front to deep represent
back-track, and forward-track reversely. We assume that depolymerization occurs
only in post-translocation owing to the biological stability of TEC.

2 For the simplicity for model construction, the forward-track pathway is omitted in the rest of the paper

so that Elong
Z−
N is considered (rather than ElongZN) where Z− is the negative integers.
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post-translocation: W [N(r), ∅] schematically NOH
!"#$%&#$%&'(

pre-translocation: W
[
N(r1), N(!1, r)

]
schematically N!"#$%&NOH

#$%&'(
loading: W [N(r),NTP] schematically NOH

!"#$%&NTP#$%&'(
OH in the subscript of N designates the 3′ OH for the next nucleotide reaction
to extend the RNA chain: That is, the OH indicates that the r site of N is not
bounded. In pre-translocation, the line between N and NOH designates a phosphate
bond between r of N and ! of NOH so that the r site and the ! site are connected
by the phosphate bond.

An additional site is augmented for counting the position (n,m) ∈ N × Z, where
n indicates the length of nascent RNA (the position either of the last nucleotide or
of the loaded NTP) and m indicates the back (m < 0) and forward (m > 1) track
positions. Although redundant for m = 0, 1, the position m = 0 (res. m = 1)
indicates pre-translocated (res. post-translocated) position. See the left of Fig 2.

In the following, three kinds of rules ElongZN, ElongN and Elong are presented
accordingly to the degree of abstraction for the agent W: That is, while forgetting
the counter, Wm

n is abstracted first to Wn, and then to W. Let us start with the
finest grained rules ElongZN.

(Rules of ElongZN)

...

W3
n [∅, ∅]!!

""

""

!!

W2
n [∅, ∅]!!

""

Wn+1
[
N(r1), N(!1, r)

]

Wn
[
N(r1), N(!1, r)

]
## $$Wn [N(r), ∅] ## $$Wn+1 [N(r),NTP] ## $$WPPi

n+1

[
N(r1), N(!1, r)

]""

!!

W−1
n

[
N(r1), N(!1, r1)

]""

!!

W−2
n

[
N(r1), N(!1, r1)

]""

!!

!!
""
...

In these rules, the left downward-successive
rules correspond to the back-track pathway
of (1). The middle upward-successive rules
correspond to the forward-track pathway of
(1). The other rules are for the main pathway
(that is the horizontal one) of (1).

When the counter m of Wm
n is forgotten to Wn, the two horizontal pathways for

the forward-track and back-track are reduced respectively as follows:

5
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w[−]
n =

∑

1≤j≤n−1

w[−j]
n and

d

dt
w[−]
n =

∑

1≤j≤n−1

d

dt
w[−j]
n = bw[0]

n − aw[−1]
n (9)

The time evolution of w[−]
n of (9) is obtained by summing the equations (7) and (8 )

for the back-track pathways. By replacing (7) and (8) with (9), semantics of ElongN
is obtained from that of ElongZ−

N .

Since the abstracted w[−]
n together with w[−1]

n constitutes a random walk of the

forward/backward rates a/b, w[−1]
n is definable from w[−]

n by w[−1]
n = (a′/a) w[−]

n

with a′ := (a− b)/(1− (b/a)n−1).

(Semantics for Elong)
In obtaining the coarsest rules of Elong, the subscripts n’s of Wn’s are forgotten
so that the agents considered are lying among W 0, W 1, W • and W−. Then for
j ∈ {0, 1, •,−}, the probability w[j] of finding W j at time t is obtained by summing

w[j]
n over n’s so that w[j] =

∑
nw

[j]
n . The master equations for the probabilities,

under 1 = w[•] + w[0] + w[1] + w[−], are obtained correspondingly from summing
equations over n’s respectively of (4), (5) and (6).

d

dt
w[0] = aw[−1] + α2w

[•] + bw[1] − (β2 + a+ b)w[0] (10)

d

dt
w[•] = β2w

[0] + α1w
[1] − (α2 + β1)w

[•] (11)

d

dt
w[1] = β1w

[•] + aw[0] − (b+ α1)w
[1] (12)

The so obtained master equations (10), (11), and (12) together with (9) turn to be
characterised by the state-transition of Fig 5.

w[•]
!!

α2

β2

""!!
!!
!!
!!
! ##

β1

α1

$$"
""

""
""

""

w[−] %%
a′b

&&w[0] %%
ab

&&w[1]

Fig. 5. State transition for Elong

The detailed balance
[6,8,16,12], which strength-
ens the stationary distribution
(i.e., invariance) is given by
the following condition on the

probability distribution w[j]
∗ . The

detailed balance characterises
the time reversibility of the
probability flow:

(detailed balance) w[0]
∗ a = w[1]

∗ b w[1]
∗ α1 = w[•]

∗ β1 w[•]
∗ α2 = w[0]

∗ β2

Moreover, for the existence of the detailed balance, Wegscheider condition [6,12]
needs to be satisfied in terms of rates of reactions. The condition says that the free
energy change along the triangle path of Fig 5 is zero when the thermodynamical
meaning of the rates are given as in below Section 4:

(Wegscheider condition) (a/b) (α1/β1) (α2/β2) = 1

Under the condition, there is a convergence of the master equations for Elong to the

equilibrium w[j]
∗ with a relaxation time τ :

(Equilibrium)

w[0]
∗ = bβ1τ w[1]

∗ = aβ1τ w[•]
∗ = aα1τ τ = 1/(bβ1 + aβ1 + aα1) (13)
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of Elong are obtained by certain simplification of the construction. Our stochastic
semantics of chemical master equations is to describe time evolution of the agent
Ws with varying configurations, arisen in rules of Section 2.

We remind that all the rules of Section 2 are local in that global condition on any
agents lying outside TEC’s active sites does not matter in describing the chemical
interactions. In other words, it is not necessary to specify any contextual details
on agents outside the window frame represented by W. (E.g., such details are poly-
merization/depolymerization between contiguous nucleotides down away from W to
5′-end of RNA, and their hybridization to the template DNA, etc.) Consequently,
local interaction via adjacent sites inside the window W is enough to capture the
biochemical pathways. This locality allows us to construct a compact system of
master equations by avoiding combinatorial blow-up of the number of transition-
states. This is important to make master equation tractable for extracting certain
mean and approximation [20]. It is in general difficult to solve master equations
directly, although our master equations happen to be of finite dimension because
TEC behaviour does not involve mass population of molecules. The locality stems
biologically from thermodynamic stability of TEC with respect both to the DNA
template and to the RNA transcript [27].

