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Evolution of symbolic language and grammar is studied in a network model. Language is expressed by words, i.e. 
strings of symbols, which are generated by agents with their own symbolic grammar system. Agents communicate with 
each other by deriving and accepting words via rewriting rule set. They are ranked according to their comrhunicative 
effectiveness: an agent which can derive less frequent and less acceptable words and accept words in less computational 
time will have higher scores. They can evolve by mutational processes, which change rewriting rules in their symbolic 
grammars. Complexity and diversity of words increase in the course of time. The emergence of modules and lpop struc- 
ture enhances the evolution. On the other hand, ensemble structure lead to a net-grammar, restricting individual gram- 
mars and their evolution. 
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1. lntmductioo 

Linguistic expressions look quite complex but 
are far from random. It is commonly assumed that 
one has to have internal knowledge of one’s lan- 
guage when one can derive and recognize ap- 
propriately structured expressions. Lakoff and 
Johnson (1980) made several important remarks 
on how we understand our experiences. We form 
less clearly delineated concepts in terms of more 
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clearly delineated ones through metaphorical pro- 
cesses. Our conceptual system is metaphorically 
structured and defined. Metaphors have a basis in 
our physical and cultural experience, and the basis 
may vary from culture to culture. 

The grammar of a given language is also deter- 
mined in part by the community which uses it. In- 
ternal knowledge varies from person to person. 
We henceforth will refer to individual internal 
knowledge as an individual grammar. An individ- 
ual grammar can undergo changes under a physi- 
cal and cultural environment and in its interaction 
with other grammars. Language reflects historical 
factors such as evolutionary paths and’ growing 
processes, therefore language can be treated as an 
evolving system. For these reasons, we have to 
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discuss how a grammar evolves in an ensemble of 
individual grammars and how its complexity 
evolves. 

It is often assumed that the complexity of lan- 
guage is a mere reflection of the complexity in the 
world we live in, just as the complexity of living 
systems is said to be the reflection of their complex 
environments. But language is a highly autono- 
mous system, with its own evolutionary dynamics. 

MacLennan (1991) has studied communication 
among simple rule agents. Agents exchange infor- 
mation about the local environments in which they 
live by emitting signals to each other. Fixed signals 
serve as names of the objects an agent encounters 
in its environment. Different names may corre- 
spond to the same object, resulting in the emer- 
gence of synonyms. Complex naming of objects 
reflects the complexity of the external environ- 
ment. In Werner and Dyer’s model (1991), diver- 
sity of language is attributed to spatial inhomo- 
geneity of the environment where agents live. 

However, we believe that even without complex 
space or information, grammars can evolve and 
diversify by intrinsic mechanisms. In general, 
evolving systems, such as evolutionary games (Lin- 
dgren, 1991; Ikegami, 1994), Tierra world (Ray, 
1991; Ray, 1994), or networks of Turing machines 
(Ikegami and Hashimoto, 1995) constitute notable 
examples of evolutionary mechanisms. Each exam- 
ple has its own diversifying mechanism such as 
host-parasite dynamics and self-referential para- 
dox. If linguistic expressions are not mere labels of 
external objects, communication helps to develop 
grammar structures*. 

We use our language not just to describe entities 
and states of affairs in the external world but also 
to express our own thoughts. Language must be 
complex enough to express complex thoughts or 
concepts. On the other hand, language is used not 
only in order to communicate with others (external 
language), but also to construct one’s ‘internal 
models’ (internal language). We regard grammar 

2 Since Our model has no external environments, naming of 
external objects lies outside the scope of this paper. But we will 
show that the diversification of words and grammars stjj] 
occur. 

systems as representations of internal models. Ex- 
ternal language also reconstructs internal models 
of both speakers and listeners. Language in- 
fluences thought and vice versa; complex thoughts 
make language complex and complex language is 
conducive to the formulation of complex thoughts. 
To make false statements gives impetus to complex 
language: the speaker must produce complicated 
expressions or encipher sentences to make it dif- 
ficult for others to understand them. Listeners 
must recognize such complex expressions to cor- 
rectly receive information. Communication there- 
fore can be thought of as a source of rich grammar 
structures. 

