
Development of Syntactic and Semantic Structure in Artificial Agents

Takashi Hashimoto∗

Lab. for Information Representation, FRP,
The Institute of Chemical and Physical Research (RIKEN)

2-1, Hirosawa, Wako, Saitama, 351-01, JAPAN
Tel: +81-48-467-9626, Fax: +81-48-462-9881

Abstract

Development of syntax and semantics of language is studied
with a constructive approach in a network model of agents.
Agents with generative grammar systems evolve through
communication in terms of their own grammar in a language
game. They form a community sharing usages of symbols
and develop to equip recursive structures. After develop-
ment, agents become to have double articulation mechanis-
m in their grammar. Semantics is expressed by word-space
which is a space to represent interrelationship among word-
s. The relationship is formed according to ways of usage
of language and calculated by means of mutual dependency
between words and sentences. An agent can develop cate-
gorization in its word-space from sentences.

1 Introduction

Language is an evolutionary system. At origins of lan-
guage, it must have smaller number of words, simple syntax,
few abstract notions. Our language constructed through
word formation, grammaticalization, or diversification of
metaphorical expressions. Even now language is evolving,
pidgin/creole languages become complex, many new expres-
sions are produced day by day, and so on. Some features in
animal communication are inherited in our communication
through evolutionary pathway [1]. Therefore it is important
to study evolution of language from primitive communica-
tion systems.

Evolutionary linguistics is a new candidate to shed light
on origins and evolution of language [2]. It is stressed as a
key notion that origins and evolution of language is phenom-
ena typically shown in complex systems as emergence, self-
organization, adaptation, collective behavior, clustering. To
understand complex systems, constructive approaches have
great benefit [3]. By adopting this approach to understand
evolution of language, we propose a language game in agents
with grammar systems.

As a viewpoint to abstractly study communication sys-
tems, we have proposed a notion of code which is defined as
a system of usages and interpretations of symbols in commu-
nication and expressions [4]. We are interested in the case
of self-organizing code, a code emerging from interactions a-
mong elements. For example, dynamics of two characteristic
self-organized codes, linguistic code [5] which is developed
in this paper and genetic code [6, 7] have been studied.

∗toshiwo@puneuma.riken.go.jp,
http://www.bip.riken.go.jp/irl/toshiwo/

Words have some semantic interrelationships. The most
controversial problem is from what the interrelationships are
constructed, namely meaning of words. A lot of discussion
has been devoted for the problem. For example, meanings of
words are indications to external objects, or representations
with normal form [8]. Here we propose that ways of use
of language constitute semantic relation among words, this
notion has relevance with Wittgenstein’s thought [9]. We
insist that meaning of a word should be determined in part
from usages of the word in expressions spoken in pragmatic
situations.

If we imagine to measure distance among words and sen-
tences, the interrelationships can be map onto abstract dis-
tance spaces, which we call word-space. Word-space is one
of representations of language speaker’s internal model.

We regard similarity among words as such interrelation-
ships. To calculate similarity of words and sentences from
ways of use of them, we adopt Karov and Edelman’s algo-
rithm [10]. Its main idea is a mutual dependency between
words and sentences. Similar words are used in similar sen-
tences and similar sentences are composed of similar words.
Similarity matrices of words and sentences, mutually de-
pendently defined along this idea, are iteratively calculated.
Although this algorithm has been proposed for disambigua-
tion of word meanings in machine readable dictionary and
corpus, our main interest is dynamics of word-space, not
static form as in corpus.

2 Self-organizing Code and Evolu-
tion of Grammar

2.1 Evolutionary Language Game

We introduce an evolutionary language game to study dy-
namics of linguistic code and evolution of grammar sys-
tems1. An agent is defined as a grammar system, Gi =
(VN, VT, Fi, S), where VN is a set of non-terminal symbols,
VT is a set of terminal symbols, Fi is a set of rewriting rules,
S is a start symbol, and a suffix i is ID of an agent.

At a speaking process, each agent apply its rewriting rules
from the start symbol S. When a rewritten word consists
of terminal symbols, it is spoken to all agents. In case of
existing plural applicable rules, a rule is selected randomly.
If there are non-terminal symbols in a rewritten word but
there is no applicable rule in Fi, the agent cannot speak.

1Here we show model and results briefly. For details, please refer
to [5]. Note that in spite of simpler definition of score in a language
game (Eq. (1)) than that of [5], results are qualitatively similar.