3.1 Master Equation Semantics

We start this subsection with the following convention owing to the locality of the
rules: The agent W’s located in the back-(m > 2) and forward-(m < 0) tracked
positions are sufficiently determined by their counting states on the site (n,m) of
Wm

n . This is also the case for the main reaction pathway under the convention that
m = 1 (res. m = 0) designates the pre-translocation (res. post-translocation) as
follows:

W 0
n = Wn

[
N(r1), N(!1, r)

]
W 1

n = Wn [N(r), ∅] W •
n = Wn [N(r),NTP]

These W j
n’s with varying (n, j) constitute the state transition to represent TEC’s

local interaction during elongation.

W •
n!!

α2

β2

""

## α3β3 $$%%

&&

W •
n+1!!

""

. . .W−1
n ''

((!
!!

!

. . .W−1
n+1))

**""
""

· · · · · · · · · W 0
n ))

a
b **"

""
"
## β4

α4
$$W 0

n+1 '' ((##

W 1
n

++

α1

β1

%%

W 1
n+1

,,

--

Fig. 3. local state transition for Elong
Z−
N

The state transition is locally described
by the stereographic diagram of Fig 3 2 ,
in which the transition probability is iden-
tified with the rate constant of the cor-
responding reaction of the pathways (1)
and (2) so that a = k1 b = k−1,α1 =
k2,β1 = k−2, α2 = k4k3, and β2 =
k−3k−4. In the diagram, the vertical ar-
rows represent loading and unloading of
NTP. The horizontal arrows represent
polymerization and depolymerization. The arrows from front to deep represent
back-track, and forward-track reversely. We assume that depolymerization occurs
only in post-translocation owing to the biological stability of TEC.

2 For the simplicity for model construction, the forward-track pathway is omitted in the rest of the paper

so that Elong
Z−
N is considered (rather than ElongZN) where Z− is the negative integers.
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(Rules of ElongN)

Wn
[
N(r1), N(!1, r)

]

and

Wn
[
N(r1), N(!1, r1)

]!!

""

##

Wn [∅, ∅]""

!!

$$

Wn [N(r), ∅)]

Finally, if the agent W is given of its simplest form without the counter, the above
rules are abstracted into the following, which makes a mechano-chemical cycle of
NTP binding explicit during the elongation stage:

(Rules of Elong)

W [∅, ∅]""

!!

$$

W [N(r), ∅]%%

&&!!!
!!!!

!!!!
!!!

W
[
N(r1), N(!1, r)

]''

((""""""""""""""
W [N(r),NTP]))

**####
####

####
#

W
[
N(r1), N(!1, r1)

]!!

""

##
WPPi

[
N(r1), N(!1, r)

]&&

%%$$$$$$$$$$$$$$

There is a complex version of the above simple Brownian ratchet model to allow
NTP binding not only to post-translocated but also to pre-translocated positions.
(Complex Brownian Ratchet Model with an Auxiliary Binding Site [3])

NTP !
TEC(n,pre) · NTP

!

"

ki1 +,
k−i1

TEC(n,post) · NTP"

!

followed by (2)

"NTP

TEC(n,pre)

ki2 +,
k−i2

TEC(n,post)

(3)

Adding one auxiliary site to the agent W allows to realize the complex pathway (3)
in our rule based modelling as follows: When (E) site for NTP-entry can be aug-
mented to W as follows, the complex ratchet model is realized by the following rules:

(Agent) (Rules )

W = Psite
!"#$%&Asite

#%$&Esite
#$%&'( Wn

[
N(r1), N(!1, r),NTP

]
,+ +,Wn [N(r),NTP, ∅]

Wn
[
N(r1), N(!1, r), ∅

]!!

""

,+ +,Wn [N(r), ∅, ∅]
!!

""

3 Semantics and Abstraction

This section concerns constructing semantics for the rule based description of the
elongation of Section 2. Three semantics are constructed respectively for ElongZN,
ElongN and for Elong in terms of master equations. Starting from a finest grained
semantics of ElongZN, a coarser grained semantics of ElongN and a coarsest semantics

6
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State Transition for
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w[−]
n =

∑

1≤j≤n−1

w[−j]
n and

d

dt
w[−]
n =

∑

1≤j≤n−1

d

dt
w[−j]
n = bw[0]

n − aw[−1]
n (9)

The time evolution of w[−]
n of (9) is obtained by summing the equations (7) and (8 )

for the back-track pathways. By replacing (7) and (8) with (9), semantics of ElongN
is obtained from that of ElongZ−

N .

Since the abstracted w[−]
n together with w[−1]

n constitutes a random walk of the

forward/backward rates a/b, w[−1]
n is definable from w[−]

n by w[−1]
n = (a′/a) w[−]

n

with a′ := (a− b)/(1− (b/a)n−1).

(Semantics for Elong)
In obtaining the coarsest rules of Elong, the subscripts n’s of Wn’s are forgotten
so that the agents considered are lying among W 0, W 1, W • and W−. Then for
j ∈ {0, 1, •,−}, the probability w[j] of finding W j at time t is obtained by summing

w[j]
n over n’s so that w[j] =

∑
nw

[j]
n . The master equations for the probabilities,

under 1 = w[•] + w[0] + w[1] + w[−], are obtained correspondingly from summing
equations over n’s respectively of (4), (5) and (6).

d

dt
w[0] = aw[−1] + α2w

[•] + bw[1] − (β2 + a+ b)w[0] (10)

d

dt
w[•] = β2w

[0] + α1w
[1] − (α2 + β1)w

[•] (11)

d

dt
w[1] = β1w

[•] + aw[0] − (b+ α1)w
[1] (12)

The so obtained master equations (10), (11), and (12) together with (9) turn to be
characterised by the state-transition of Fig 5.

w[•]
!!

α2

β2

""!!
!!
!!
!!
! ##

β1

α1

$$"
""

""
""

""

w[−] %%
a′b

&&w[0] %%
ab

&&w[1]

Fig. 5. State transition for Elong

The detailed balance
[6,8,16,12], which strength-
ens the stationary distribution
(i.e., invariance) is given by
the following condition on the

probability distribution w[j]
∗ . The

detailed balance characterises
the time reversibility of the
probability flow:

(detailed balance) w[0]
∗ a = w[1]

∗ b w[1]
∗ α1 = w[•]

∗ β1 w[•]
∗ α2 = w[0]

∗ β2

Moreover, for the existence of the detailed balance, Wegscheider condition [6,12]
needs to be satisfied in terms of rates of reactions. The condition says that the free
energy change along the triangle path of Fig 5 is zero when the thermodynamical
meaning of the rates are given as in below Section 4:

(Wegscheider condition) (a/b) (α1/β1) (α2/β2) = 1

Under the condition, there is a convergence of the master equations for Elong to the

equilibrium w[j]
∗ with a relaxation time τ :

(Equilibrium)

w[0]
∗ = bβ1τ w[1]

∗ = aβ1τ w[•]
∗ = aα1τ τ = 1/(bβ1 + aβ1 + aα1) (13)
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w[−]
n =

∑

1≤j≤n−1

w[−j]
n and

d

dt
w[−]
n =

∑

1≤j≤n−1

d

dt
w[−j]
n = bw[0]

n − aw[−1]
n (9)

The time evolution of w[−]
n of (9) is obtained by summing the equations (7) and (8 )

for the back-track pathways. By replacing (7) and (8) with (9), semantics of ElongN
is obtained from that of ElongZ−

N .