To study languages in an evolutionary and net- 
work context, we consider a simple language 
game. Each player has his own grammar and com- 
municate with each other by sending sentences. 
The player takes turns to speak and listen to 
sentences. What kind of sentences he speaks, how 
fast he recognizes and how he is recognized by 
other players determine each player’s advantage. 
Players who get lower scores have to change their 
grammar and the grammars of players with higher 
scores are likely to be inherited. 

According to N. Chomsky (1955), the computa- 
tional ability of a symbolic grammar is categorized 
into four different classes (Rev&z, 1991): 

type 0 phrase structure grammar 

type 1 context sensitive grammar 

type 2 context free grammar 

type 3 regular grammar. 

The higher a grammar is ranked in the hierarchy, 
the larger the set of words it can generate. To take 
a simple example, a word set, 

(0”l”ln 1 l), (1) 

cannot be derived by a regular grammar (type 3) 
but can be derived by a context free grammar (type 
2) and by any grammar higher in the hierarchy. 
Here a symbol xy is a concatenation of symbols x 
and y and x” represents n times concatenation of 
symbol x. Hence, a set (1) includes all strings 
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beginning with any non-zero number of o’s follow- 
ed by an equal number of 1 ‘s. 

Evolution of grammar will be discussed as a 
process of escalation in the hierarchy. From a 
practical point of view, we have to take finite 
lengths of words and finite deriving steps into ac- 
count. If we deal only with a finite set of words, 
e.g. ( O”1” IN r n r 1 ), Chomsky’s hierarchical 
relationship does not always hold. In computation 
theory, there are no upper bounds as to how much 
time can be put into deriving words and no ensem- 
ble structure is considered at all. We need to figure 
out what kind of grammar has a practical ability 
to derive and accept words in a finite number of 
time steps. That is, the computational ability of a 
symbolic grammar and hierarchy should be 
studied within an ensemble. Chomsky (1957) said 
that regular grammars are not suitable for model- 
ing the grammars of natural languages. We assume 
that the primitive structure of a grammar is a regu- 
lar grammar and will see how it develops into 
higher grammars. 

symbols are called words over V. The set of all 
words over V is denoted by v’. The length of a 
word w is the number of symbols of w and is 
denoted by I w I. An arbitrary set of words is called 
language and is denoted by L. 

Any language L is associated with several 
generative grammar systems G, which are 
characterized by a set of rules and symbols. By 
preparing relevant rules and symbols, at least one 
generative grammar can generate the whole words 
belonging to the given language L (Hopcroft and 
Ullman, 1979). 

2.1.2. Generative grammar 

The present paper is organized as follows. For- 
mal language and the Chomsky hierarchy are in- 
troduced in Section 2.1. A concrete model of a 
language game is defined in Sections 2.2 and 2.3. 
Detailed analysis of evolution of those grammar 
systems is presented in Section 3.1. Developing an 
ensemble sharing several words - we call it an 
ensemble with a common set of words (ECW) - 
is found to be crucial for maintaining diversity of 
grammar structures. After achieving an ensemble 
structure, each grammar system is likely to become 
complex again. An ECW is discussed in Section 
3.2. A simulation of the model exhibiting a step- 
wise evolution over several eras will be reported in 
Section 3.4. Some implications of ECW will be 
discussed in Section 5 and the main conclusions 
are given in Section 6. 

A generative grammar G is an ordered four- 
tuple ( VN, VT, F, s). Symbols Vr and VN are dis- 
joint finite alphabet, called terminal and non- 
terminal symbols, respectively. A symbol S E V, 
is an initial symbol, and a symbol F is a finite set 
of ordered pair (ar, 8). Here, 01 and 6 is a word 
over (Vv U Vr)* and (Y contains at least one sym- 
bol from V,. The elements (ar, /3) in F are called 
rewriting rules and will be written in the form 
(Y - 8. 