1

its own grammar by reverse application of rewriting rules.
When a reversely rewritten word from a word w attains to
the start symbol S in a recognizing precess of an agent Gi,
we say that the agent Gi can recognize the word w.

In our language game, P agents make a communication
network. Each agent has chance to speak R times in a
time step. Each agent is ranked by three different scores:
recognizing – how many words and how quickly an agent
recognizes, speaking – how many words an agent speaks,
being recognized – how many words which an agent speaks
are recognized. Total score is defined by weighted sum of
all factors as

ptot = 1
R{rrec(srec

∑
recog

1
step

− frec)

+rsp(ssp − fsp) + rbr
sbr − fbr

P
}.

(1)

Where srec, ssp, sbr are the times of speaking, recognizing,
and being recognized, respectively. And frec, fsp, fbr are
the times of not speaking, not recognizing, and not being
recognized, respectively. step is rewriting steps to recognize
a word and a summation

∑
recog is taken only when an agent

can recognize words.
We introduce an evolutionary dynamics. A part of agents

is replaced with new agent according to their score. Gram-
mar of new agent is modified by adding (add a new rule
to Fi), replacing (replace an old rule with a new rule), and
deleting (delete a rule from Fi).

2.2 Self-organization of Code

Amount of information dealt by an agent is quantified by
product of average length of words spoken and recognized,
which is defined as,

fl =
1

RP 2

R∑
c=1

P∑
k=1

|wrec
kl (c − 1)|

P∑
m=1

|wrec
lm (c)| (2)

|wrec
ij (c)| =




1 if c = 0
|wij(c)| if c > 0 and Gi’s word

is recognized by Gj

0 otherwise .

(3)

We start simulations from agents with smallest grammars
randomly generated, which are in the class of regular gram-
mar. Amount of information flow in a network, measured
by average of fl (〈f〉 =

∑P
l=1 fl/P), increases in course of

time. As described in Fig. 1, it shows punctuated equilib-
rium evolution. Namely, we can see rapidly increase states
and equilibrium states in turn.

In the regime of equilibrium state, agents make a com-
munity sharing a code, ways of use of words. Agents in a
community gets higher score than other agents by speak-
ing and recognizing particular words. They spontaneously
elaborate particular usage of some words. We can say that
a code, in a sense of a system of particular usage of symbols,
is organized in a network. Since grammar is maintained by
a whole network, we call it net-grammar [5]. From a com-
munity sharing a code, agents who can speak and recognize
new words emerge by evolutionary processes which are de-
scribed in the next subsection. And then a new code is

0 5000 10000 15000 20000
time step

0.0

5.0

10.0

<
f>

Figure 1: time step v.s. 〈f〉. P = 10 and R = 10. Parame-
ters for the total score are rsp = 3, rrec = 1, and rbr = 1.

organized. By repeating this process dynamics of code can
be seen and amount of information flow in network shows
stepwise development as in Fig. 1.

2.3 Evolution of Grammar

In the course of evolution of grammar to higher computa-
tional ability, there are two remarkable developmental pro-
cesses. We mean by a term higher computational ability
that an agent can speak and recognize larger set of words.

One is module type evolution. Using a new rule as a
module, an agent can speak and recognize many new words.
This process corresponds to a word formation process by
affixation in natural language.

The other is emergence of loop structure. Equipping loop
structures let agents be able to rewrite recursively. It corre-
sponds to making nested sentences to produce expressions
with embedded structure. A grammar with loop structure
is equivalent to a grammar in the class of context free in the
Chomsky hierarchy.

Agents which evolve to higher computational ability by
these two processes speak and recognize long and many
words, which is reflected on jumping states in Fig. 1.

2.4 Double Articulation As a Structural-
ization of Grammar

Through organization of code and evolution, grammar of
agents is structuralized, which is called double articula-
tion. After around 8000 time step, agents have two types of
rewriting rules,

T → sequence of T s (4)

N → sequence of Ns | sequence of Ns and T s, (5)

where N and T are a non-terminal and a terminal symbol,
respectively.

Rules of Eq. (4) likely to be used to make frequently spo-
ken words. By using rules of Eq. (5), agents combine several
words produced by rules of Eq. (4) to make other rare and
long words. In order to speak and quickly recognize word-
s shared in a community, it is advantageous to have their
words as single rules (i.e. S → sequence of T s) which is a
special type of Eq. (4).

2

m in natural language, making a sentence from words and
making a word from symbols. Double articulation is one of
the most important feature of natural language and gives
us the ability to create infinite diverse sentences with finite
symbols.