Since the abstracted w[−]
n together with w[−1]

n constitutes a random walk of the

forward/backward rates a/b, w[−1]
n is definable from w[−]

n by w[−1]
n = (a′/a) w[−]

n

with a′ := (a− b)/(1− (b/a)n−1).

(Semantics for Elong)
In obtaining the coarsest rules of Elong, the subscripts n’s of Wn’s are forgotten
so that the agents considered are lying among W 0, W 1, W • and W−. Then for
j ∈ {0, 1, •,−}, the probability w[j] of finding W j at time t is obtained by summing

w[j]
n over n’s so that w[j] =

∑
nw

[j]
n . The master equations for the probabilities,

under 1 = w[•] + w[0] + w[1] + w[−], are obtained correspondingly from summing
equations over n’s respectively of (4), (5) and (6).

d

dt
w[0] = aw[−1] + α2w

[•] + bw[1] − (β2 + a+ b)w[0] (10)

d

dt
w[•] = β2w

[0] + α1w
[1] − (α2 + β1)w

[•] (11)

d

dt
w[1] = β1w

[•] + aw[0] − (b+ α1)w
[1] (12)

The so obtained master equations (10), (11), and (12) together with (9) turn to be
characterised by the state-transition of Fig 5.

w[•]
!!

α2

β2

""!!
!!
!!
!!
! ##

β1

α1

$$"
""

""
""

""

w[−] %%
a′b

&&w[0] %%
ab

&&w[1]

Fig. 5. State transition for Elong

The detailed balance
[6,8,16,12], which strength-
ens the stationary distribution
(i.e., invariance) is given by
the following condition on the

probability distribution w[j]
∗ . The

detailed balance characterises
the time reversibility of the
probability flow:

(detailed balance) w[0]
∗ a = w[1]

∗ b w[1]
∗ α1 = w[•]

∗ β1 w[•]
∗ α2 = w[0]

∗ β2

Moreover, for the existence of the detailed balance, Wegscheider condition [6,12]
needs to be satisfied in terms of rates of reactions. The condition says that the free
energy change along the triangle path of Fig 5 is zero when the thermodynamical
meaning of the rates are given as in below Section 4:

(Wegscheider condition) (a/b) (α1/β1) (α2/β2) = 1

Under the condition, there is a convergence of the master equations for Elong to the

equilibrium w[j]
∗ with a relaxation time τ :

(Equilibrium)

w[0]
∗ = bβ1τ w[1]

∗ = aβ1τ w[•]
∗ = aα1τ τ = 1/(bβ1 + aβ1 + aα1) (13)
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(Rules of ElongN)

Wn
[
N(r1), N(!1, r)

]

and

Wn
[
N(r1), N(!1, r1)

]!!

""

##

Wn [∅, ∅]""

!!

$$

Wn [N(r), ∅)]

Finally, if the agent W is given of its simplest form without the counter, the above
rules are abstracted into the following, which makes a mechano-chemical cycle of
NTP binding explicit during the elongation stage:

(Rules of Elong)

W [∅, ∅]""

!!

$$

W [N(r), ∅]%%

&&!!!
!!!!

!!!!
!!!

W
[
N(r1), N(!1, r)

]''

((""""""""""""""
W [N(r),NTP]))

**####
####

####
#

W
[
N(r1), N(!1, r1)

]!!

""

##
WPPi

[
N(r1), N(!1, r)

]&&

%%$$$$$$$$$$$$$$

There is a complex version of the above simple Brownian ratchet model to allow
NTP binding not only to post-translocated but also to pre-translocated positions.
(Complex Brownian Ratchet Model with an Auxiliary Binding Site [3])

NTP !
TEC(n,pre) · NTP

!

"

ki1 +,
k−i1

TEC(n,post) · NTP"

!

followed by (2)

"NTP

TEC(n,pre)

ki2 +,
k−i2

TEC(n,post)

(3)

Adding one auxiliary site to the agent W allows to realize the complex pathway (3)
in our rule based modelling as follows: When (E) site for NTP-entry can be aug-
mented to W as follows, the complex ratchet model is realized by the following rules:

(Agent) (Rules )

W = Psite
!"#$%&Asite

#%$&Esite
#$%&'( Wn

[
N(r1), N(!1, r),NTP

]
,+ +,Wn [N(r),NTP, ∅]

Wn
[
N(r1), N(!1, r), ∅

]!!

""

,+ +,Wn [N(r), ∅, ∅]
!!

""

3 Semantics and Abstraction

This section concerns constructing semantics for the rule based description of the
elongation of Section 2. Three semantics are constructed respectively for ElongZN,
ElongN and for Elong in terms of master equations. Starting from a finest grained
semantics of ElongZN, a coarser grained semantics of ElongN and a coarsest semantics
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(Rules of ElongN)

Wn
[
N(r1), N(!1, r)

]

and

Wn
[
N(r1), N(!1, r1)

]!!

""

##

Wn [∅, ∅]""

!!

$$

Wn [N(r), ∅)]

Finally, if the agent W is given of its simplest form without the counter, the above
rules are abstracted into the following, which makes a mechano-chemical cycle of
NTP binding explicit during the elongation stage:

(Rules of Elong)

W [∅, ∅]""

!!

$$

W [N(r), ∅]%%

&&!!!
!!!!

!!!!
!!!

W
[
N(r1), N(!1, r)

]''

((""""""""""""""
W [N(r),NTP]))

**####
####

####
#

W
[
N(r1), N(!1, r1)

]!!

""

##
WPPi

[
N(r1), N(!1, r)

]&&

%%$$$$$$$$$$$$$$

There is a complex version of the above simple Brownian ratchet model to allow
NTP binding not only to post-translocated but also to pre-translocated positions.
(Complex Brownian Ratchet Model with an Auxiliary Binding Site [3])

NTP !
TEC(n,pre) · NTP

!

"

ki1 +,
k−i1

TEC(n,post) · NTP"

!

followed by (2)

"NTP

TEC(n,pre)

ki2 +,
k−i2

TEC(n,post)

(3)

Adding one auxiliary site to the agent W allows to realize the complex pathway (3)
in our rule based modelling as follows: When (E) site for NTP-entry can be aug-
mented to W as follows, the complex ratchet model is realized by the following rules:

(Agent) (Rules )

W = Psite
!"#$%&Asite

#%$&Esite
#$%&'( Wn

[
N(r1), N(!1, r),NTP

]
,+ +,Wn [N(r),NTP, ∅]

Wn
[
N(r1), N(!1, r), ∅

]!!