2.1.3. Derivation and acceptance 
Rewriting rules are used to derive new words 

from given ones. If the left-hand of a rulb is equal 
to a part of a word, the part is replaced by the 
right-hand of that rule. 

Given a grammar G = (VT Vr, F, S’) and two 
words X, Y c (V,v U Vr) , we say that Y is 
derivable from X in one step and we denote it X 4 
Y, if there are words P, and P2 in ( VN U VT)’ 
and a rewriting rule a! - 0 in F such that 
X = P,uP2 and Y = P,/3P2. 

2. Modeling 

2.1. Basic of formal languages 

Given a grammar G = (VT VT, F, S) and two 
words X, Y E (VN U VT) , we say that Y is 
derivable from X and we denote it X %Y, if X = Y 
or there is some word X0, X1, X, ,..., X& r 0) in 
(V, U VT)’ and X,-,=X, X, = Y and Xi+, is 
derivable from Xi in one step (0 I i I k - l), i.e. 
x = x, * x, *... x,_, e x, = Y. 

When no non-terminal symbols are left in the 
2.1.1. Word and language derived word, a derivation process terminates. If a 

A finite non-void set of symbols is called an word X is derived by a grammar G, we say that a 
alphabet and is denoted by K The finite strings of word X is acceptable by G. 
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2.1.4. The Chomsky hierarchy of languages 
We can classify the generative grammars with 

respect to a set of rewriting rules. The classifica- 
tion below has been introduced by Chomsky 
(1955). 

A generative grammar G = (Vv, Vr, F, s) is 
said to be of type i if it satisfies the corresponding 
restrictions in this list (R&&z, 1991): 

i = 0 

i = 1 

i = 2 

i = 3 

No restrictions, called phrase structure 
grammar. 

Every rewriting rule in F has form QIAQz 
- QtPQz, with Qr, Qz and P in (V, U 
VT)*, A E V,, and P # X, except possibly 
for the rule S - 5 which may occur in F, 
in which case S does not occur on the right- 
hand side of the rules. Where h is an empty 
word which contains no symbols. This 
grammar type is called context sensitive 
grammar. 

Every rule in F has a form A - P, where A 
E VN and P E (VN U VT)*. This type of 
grammar is called context free grammar. 

Every rule in F has a form either A - PB 
or A - P, where A, B E VN and P E VT’. 
This type of grammar is called regular 
grammar. 

A language is said to be of type i if it is generated 
by a type i grammar. The classes of each type lan- 
guages are related by the inclusions as follows: 

regular C context free C context sensitive 

c phrase structure (2) 

2.2. Agent with generative grammar 

2.2.1. Agent 
We define a communicative agent with gener- 

ative grammar as follows: 

All agents have the same sets of non-terminal and 
terminal symbols, and are identified by index i. A 
symbol Ft is a set of rewriting rules peculiar to 

each agent. The rewriting rules are written in the 
form ff - fl as mentioned already. Here, the left- 
hand of any rule, denoted by (Y, is a symbol over 
V,. The type of grammar which an agent can 
have is either a context-free grammar or regular 
grammar. The right-hand of rule, denoted by 8, is 
a finite string of symbols over VN U VP The 
same symbol should not be included in (II and /3 to 
forbid a self loop. In this paper, we use O’s and l’s 
for alphabets so that words become bit strings. 

2.2.2. Communication 
Agents communicate with each other by trying 

to speak and recognize words in terms of their own 
grammar. 

All agents derive words using their own re- 
writing rules. To derive a word leftmost symbols 
equal to left-hand side of a rewriting rule is rewrit- 
ten by a right-hand of the rule. Derivation always 
starts from an initial symbol S. If there are more 
than two fitting rules in an agent’s rule set, the 
agent selects one rule randomly. When no non- 
terminal symbols are left in the derived word, a 
derivation process terminates, and the derived 
word is spoken to all agents. An agent fails to 
speak a word when: (i) the derivation does not ter- 
minate within 60 rewriting steps; or (ii) there is no 
applicable rule in its rule set. The maximum length 
of a word is M here. The words longer than M are 
truncated after the M-th symbol and then are 
spoken to. The possible number of words (N,iJ is 
limited to 2 M + ’ - 2, and a full set of words 
speakable by an agent Gi is denoted by &(Gi). 