3 Development of Word-space

3.1 Words and Sentences

We have summarized our results of development in a syntac-
tic level. Let us consider development in a semantic level.
As stated in § 1, semantic relationship should be formed to
some extent from ways of use of language. Taking semantic
relationship as so, syntax and semantics can not completely
be discriminated. So we can discuss developmental seman-
tic structure of inter- and intra-agents as an advance of our
model.

We introduce distance spaces of words and sentences and
call it word-/sentence-space. The distance is similarity a-
mong words/sentences, which will be defined in the next
subsection based on Karov and Edelman’s definition [10].
The important notion to measure similarity among words
and sentences is a mutual dependency of words and sen-
tences. That is, similar words appear in similar sentences
and similar sentences contain similar words.

We introduce a word and a sentence based on the dou-
ble articulation obtained above so as to bring the idea of
mutual dependency into our model. A word is successive
terminal symbols in Eq. (4) and (5). A sentence is a se-
quence of terminal symbols. Each agent articulates sen-
tences to sequences of words based on parsing with its own
grammar. For example, an agent with a rewriting rule set,
S → A0B, A → 10, B → 11, parses a word “10011” as
10011 A←10⇒ A011 B←11⇒ A0B S←A0B⇒ S and articulates it as
a sequence of words “10·0·11”. From this result of articula-
tion, agents updates its word-space.

3.2 Definition of Similarity and Affinity

In this subsection, we define similarity and affinity among
words and sentences according to Karov and Edelman’s
word sense disambiguation algorithm [10]. At first, affin-
ity of a word for a sentence and that of a sentence for a
word are defined as

affn(w, s) =
∑
w′∈s

weight(w′, s)simn(w, w′) , (6)

affn(s, w) =
∑
s′�w

weight(s′, w)simn(s, s′) , (7)

where a suffix n indicates times to iterate, w ∈ s means
a word included in a sentence s, s � w means a sentence
including a word w. Normalized factors weight(w, s) and
weight(s, w) are defined as

weight(w, s) =
factor(w, s)∑

w′∈s factor(w′, s)
, (8)

factor(w, s) =
1

p(w)lg(s)
, (9)

weight(s, w) =
f (,)∑

s′�w factor(s′, w)
, (10)

factor(s, w) =
1

p(s)#(s,w)
. (11)

In factor(s, w) and factor(w, s), p(w) and p(s) is proba-
bilities of a word w and a sentence s, respectively; lg(s) is
the length of a sentence s, which is defined by the num-
ber of words in the sentence; and #(s, w) is the number of
occurrence of a sentence s including a word w.

Definitions for similarity between sentences and that of
between words are

simn+1(si, sj) =
∑
w∈si

weight(w, si)affn(w, sj) , (12)

simn+1(wi, wj) =
∑
s�wi

weight(s, wi)affn(s, wj) . (13)

Word similarity (Eq. (13)) makes word-space and sentence
similarity (Eq. (12)) does sentence-space.

At initial iteration step (n = 0), diagonal part of word
similarity (sim0(wi, wi)) are 1, the others are 0. From
this, word-sentence affinity (Eq. (6)) at n = 0 is calculat-
ed. Then, these four formulae are iteratively calculated (as
Eq. (12) → (7) → (13) → (6)) until all elements converge.

3.3 Categorization in Word-space

Randomly generated sentences are given to an agent which
is picked from the simulation described in Fig. 1 until the
agent recognize 100 sentences. We investigate two ways of
calculation. One is batch calculation which is to calculate
after recognition of 100 sentences. This is to see convergence
of similarity. The other is on-line calculation, updating per
each recognition of a sentence, to see dynamics of word-
space.

(a)

0 20 40 60 80 100
iteration

0.0

0.2

0.4

0.6

0.8

1.0

w
or

d
si

m
ila

rit
y

fr
om

 0

0

(b)

0 20 40 60 80 100
iteration

0.0

0.2

0.4

0.6

0.8

1.0

w
or

d
si

m
ila

rit
y

fr
om

 0
11

01
0

011010

Figure 2: Convergence of similarity from word (a)0,
(b)011010. Iteration step v.s. word similarity from the
word. Broken lines are similarity with the word itself.

Changes of word similarity per iteration by batch calcula-
tion are shown in Fig. 2 for two words ’0’ and ’011010’. The
former is often used in sentences with other words. Similari-
ties of almost words from the word ’0’ quickly converge. The
latter is used only one time with a word ’00’ as “00·011010”.
Although the word ’011010’ have no direct relation with
other words except for ’00’, similarities with other words
slowly increase. The word ’011010’ become to have relation

3

by Karov and Edelman [10], this is an important feature to
iterate the algorithm to calculate similarities.