""

,+ +,Wn [N(r), ∅, ∅]
!!

""

3 Semantics and Abstraction

This section concerns constructing semantics for the rule based description of the
elongation of Section 2. Three semantics are constructed respectively for ElongZN,
ElongN and for Elong in terms of master equations. Starting from a finest grained
semantics of ElongZN, a coarser grained semantics of ElongN and a coarsest semantics
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w[−]
n =

∑

1≤j≤n−1

w[−j]
n and

d

dt
w[−]
n =

∑

1≤j≤n−1

d

dt
w[−j]
n = bw[0]

n − aw[−1]
n (9)

The time evolution of w[−]
n of (9) is obtained by summing the equations (7) and (8 )

for the back-track pathways. By replacing (7) and (8) with (9), semantics of ElongN
is obtained from that of ElongZ−

N .

Since the abstracted w[−]
n together with w[−1]

n constitutes a random walk of the

forward/backward rates a/b, w[−1]
n is definable from w[−]

n by w[−1]
n = (a′/a) w[−]

n

with a′ := (a− b)/(1− (b/a)n−1).

(Semantics for Elong)
In obtaining the coarsest rules of Elong, the subscripts n’s of Wn’s are forgotten
so that the agents considered are lying among W 0, W 1, W • and W−. Then for
j ∈ {0, 1, •,−}, the probability w[j] of finding W j at time t is obtained by summing

w[j]
n over n’s so that w[j] =

∑
nw

[j]
n . The master equations for the probabilities,

under 1 = w[•] + w[0] + w[1] + w[−], are obtained correspondingly from summing
equations over n’s respectively of (4), (5) and (6).

d

dt
w[0] = aw[−1] + α2w

[•] + bw[1] − (β2 + a+ b)w[0] (10)

d

dt
w[•] = β2w

[0] + α1w
[1] − (α2 + β1)w

[•] (11)

d

dt
w[1] = β1w

[•] + aw[0] − (b+ α1)w
[1] (12)

The so obtained master equations (10), (11), and (12) together with (9) turn to be
characterised by the state-transition of Fig 5.
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Fig. 5. State transition for Elong

The detailed balance
[6,8,16,12], which strength-
ens the stationary distribution
(i.e., invariance) is given by
the following condition on the

probability distribution w[j]
∗ . The

detailed balance characterises
the time reversibility of the
probability flow:

(detailed balance) w[0]
∗ a = w[1]

∗ b w[1]
∗ α1 = w[•]

∗ β1 w[•]
∗ α2 = w[0]

∗ β2

Moreover, for the existence of the detailed balance, Wegscheider condition [6,12]
needs to be satisfied in terms of rates of reactions. The condition says that the free
energy change along the triangle path of Fig 5 is zero when the thermodynamical
meaning of the rates are given as in below Section 4:

(Wegscheider condition) (a/b) (α1/β1) (α2/β2) = 1

Under the condition, there is a convergence of the master equations for Elong to the

equilibrium w[j]
∗ with a relaxation time τ :

(Equilibrium)

w[0]
∗ = bβ1τ w[1]

∗ = aβ1τ w[•]
∗ = aα1τ τ = 1/(bβ1 + aβ1 + aα1) (13)
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The time evolution of w[−]
n of (9) is obtained by summing the equations (7) and (8 )

for the back-track pathways. By replacing (7) and (8) with (9), semantics of ElongN
is obtained from that of ElongZ−

N .

Since the abstracted w[−]
n together with w[−1]

n constitutes a random walk of the

forward/backward rates a/b, w[−1]
n is definable from w[−]

n by w[−1]
n = (a′/a) w[−]

n

with a′ := (a− b)/(1− (b/a)n−1).

(Semantics for Elong)
In obtaining the coarsest rules of Elong, the subscripts n’s of Wn’s are forgotten
so that the agents considered are lying among W 0, W 1, W • and W−. Then for
j ∈ {0, 1, •,−}, the probability w[j] of finding W j at time t is obtained by summing
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How sound is the model abstraction arisen 
from forgetting sites ?

Quasi-steady state approximation

HAMANO

(Rules of ElongN)

Wn
[
N(r1), N(!1, r)

]

and

Wn
[
N(r1), N(!1, r1)

]!!

""

##

Wn [∅, ∅]""

!!

$$

Wn [N(r), ∅)]

Finally, if the agent W is given of its simplest form without the counter, the above
rules are abstracted into the following, which makes a mechano-chemical cycle of
NTP binding explicit during the elongation stage:

(Rules of Elong)

W [∅, ∅]""

!!

$$

W [N(r), ∅]%%

&&!!!
!!!!

!!!!
!!!

W
[
N(r1), N(!1, r)

]''

((""""""""""""""
W [N(r),NTP]))

**####
####

####
#

W
[
N(r1), N(!1, r1)

]!!

""

##
WPPi

[
N(r1), N(!1, r)

]&&

%%$$$$$$$$$$$$$$

There is a complex version of the above simple Brownian ratchet model to allow
NTP binding not only to post-translocated but also to pre-translocated positions.
(Complex Brownian Ratchet Model with an Auxiliary Binding Site [3])

NTP !
TEC(n,pre) · NTP

!

"

ki1 +,
k−i1

TEC(n,post) · NTP"

!

followed by (2)

"NTP

TEC(n,pre)

ki2 +,
k−i2

TEC(n,post)

(3)

Adding one auxiliary site to the agent W allows to realize the complex pathway (3)
in our rule based modelling as follows: When (E) site for NTP-entry can be aug-
mented to W as follows, the complex ratchet model is realized by the following rules:

(Agent) (Rules )

W = Psite
!"#$%&Asite

#%$&Esite
#$%&'( Wn

[
N(r1), N(!1, r),NTP

]
,+ +,Wn [N(r),NTP, ∅]

Wn
[
N(r1), N(!1, r), ∅

]!!

""

,+ +,Wn [N(r), ∅, ∅]
!!

""

3 Semantics and Abstraction

This section concerns constructing semantics for the rule based description of the
elongation of Section 2. Three semantics are constructed respectively for ElongZN,
ElongN and for Elong in terms of master equations. Starting from a finest grained
semantics of ElongZN, a coarser grained semantics of ElongN and a coarsest semantics

6
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post-translocation: W [N(r), ∅] schematically NOH
!"#$%&#$%&'(

pre-translocation: W
[
N(r1), N(!1, r)

]
schematically N!"#$%&NOH

#$%&'(
loading: W [N(r),NTP] schematically NOH

!"#$%&NTP#$%&'(
OH in the subscript of N designates the 3′ OH for the next nucleotide reaction
to extend the RNA chain: That is, the OH indicates that the r site of N is not
bounded. In pre-translocation, the line between N and NOH designates a phosphate
bond between r of N and ! of NOH so that the r site and the ! site are connected
by the phosphate bond.