For example, an agent who’s rules are S - A, 
A- B and A - 01 can derive only (01). This 
agent always rewrites the initial symbol S to A via 
a rule S - A. Then there are two rules to be 
applied, A - B and A - 01. One rule is selected 
randomly from these two rules. If A - 01 is se- 
lected the word becomes 01, which doesn’t consist 
of any non-terminal symbols and is not rewritten 
any further. Then he speaks the word ‘01’ to all 
agents. On the other hand, if the rule A - B is 
adopted, the derived word is B. Since there is no 
rule to rewrite, this agent fails to speak. 

Agents try to recognize words by applying their 
own rule in the opposite direction. If an agent can 
rewrite a given word back to the symbol S within 
500 rewriting steps, we say that the agent can rec- 
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ognize the word. The language recognized by an 
agent Gi is denoted L&Gi). Note that the inclu- 
sion relationship (i.e. L,,(G,) 2 L,(Gi)) holds, 
because of the truncation and limitation of 
rewriting steps. 

In the above example, the agent can understand 
only a word ‘01’ by writing it back to the symbol 
S as 

01 * A * s. (4) 

It cannot recognize any other words since the 
agent does not have applicable rules as non- 
terminal symbol - terminal symbols except for 
A - 01. 

2.3. Language game and evolutionary dynamics 

We set a language game in a network consisting 
of P agents. Each agent takes turns to speak a 
word and it is given to all the agents. Then every 
agent including the speaker tries to recognize it. 
Each time step consists of R rounds. For each 
round, every agent has an opportunity to speak. 

2.3.1. Score 
Each agent is ranked by three different scores: 

(1) speaking How long and how rare are the 
words an agent speaks. 

(2) recoenizing How long are the words and how 
quickly an agent recognizes them. 

(3) helag m How the long words which 
an agent speaks are recognized. 

A word spoken by the I-th agent to the m-th agent 
at a round c is denoted by the symbol W/~(C). The 
scores for the I-th agent at a round c is computed 
as follows: 

For computing a score of speaking, the score is 
given by, 

for speaking a word w,,,,(c) 

for failing to speak any 
word, 

Where ‘trend’ is defined as the frequenay of the 
word spoken in the last ten time steps. An agent 
gets a higher value of pfP(c) when it speaks longer 
words and/or less frequent words. 
For computing a score of recognizing, the score is 
given by, 

I 

1 wk, (c) 1 for recognizing a word 

s ’ spoken by the k-th agent 

P&V) = 
in s rewriting steps 

- ) wkl (c)l, for not recognizing a 
word spoken by the k-th 
agent 

(6) 

A quick recognition of a long word provides a 
higher value of pk!(c). 
For computing, the score of being recognized, it is 
given by, 

L 

Iw,,,,(c>l if the spoken word is rec- 
’ 

P& (cl = 
_ IL~l 

ognized by the m-th agent 

P ’ 
if the spoken word isn’t 
recognized by the m-th 
agent 

(7) 

Agents recognizing each other makes a value of 
pii high. 

The total score for the I-th agent in a time step 
is an average of a weighted sum of three scores 
over R rounds: 

plot = f 6 (rspPfp(4 + rrec i PLY (c) 
C=l k=l 

+ rbr i pt!f (c)) (8) 
m=l 

where r,,, rrec and rbr are the respective weighting 
coefficients. For example, if rbr is given a positive 
value, those that can be recognized by more agents 
get higher scores. But if the value given is negative, 
being recognized is no more favorable. 

2.3.2. Mutations 
In each time step, new agents are produced. 

They inherit a rule set from their parents with a 
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slight change, The change of rule set is defined by 
the following three processes; 

Adding mutation A new rule is added, which is 
transferred from parents by modifying a randomly 
selected rule. 