An example of developmental path of word-space by on-
line calculation is shown in Fig. 3. The agent divides 100
sentences into 25 words. Similarity among the words is clus-
tered in 8 groups as shown in Fig. 3(d). We can see increase
of the number of clusters and expansion of the number of
words in a cluster from Fig. 3(a) to (d).

(a)

0

5

10

15

20

25 0

5

10

15

20

25

0

0.5

1

word

word

w
or

d
si

m
ila

rit
y

(b)

0

5

10

15

20

25 0

5

10

15

20

25

0

0.5

1

word

word

w
or

d
si

m
ila

rit
y

(c)

0

5

10

15

20

25 0

5

10

15

20

25

0

0.5

1

word

word

w
or

d
si

m
ila

rit
y

(d)

0

5

10

15

20

25 0

5

10

15

20

25

0

0.5

1

word

word

w
or

d
si

m
ila

rit
y

Figure 3: An example of development of word-space. The
number of sentences is (a)1, (b)20, (c)50 and (d)100. Z-axis
is word similarity. Words are arranged in xy-plane to clearly
see clustering of word-space in (d).

This clustering can be regarded as categorization of words
by the agent since words in a cluster have stronger relation
with each other and less relation with words in the other
cluster. Words 15 ∼ 17 in the second largest cluster have
similarity with words 1 ∼ 11 forming the largest cluster.
These word work to connect these two categories.

Words 20 ∼ 25 have the largest similarity only with itself.
These words are one word sentences and are not used in
other sentences. Therefore they have no relation with the
other categories.

Not all agent categorizes their words. In case of another
agent, although the same list of sentences is given to the
agent, word-space have only a cluster and similarities of
almost all words are same value.

4 Conclusion and Future

We have investigated development of syntax and semantics
of language in an network model of agents with grammar
systems.

Agents organize community sharing code, a system of us-
age of symbols. Grammar of them evolve to equip recursive
structure. As a result of self-organization of code and evo-
lution of grammar, double articulation mechanism is devel-
oped in their grammar.

agent. It is calculated from ways of use of language based
on Karov and Edelman’s algorithm. An agent categorizes
words from sentences in word-space. Some words associate
between two categories.

Of course, results of development of semantic structure is
preliminary. The development should be discussed through
conversation among agents. If two agents have different
rewriting rules, their word-spaces formed through conversa-
tion become to have different structure, even if they listen
the same sentences. We are interested in dynamics of word-
/sentence-space through interaction between different word-
spaces. There may exist sentences which does not change
one’s word-space but change other’s word-space. Sharing
structure in word-spaces is a new type of linguistic code,
in this context it is a system of usage and interpretation of
language.

Dynamics of grammar and word-space is separated in this
paper. To discuss developmental path of syntactic and se-
mantic structure through communication, we should asso-
ciate changes of grammar with structure in word-/sentence-
space.

References
[1] Hauser, M. D., (1996), The evolution of communication,

The MIT Press, Cambridge, MA

[2] Steels, L., (1997), Synthesising the origins of language and
meaning using co-evolution, self-organisation and level for-
mation, in Evolution of Human Language, Hurford, J (ed.),
Edinburgh Univ. Press, Edinburgh (in press)

[3] Kaneko, K. and Tsuda, I., (1994), Constructive complexity
and artificial reality: an introduction, Physica, D75, 1–10

[4] Hashimoto, T, (1996), Evolution of Code and Communi-
cation in Dynamical Networks, PhD. thesis, University of
Tokyo

[5] Hashimoto, T. and Ikegami, T., (1996), Emergence of net-
grammar in communicating agents, BioSystems, 38,1–14

[6] Ikegami, T. and Hashimoto, T., (1995), Active mutation in
self-reproducing networks of machines and tapes, Artificial
Life, 2, 305–318

[7] Hashimoto, T. and Ikegami, T., Oscillation of code in ma-
chines and tapes networks, (Manuscript in preparation)

[8] Putnum, H., (1975), The meaning of ’meaning’, in Mind,
language and reality, Cambridge University Press, New Y-
ork, NY

[9] Wittgenstein, L., (1953), Philosophische Untersuchungen,
Basil Blackwell

[10] Karov, Y. and Edelman, S., (1996), Similarity-based word
sense disambiguation, Technical Report of Weizmann Insti-
tute, CS-TR 96-06

4