An additional site is augmented for counting the position (n,m) ∈ N × Z, where
n indicates the length of nascent RNA (the position either of the last nucleotide or
of the loaded NTP) and m indicates the back (m < 0) and forward (m > 1) track
positions. Although redundant for m = 0, 1, the position m = 0 (res. m = 1)
indicates pre-translocated (res. post-translocated) position. See the left of Fig 2.

In the following, three kinds of rules ElongZN, ElongN and Elong are presented
accordingly to the degree of abstraction for the agent W: That is, while forgetting
the counter, Wm

n is abstracted first to Wn, and then to W. Let us start with the
finest grained rules ElongZN.

(Rules of ElongZN)

...

W3
n [∅, ∅]!!

""

""

!!

W2
n [∅, ∅]!!

""

Wn+1
[
N(r1), N(!1, r)

]

Wn
[
N(r1), N(!1, r)

]
## $$Wn [N(r), ∅] ## $$Wn+1 [N(r),NTP] ## $$WPPi

n+1

[
N(r1), N(!1, r)

]""

!!

W−1
n

[
N(r1), N(!1, r1)

]""

!!

W−2
n

[
N(r1), N(!1, r1)

]""

!!

!!
""
...

In these rules, the left downward-successive
rules correspond to the back-track pathway
of (1). The middle upward-successive rules
correspond to the forward-track pathway of
(1). The other rules are for the main pathway
(that is the horizontal one) of (1).

When the counter m of Wm
n is forgotten to Wn, the two horizontal pathways for

the forward-track and back-track are reduced respectively as follows:

5
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(Rules of ElongN)
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and
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Finally, if the agent W is given of its simplest form without the counter, the above
rules are abstracted into the following, which makes a mechano-chemical cycle of
NTP binding explicit during the elongation stage:

(Rules of Elong)
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There is a complex version of the above simple Brownian ratchet model to allow
NTP binding not only to post-translocated but also to pre-translocated positions.
(Complex Brownian Ratchet Model with an Auxiliary Binding Site [3])
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"NTP
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TEC(n,post)
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Adding one auxiliary site to the agent W allows to realize the complex pathway (3)
in our rule based modelling as follows: When (E) site for NTP-entry can be aug-
mented to W as follows, the complex ratchet model is realized by the following rules:

(Agent) (Rules )

W = Psite
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#%$&Esite
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[
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]
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3 Semantics and Abstraction

This section concerns constructing semantics for the rule based description of the
elongation of Section 2. Three semantics are constructed respectively for ElongZN,
ElongN and for Elong in terms of master equations. Starting from a finest grained
semantics of ElongZN, a coarser grained semantics of ElongN and a coarsest semantics

6

[｜[｜ [｜]｜ ]｜

The finest grained rules may be approximately 
retrieved from  the  coarsest ones under 
certain  biological assumption.

QSS

model abstraction

]｜

Cf.  Voliotis et al,  Fluctuations, Pauses, and  Backtracking in DNA 
Transcription, Biophysical Journal (2008)
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Summing evolutions on main (res. backtrack) pathways res. of           (res.         )
yields a simple birth-death master equation with the effective rates  θ1/θ2   for 
poly/depoly merization 

HAMANO

(Rules of ElongN)
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of the loaded NTP) and m indicates the back (m < 0) and forward (m > 1) track
positions. Although redundant for m = 0, 1, the position m = 0 (res. m = 1)
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accordingly to the degree of abstraction for the agent W: That is, while forgetting
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In these rules, the left downward-successive
rules correspond to the back-track pathway
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Quasi-Steady State approximation
Under the assumption that 
   poly/depoly merization rates  <<  translocation rates,
the translocation rates may be run off in our time scale.

For n ∈ N and j ∈ {0, 1, •,−},

w[j]
n (t) ≈ w[j]

∗ ×wn(t) where wn =
∑

j∈{1,0,−,•}

w[j]
n

πQ = 0

π(j)
∑

k

q(j, k) =
∑

k

π(k) q(k, j)

π(j) q(j, k) = π(k) q(k, j)

∏

(i,j)∈φ

q(i, j)

q(j, i)
= 1

∑

(i,j)∈φ

log
q(i, j)

q(j, i)
= 0

d

dt
pt(x) =

∑

k

{λk(x − (ν ′
k − νk)) pt(x − (ν ′

k − νk)) − λk(x) pt(x)}

< xi(t) >=
∑

x

xipt(x)

d

dt
< xi(t) >=

∑

k

(ν ′
ik − νik) < λk(x(t)) >

=
∑

k

(ν ′
ik − νik)λk(x(t))

p′t = ptQ

π pt = π for all t

(i.e.,
∑

x

π(x)pt(x, y) = π(y) for all y and t)

1

d

dt
wn(t) = θ+wn−1 − (θ+ + θ−)wn + θ−wn+1

in which θ+ = α4bβ1 + α3aα1 + α1aβ1 and θ− = β4bβ1 + β3aα1 + β1aα1
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Boltzmann distribution  

 correspondence of probability πand energy ε

HAMANO

We end this subsection with a short remark on average similarly to [25,26].
(Average of chemical master equation of Elong)

The behaviour of the average is defined 〈x(t)〉 =
∑

n n
(
w[0]
n + w[1]

n + w[•]
n + w[−j]

n

)
,

which designates the mean position of RNAP tip. By summing n-times of (10), (11),
(12) and of (9), the time evolution of the average is simply characterised:
d
dt〈x(t)〉 = (α4 − β4)w[0] + (α3 − (β1 + β3))w[•] + α1w[1]

3.2 Quasi-Steady-State Approximation: From Elong Back to ElongZN

Quasi-steady-state approximation discussed in this short subsection is how to relax

probabilistic constraint among w[j]
n ’s with respect to the time scale for elongation.

Under the assumption that polymerization/depolymerization is much slower than
translocation so that αi,βi $ a, b, the two constants a and b may be run off in
the time scale of our interest [25] so that the agents observable are of the form
Wn’s. This yields a quasi-steady-state approximation on semantics, where w[n] is
the probability of finding Wn at time t.