Replacing mutation A randomly selected rule is 
replaced with a modified rule. 

Deleting mutation A randomly selected rule is 
deleted. 
The modification ways are the following: 

(1) 

(2) 

(3) 

(4) 

Replacing a symbol of the left-hand of the 
rule with the other non-terminal symbol. 
Replacing a symbol in the right-hand of the 
rule with the other non-terminal or terminal 
symbol. 
Inserting a symbol in the right-hand side of 
the rule. 
Deleting a symbol from the right-hand of the 
rule. 

Adding mutations are applied to agents with the 
rate rngdd, if their scores exceed the average score. 
Replacing and deleting mutations are applied to 
all the agents with the rate of mrep and mdel, 

respectively. The same number of the least scored 
agents as new agents is removed from a network so 
that the total number of agents is kept constant. 

3. Results of simulation 

In this paper, a network consists of ten agents 
(P = 10) and each agent tries to speak ten times in 
each time step (R = 10). The score of the language 
game is computed under the fixed parameters: 
rs,, = 3.0, r, = 1.0 and rbr = -2.0. Note that 
agents which can speak less acceptable words are 
benefited for a negative value of &. It is expected 
that a variety of the words spoken in a population 
will increase. All the mutation rates are set at equal 
value 0.04 (m&t = rnmp = mdc] = 0.04). The maxi- 
mum length of a word is limited to 6 (M = 6), 
therefore the number of possible words N,it is 126. 

Initially, all agents are assumed to have the 
simplest grammar, i.e. a single rule with one sym- 
bol on both sides. They are classified as type 3 
grammars due to Chomsky’s classification. At 

least, either a rule S - 0 or a rule S - 1 should 
be included in order to derive a word. 

3.1. Algorithmic evolution 

We find that evolution of grammar system is ac- 
celerated by two characteristic factors. One is a 
module-type evolution and the other one is a loop 
forming evolution. Computational ability of 
agents is measured by the ratio of recognizable 
words to the total number of possible words, i.e. 

computational ability = WrdGN 
&II 

(9) 

where N(L.,&GJ) is the number of words which 
can be recognized by the agent Gi. Fig. 1 
represents the example of evolution of the com- 
putational ability from the initial network. The 
computational ability, as well as the number of the 
distinct words spoken in the network which we call 
a variety of words, evolves in the course of time. 

A tree that displays the derivation path of a 
given word is called a derivation tree of the word. 
We put all possible derivation trees of a grammar 
system in a directed, connected graph. A structure 

0.5 

0.4 

1 

u 
z 5 0.3 

9 
0.2 

0.1 

n 
“0 100 200 300 400 500 600 

time step 

Fig. 1. Time step vs. N(L,(Gi))/NdP Each line connects one 
agent to oneself or its off-springs. It branches off by the muta- 
tions. A line terminates when the corresponding agent is 
removed. These lines show upward trend. In initial 200 time 
step, computational ability gradually increases. After that, 
transitions to higher computational agent are frequently 
observed. 
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of the graph expresses the algorithm of the gram- 
mar. Algorithmic evolution can be seen in the 
topological changes of this graph. 

3.1.1. Evolution during the early stage 
It is shown in Fig. 1 that computational abilities 

of agents slowly evolve during initial 200 time 
steps. In Figs. 2(a)-(c) the corresponding gram- 
mar systems are depicted in graph diagrams. The 
initial agent has the weakest ability, having a 
direct derivation rule S - 0 (Fig. 2(a)). The agent 
can increase the ability by the process of the ad- 
ding mutation. Adding the rule S - 1 to the initial 
graph generates a branch structure (Fig. 2(b)). 
Further, the multi-branch structures will evolve 
(Fig. 2(c)). 