(Quasi-steady state approximation) For n ∈ N and j ∈ {0, 1, •,−},

w[j]
n (t) ≈ w[j]

∗ ×wn(t) where w[n] =
∑

j∈{1,0,−,•}

w[j]
n

Then summing equations (4), (5), (6) and (9) yields a simple birth-death master
equation with the effective rates θ+/θ− for polymerization/depolymerization:

d

dt
wn(t) = θ+wn−1 − (θ+ + θ−)wn + θ−wn−1

in which θ+ = α4bβ1 + α3aα1 + α1aβ1 and θ− = β4bβ1 + β3aα1 + β1aα1
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N may be retrieved by means of the
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4 Energy and Chemical Equilibrium

This section concerns thermodynamical meaning of the elongation. We discuss free
energy profile associated with the agent W of variant configurations with binding
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of Elong are obtained by certain simplification of the construction. Our stochastic
semantics of chemical master equations is to describe time evolution of the agent
Ws with varying configurations, arisen in rules of Section 2.

We remind that all the rules of Section 2 are local in that global condition on any
agents lying outside TEC’s active sites does not matter in describing the chemical
interactions. In other words, it is not necessary to specify any contextual details
on agents outside the window frame represented by W. (E.g., such details are poly-
merization/depolymerization between contiguous nucleotides down away from W to
5′-end of RNA, and their hybridization to the template DNA, etc.) Consequently,
local interaction via adjacent sites inside the window W is enough to capture the
biochemical pathways. This locality allows us to construct a compact system of
master equations by avoiding combinatorial blow-up of the number of transition-
states. This is important to make master equation tractable for extracting certain
mean and approximation [20]. It is in general difficult to solve master equations
directly, although our master equations happen to be of finite dimension because
TEC behaviour does not involve mass population of molecules. The locality stems
biologically from thermodynamic stability of TEC with respect both to the DNA
template and to the RNA transcript [27].

3.1 Master Equation Semantics

We start this subsection with the following convention owing to the locality of the
rules: The agent W’s located in the back-(m > 2) and forward-(m < 0) tracked
positions are sufficiently determined by their counting states on the site (n,m) of
Wm

n . This is also the case for the main reaction pathway under the convention that
m = 1 (res. m = 0) designates the pre-translocation (res. post-translocation) as
follows:

W 0
n = Wn

[
N(r1), N(!1, r)

]
W 1

n = Wn [N(r), ∅] W •
n = Wn [N(r),NTP]

These W j
n’s with varying (n, j) constitute the state transition to represent TEC’s

local interaction during elongation.
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Fig. 3. local state transition for Elong
Z−
N

The state transition is locally described
by the stereographic diagram of Fig 3 2 ,
in which the transition probability is iden-
tified with the rate constant of the cor-
responding reaction of the pathways (1)
and (2) so that a = k1 b = k−1,α1 =
k2,β1 = k−2, α2 = k4k3, and β2 =
k−3k−4. In the diagram, the vertical ar-
rows represent loading and unloading of
NTP. The horizontal arrows represent
polymerization and depolymerization. The arrows from front to deep represent
back-track, and forward-track reversely. We assume that depolymerization occurs
only in post-translocation owing to the biological stability of TEC.

2 For the simplicity for model construction, the forward-track pathway is omitted in the rest of the paper

so that Elong
Z−
N is considered (rather than ElongZN) where Z− is the negative integers.
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elongation is explained as follows, in which TEC(n,∗) represents the TEC with tran-
script size n at the stage ∗. (Pre and post are short for pre- and post-translocation.)
The pathway shows how to convert chemical energy into the mechanical energy that
is needed to move RNAP in the back-track and forward-track direction:

(Brownian Ratchet Model [2,3])

TEC(n,fwdtrack)

NTP! "PPi
TEC(n,pre)

!

"

k1 #$
k−1

TEC(n,post)

"

! k2 #$
k−2

TEC(n,post) · NTP #$ TEC(n+1,pre)

TEC(n,backtrack)

(1)

The first reaction is translocation and the middle-most reaction is NTP binding and
recognition when the active site becomes located at the growing tip of mRNA. The
right most reaction is a combination of the following successive two reactions, in
which the first reaction is NTP hydrolysis and the second one is release of pyrophos-
phate PPi:

"PPi
TEC(n,post) · NTP

k3 #$
k−3

TEC(n+1,pre) · PPi
k4 #$
k−4

TEC(n+1,pre)

(2)

The combination is under the assumption that NTP hydrolysis rates are much larger
than the PPi release rate so that the two steps could be combined into one step with
a single effective rate.

The pathway (1) is described in terms of rule based modelling of κ calculus, in
which agents and rules are specified as follows:

(Agents)

A nucleotide N(", r) for monomeric subunit with phosphate bonds " and r. Binding
of two sites is represented by a common superscript.

The agent W represents a window frame of TEC’s multi-partite active sites (P) and
(A), where (P) site is for holding the RNA 3’-nucleotide and (A) site is for holding
the substrate NTP [14]. W has a site for associating PPi. The agent W as the
window frame, slides both along the template DNA and RNA transcript so that the
active site slides back and forth. Null agent is denoted by ∅. The substrate NTP is
an agent parallel to N but without any site for bonding. See the left of Fig 2.

N(", r) W Wm
n

N#
l

#
r

Psite
!"#$%&Asite

#$%&'(
PPi)*+,-./0 Psite

!"#$%&Asite
#$%&'(

PPi)*+,-./0
(n,m)

W

m < 0 m = 0 m > 0

3′

5′ ︸ ︷︷ ︸
n

123456345678 123456345678 123456345678
Fig. 2. Agents and position (n,m) of Wm

n

These agents yield to discriminate TEC’s post-translocation and pre-
translocation as well as loading as follows:
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equilibrium, E = 0, and Q is given by the equilibrium constant Keq, thus we have
E0 = −kBT logKeq. That is

Keq =
a

b
= exp(

E(W 0
n)− E(W 1

n)

kBT
) = exp (

E(W i−1
n )− E(W i

n)

kBT
) (15)

This means that the equilibrium constantKeq is solely determined by the free energy
difference of reaction. Note that (15) is equivalent to the detailed balance condition
between the transition rates a and b at the equilibrium via Boltzmann distribution.

(The main reaction pathway as Michaelis-Menten kinetics:)
The whole horizontal pathway of (1) follows the kinetic law of Michaelis-Menten
enzyme kinetics (as the last two reactions) in the presence of a competitive in-
hibitor (as the first reaction) [11,2]. In our agent based framework, the enzyme
kinetics is more directly derivable only under the probabilistic assumption of the
rapid convergence of the stationary distribution without employing the two tradi-
tional assumptions of the rapid equilibrium (or more generally quasi-steady-state)
assumption nor of the mass balance for the total concentration [21,12].