(a) 

% 
(d) A 

00 1OOA OOA OlOAOOAl 
Ill 1 
01 00101010011 

(b) 

x 

01 
A+00 

(e) 

Cc) 

terminal symbols 

Fig. 2. The examples of grammar structure are shown by graph 
diagrams: (a) a sequential structure; (b) a branch structure; and 
(c) a multi branch structure. In (d) an example of module-type 
evolution is shown. Acquiring a rule A - 00, a grammar 
without bifurcation (upper tree) is evolved into one with bifur- 
cated branches (lower tree). An example of grammar having a 
loop structure is schematized in (e). Asterisk stands for any 
symbols. With this grammar, a new agent can rewrite words 
*A* into *P and vice versa. Words derived from such gram- 
mar cannot be represented in a tree form. 

3.1.2. Module-type evolution 
We find in Fig. 1 that an agent with remarkably 

high ability (> 0.1) appears at time step 192. The 
change of grammar at this time step is sketched in 
Fig. 2(d). An acquired rule A - 00 can double the 
size of acceptable words. Every intermediate word 
containing a symbol A can be rewritten by the rule 
A - 00. In the sense that one common rule is used 
by many different words to make new words, we 
call the key rule a module rule. Evolutionary 
processes driven by the emergent module rule are 
called module-type evolutions. 

3.1.3. Emergence of loop structure 
Grammar systems can evolve by an alternative 

evolutionary process, that is, loop structures are 
formed in a grammar system. Fig. 1 shows that a 
new agent with more powerful grammar appears 
in the population around time step 310. The new 
agent has a loop structure in its grammar system 
(see Fig. 2(e)). A loop structure can derive a poten- 
tially infinite number of words recursively. A 
grammar with a loop structure is categorixed as a 
type 2 grammar or higher in Chomsky’s hierarchy. 

3.2. Ensemble with a common set of words 

An upper structure, to be called an ensemble 
with a common set of words (ECW), emerges in 
the population of agents. An ECW consists of 
agents which can speak and recognize a common 
set of words. The other agents which can’t speak 
or recognize the common set of words are less 
benefited than those belonging to the ECW. 

When there exists an ECW, even an agent of a 
high ability in a population will die out. For exam- 
ple, if a new agent evolved by a module-type evolu- 
tion dies out at time steps 192 and 310 in Fig. 1. 
Agents will be removed from the network never- 
theless they have a power grammar. 

At time step 403 an agent with the highest com- 
putational ability in the population dies out (see 
Fig. 1). Agents taking too much rewriting steps to 
recognize very frequent words are likely to de- 
crease their fitness. We indicate this fact by Table 
1. The rewriting steps needed to recognize the well 
spoken words are shown in this table. 

Agents which cannot recognize frequent words 
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Table 1 
This table shows rewriting steps to recognize some words (the left most column) spoken at time steep 400 

Word Trend 306 302 301 276 305 301 299 294 290 284 

001001 30 I21 185 121 145 133 121 
011001 20 157 423 166 214 190 157 

11108 16 52 245 46 58 52 52 
II 14 1 12 7 7 

110 12 13 32 14 14 
00110 26 53 57 62 48 43 54 49 53 

110010 11 174 147 121 202 160 147 
00 69 3 3 3 3 3 3 3 3 3 
10 57 7 5 7 5 5 5 5 5 

011010 24 431 210 164 431 120 180 166 251 209 164 
001010 31 233 134 124 236 106 106 116 161 141 124 

1110 24 12S 45 27 122 60 60 24 29 21 27 
01110 9 122 91 69 192 55 76 66 83 75 69 
00101 25 91 65 58 91 52 49 57 66 63 58 

111 30 53 21 13 52 24 24 13 13 13 13 
oool 78 m 19 20 21 16 18 18 18 17 

001011 14 401 404 
010101 10 198 193 

Simulation parameters are rsP = 3.0, rnc = 1.0 and rb, = -2.0. In the second column, the trend of each word (frequency of words 
in the last ten time steps) is written. Numerals in the first row are ID of each agent at time step 400 in order that the earlier an agent 
is removed the more. to the left it is located. If the agent can’t recognize the word, no numerals are indicated. Bold numerals represent 
the first two longest steps to recognise the leftmost word. 

in the population will be removed in order. An 
agent G, (agent with ID 306), which has the sec- 
ond highest ability in the population, is removed 
first at time step 400. An agent G3s2 which cannot 
recognize a word ‘10’ is the next agent to be 
removed. At the next time an agent G3s7 which 
cannot recognize a word ‘0001’ is removed. An 
agent G2,e which has the highest computational 
ability in the population is removed at time step 
403, as it cannot recognize the word ‘00’. To stay 
in the ensemble, where a word ‘00’ is the most 
commonly spoken, each agent should speak and 
recognize the word quickly. An ability to speak 
many words quickly should be balanced with an 
ability to speak many but long words. 