Let p1, p• and p0 be respectively the probabilities w[1]
n , w[•]

n+1 and w[0]
n . Then

the transition matrix Q for Kolmogorov backward equation p′(t) = Qp(t) for

p = (pi)i=1,•,0 is given by Q =

(
−(q•1+q01) q1• q10

q•1 −q1• 0
q01 0 −q10

)
. Direct calculation Qp(t) = 0

leads to the stationary distribution in which p• (with p1 and p0) is given by
p• =

1
q1•
q•1

(1+
q01
q10

)+1
p1 =

q1•
q•1

p• p0 =
q1•
q•1

q01
q10

p•

Since the probability q1• is identified with the unbinding rate k−2 of NTP from
TEC(n,post) and the reverse binding NTP probability is propositional to the concen-
tration [NTP] of the substrate, the first equation becomes

p• =
[NTP]

k−2

k2
(1 + q01

q10
) + [NTP]

by q1• = k−2 and q•1 = k2[NTP]

Then let v denote the velocity of the rate which TEC(n+1,pre) is formed. Its maximum
vmax is given by vmax = k3′ [TEC(n,pre)] and the ratio v/vmax = p•, thus v becomes

v =
vmax[NTP]

k−2

k2
(1 + q01

q10
) + [NTP]

Note that in the above q01
q10

is the equilibrium constant Keq, for the translocate
reaction simply given by the ratio a/b in (15).

Similarly, the maximum reaction velocity of the complex pathway (3) becomes

v =
vmax[NTP]

k−2

k2

(
1+(k−i1/ki1)
1+(k−i2/ki2)

)
+ [NTP]

On the other hand, by assuming that translocations in the back/forward track
pathways are in equilibrium. The steady-state elongation rate becomes

v =
vmax[NTP]

Kn + [NTP]
with Kn = k−2

k2
log

∏

j

w[j]
n

w[0]
n

where j ranges such that W j
n is an accessible state from W 0

n . Note
that the log term is equal to the sum of exponential energy difference
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More generally combining M-M and Boltzmann

Steady-state elongation rate

Assuming bck/fwd translocations are in equilibrium:
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∑
j exp ((E(W 0

n)− E(W j
n))/kBT ) via energy/probability correspondence of (14).
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Future Work1
More conformationally faithful details to 

realize various pawls in TEC 

Bar-Nahum, et al, “A Ratchet Mechanism of Transcription Elongation and its Control”, Cell 120(28) 2005 

E.g. , G-loop configuration to control bending/straightening F-helix

Cell
184

Figure 1. Dominant Lethal Mutations in the RNAP !" Subunit G Loop Domain

(A) Dynamic structure of the F bridge/G loop domain. The ribbon model shows two alternating states of the F bridge (F): bent (left) as in the
T. aquaticus structure (Zhang et al., 1999) and straight (right) as in the S. cereviciae structure (Gnatt et al., 2001). In the diagram, Lys789 (shown
in blue) in the F bridge clashes with the 3" face of the RNA:DNA hybrid in the bent configuration. Note that the hybrid is present only in the
yeast structure. The G helix-loop-helix domain (G) changes its conformation as represented by rotation of Met932 (Leu1081 in the yeast structure)
(shown in red). White circles highlight the location of I1134V and G1136S mutations in the G loop. Location of the catalytic Mg2# ion is shown
in green.
(B) Evolutionary conservation of mutated residues. I1134 and G1136 are shown in red. The sequence alignment spans part of the G loop of
E. coli (E.c.), H. influenzae (H.i.), Y. pestis (Y.p.), P. putida (P.p), P. aeruginosa (P.a.), A. tumefaciens (A.t.), B. melitensis (B.m.), T. aquaticus
(T.a.), D. radiodurans (D.r.), B. subtilis (B.s.), M. tuberculosis (M.t.), C. pneumoniae (C.p.), Z. mays chroloplast (Z.m.ch), and S. cerevisiae
RNAP II (Y. Pol II). Dots denote amino acids that are identical between species.
(C) Dominant-negative phenotype of I1134V and G1136S. Both mutations were selected from an error-prone PCR-generated library generated
from a cloned sequence encoding rpoC under the control of the pBAD promoter. A screen for dominant-negative phenotypes was conducted
in host cells carrying a temperature-sensitive chromosomal copy of rpoC. LB agar plates display wt, I1134V, and G1136S clones grown at
permissive (30$C) and nonpermissive (42$C) temperatures under various pBAD-inducing conditions (shown as arabinose %). Note that wt, but
not I1134V or G1136S, complement rpoCts at 0.02%–0.2% arabinose and that wt rpoC expression becomes toxic at 0.5% arabinose.

bridge/G loop unit to mediate exceptional control and fi- The !" I1134V and G1136S Mutations Have
Opposite Effects on Elongation and Terminationdelity.
The dominant phenotype of I1134V and G1136S and the
conservation of wt residues (Figure 1) argue for their

Results critical role in RNAP. To determine which step in the
transcription cycle was affected by these mutations, a

Dominant-Negative Mutations in the G Loop series of tests was performed with purified enzymes.
Domain of the !" Subunit We observed little, if any, effect on promoter binding
Structural analysis of the catalytic site of cellular RNAPs and open complex formation (data not shown). However,
suggests that the G loop influences the conformation both mutants displayed drastic changes at the elonga-
of the F bridge (Korzheva et al., 2000; Epshtein et al., tion and termination stages. The overall elongation rate
2002; Zhang et al., 1999; Cramer et al., 2001; Figure 1A). of G1136S was about two times greater than that of wt
To test this hypothesis and to address its physiological (Figure 2A). Conversely, I1134V was more than three
significance, we developed a genetic screen for domi- times slower than wt (Figure 2A). Furthermore, NusG,
nant-negative mutations in the G region of the !" subunit. which normally accelerates the elongation rate, was un-
The rpoC gene was placed under the control of the able to do so in the case of the fast G1136S mutant.
finely regulated pBAD promoter, and a library of point Moreover, both NusG and NusA (which normally slows
substitutions in the !" segment comprising the entire G the elongation rate) failed to show any significant effect
region was generated by error-prone PCR (see Experi- on the slow, I1134V enzyme. These data suggest that
mental Procedures). Cells harboring the chromosomal the two mutations in the G loop of !" affect the function
copy of !" that is inactive at 42$C were transformed with of the RNAP enzyme in the same manner as NusG and
wt and mutant pBAD!" plasmids. A parallel screen of NusA. G1136S and I1134V also responded differently to
2380 colonies at permissive and nonpermissive temper- specific pause signals, including the T stretch of the %
atures yielded 15 dominant-negative isolates, two of tR2 terminator (Gusarov and Nudler, 1999), ops (Artsi-
which, I1134V and G1136S (Figures 1B and 1C), were movitch and Landick, 2000), and his and trp (Landick et

al., 1996) (Figure 2B). G1136S almost completely failedselected for further analysis.

RNA Polymerase as a Ratchet Machine
189

Figure 5. A Two Pawl Ratchet Model of Transcription Elongation

The model invokes two common types of mechanical ratchet, one driven by a stationary pawl and a second driven by a reciprocating pawl
(inset). In the stationary-type ratchet, the pawl (shown in pink) serves to prevent reverse motion of the wheel, which could otherwise oscillate
back and forth randomly. The geometry and positioning of the stationary pawl determine the unidirectional movement of the wheel. In the
reciprocating-type ratchet, the pawl (shown in green) oscillates back and forth, pushing the wheel in a single direction. The transcription EC
combines both types of pawl in the same catalytic center of RNAP. The incoming complementary substrate (S pawl, pink) mimics a stationary
pawl by preventing reverse sliding of RNAP relative to the nucleic acid scaffold. The F bridge (F pawl, green) mimics a reciprocating pawl by
oscillating between bent and straight conformations, thus pushing RNAP forward.
In the EC, RNA (red) base paired with the DNA template strand (yellow) oscillates in the active center (indicated by the Mg2! ion flanked by
the i and i!1 sites). Two coupled pawls (S and F) drive forward translocation by limiting the stochastic movement of the nucleic acid scaffold.
The S pawl acts when the complementary substrate (pink) enters the i!1 site, stabilizing the EC in the S(i!1) state. From this state, the EC
executes the chemical reaction (i.e., phosphodiester bond formation), extending its transcript by 1 nucleotide. Fluctuations of the F bridge
(green) between bent and straight configurations define the F pawl action. Bending of the F bridge pushes the EC into the F(i!1) state, from
which it proceeds to S(i!1). Although the F pawl drives the EC in the forward translocated state by restricting access of the RNA 3" end to
the i!1 site, it also limits the entry of the incoming substrate to the i!1 site, thus restricting the rate of elongation under conditions of
saturating NTPs. Under limiting NTPs, i.e., when the function of the S pawl is compromised, the F bridge has a greater chance of shortening
the hybrid by breaking and/or preventing 3" base pairing in the i!1 site (trap). This would promote backtracking (i.e., reverse sliding of the
RNA through the NTP delivery [secondary] channel). The trap intermediate is resistant to transcript cleavage and represents the initial step
leading to pausing and termination. This model explains the biphasic elongation rate curves observed in transient state kinetic studies with
E. coli and human RNAPs (Foster et al., 2001; Nedialkov et al., 2003; Holmes and Erie, 2003) without invoking any additional hypothetical
substrate binding sites (see Supplemental Data on the Cell website). The model implies that principal regulation occurs through the G loop
(shown in blue) that supports the F bridge. The G loop controls the F pawl in response to external signals and determines the rate, processivity,
and fidelity of transcription.

coupled to a second, reciprocating pawl (F pawl) repre- faster the F bridge oscillates, the greater the rate of
elongation, as illustrated by the fast mutant enzyme.senting the F bridge domain; this oscillates between

bent and straight configurations. The F pawl shifts the With a certain probability, however, clashing between
the F bridge and the hybrid breaks the 3" terminal hybridEC forward upon bending via thermally assisted ejection

of the RNA 3" terminus from the i!1 site. Upon returning base pair (Figure 5, “trap state”), thus facilitating back-
tracking instead of forward translocation, since the for-to its straight conformation, the F pawl allows the next-

required substrate (S pawl) to enter the empty i!1 site. mer depends on the stability of the hybrid (Nudler et al.,
1997). It follows that the longer the F bridge spendsThe RNA 3" terminus slips back to the i!1 site if the

substrate is not readily available, or while the F bridge in its bent conformation, the higher the probability of
backtracking. This explains the backtracking-proneremains straight. In summary, the S pawl (the incoming

substrate) acts to prevent backward slippage of RNAP phenotype of the slow mutant (Figure 3). It also explains
why backtracking is particularly sensitive to the stabilityin relation to the nucleic acid scaffold, while the F pawl

(F bridge) acts to push RNAP one nucleotide forward to of the 3" base pair of the hybrid (Nudler et al., 1997).
Kinetic simulations of the two pawl ratchet model de-initiate the next cycle of substrate addition.

The model described above serves to explain (inter scribed here predict that the elongation rate would de-
crease sharply if the NTP concentration falls below aalia) how RNAP maintains its rate of elongation. The
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Future Work 2

How to augment drift (thermal force) on top 
of κ description of Brownian motion ??

RNAp as molecular motor

probability flux given by Fick’s law wiith drift; 

Fokker-Planck eqn
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∂x
(
∂U

∂x
p)

F = −∂U

∂x

0 = D
∂p

∂x
+

1

γ

∂U

∂x
p

p(x) ∝ exp (−U(x)

Dγ
)

1

where probability p(x, t), external force F (x, t) applied to RNAp, and γ drag coefficient

j(x, t) = −D
∂p

∂x
+

F

γ
p(x, t)

∂p

∂t
= −∂j

∂x
= D

∂2p

∂x2
+

∂

∂x
(
∂U

∂x
p)

(Note: F = −∂U
∂x with energy U)

F = −∂U

∂x

0 = D
∂p

∂x
+

1

γ

∂U

∂x
p

p(x) ∝ exp (−U(x)

Dγ
)

1

probability p(x,t) 

where diffusion coef. D and external force F (x, t) applied to RNAp with γ drag coef.

j(x, t) = −D
∂p

∂x
+

F

γ
p(x, t)

∂p

∂t
= −∂j

∂x
= D

∂2p

∂x2
+

∂

∂x
(
∂U

∂x
p)

(Note: F = −dU
dx with energy U)

F = −∂U

∂x

0 = D
dp

dx
+

1

γ

dU

dx
p

p(x) ∝ exp (−U(x)

Dγ
)

1

diffusion 
(random motion)

drift
(directed motion)+

1st eqn is flux continuity eqn
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Future Work 2 (contd.)

At equilibrium of FP-eqn;

Boltzmann distribution is  a solution

j(x, t) = −D
∂p

∂x
+

F

γ
p(x, t)

∂p

∂t
= −∂j

∂x
= D

∂2p

∂x2
+

∂

∂x
(
∂U

∂x
p)

F = −∂U

∂x

0 = D
∂p

∂x
+

1

γ

∂U

∂x
p

p(x) ∝ exp (−U(x)

Dγ
)

1

where probability p(x, t), external force F (x, t) applied to RNAp, and γ drag coefficient

j(x, t) = −D
∂p

∂x
+

F

γ
p(x, t)

∂p

∂t
= −∂j

∂x
= D

∂2p

∂x2
+

∂

∂x
(
∂U

∂x
p)

(Note: F = −dU
dx with energy U)

F = −∂U

∂x

0 = D
dp

dx
+

1

γ

dU

dx
p

p(x) ∝ exp (−U(x)

Dγ
)

1

Why  Fokker-Planck ?

Towards more energy U(x)  efficient  descprption of 
elongation (e.g., chemist's use of energy-landscape) 
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