Numbers in bold font in Table 1 represent the 
first two larger rewriting steps to understand the 
words in the leftmost column. It is clear from this 
table that it takes much more time for agents GYM 
and GzT6 to recognize several words. To take more 
rewriting steps to recognize commonly spoken 
words of the majority is disadvantageous for the 

Fig. 3. This picture represents the phylogeny of agents at time 
step 400 (in oval boxes) from a common ancestor (G,,d. A 
number represents ID of each agent. A line is drawn from par- 
ent agent (lower) to its offsprings (upper). Two genetic series 
are bifurcated from the common root (G&, the agents Gjw 
and G2r6 and that of the other agents. They are forming dif- 
ferent ECW. The agent Gm and G2r6 are both contained in the 
left series. 
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agents GJ~ and GUTS. If a group containing agents 
Gm and G276 constituted the majority, the words 
as ‘001011’ or ‘010101’ would be the commonly 
spoken words. In such cases, agents GsM and GZT6 
will take advantage. 

Fig. 3 shows the phylogeny of agents existing at 
time step 400. It shows that the group consists of 
the agents GZTa and GM and that of the other 
agents form the different lines. They form two dif- 
ferent ECWs. The agents in the major ECW have 
lower computational ability than those in the 
minor ECW consisting of GZT6 and GSM. Two 
ECWs conflict to survive in the network. Those in 
the major ECW behave cooperatively as a result of 
speaking and recognizing a common set of words 
and getting higher scores. Lastly, all agents in the 
minor ECW are removed from the network. In this 
way, the evolution toward high computational ab- 
ility is suppressed by establishing ECWs. 

After removing agents GsM and GzT6 from a net- 
work, agents come to compete with each other 
within the same ECW. Proportional to the number 
of rewriting steps to recognize the commonly 
spoken words, the agents are removed from the 
network. In the ECW, a new agent with the high 
computational ability will then emerge through 
algorithmic evolution. 

S - A, A - SS, S - 0, S - 1 (10) 

This grammar is categorized as a type 2 grammar. 
It recognizes and speaks all the words very quick- 
ly. However, it tends to speak a low variety of 
words because of random adoption from plural lit- 
ting rules. A minimal almighty agent cannot in- 
vade into the system composed of ECW because 
almighty tends to speak a lower variety of words. 
In the case of rrcc = 1.0, rS,, = rbr = 0.0, an 
almighty agent can evolve since a low variety of 
speaking words has no disadvantage for its fitness. 

3.4. Punctuated equilibrium 

We have seen that our system shows rapid 
algorithmic evolution in the grammar systems in 
certain stages. Since algorithmic evolution is sup- 
pressed by forming ECW, rapid algorithmic evolu- 
tion follows the quasi-equilibrium stages. 
Temporal evolution of amounts of handling infor- 
mation therefore shows punctuated equlibrium 
phenomena (Fig. 4). Handling information defin- 
ed below is sensitive to the formation of ECW. 

The handling information of the I-th agent is 
defined as follows, 

ifx=O 
I@ (x)1 = the length of K+,{x) 

\ 

if x > 0 and the word which spoken by the i-th agent (12) 
is recognized by the j-th agent 

0 otherwise 

3.3. Minimal almighty 

We can make a minimal almighty agent. It is an 
agent which can speak and recognize all possible 
words with the least number of rules. For example, 
a minimal almighty agent has rules such as: 

Information contents of a word is simply given by 
the length of a word. The initial amount of handl- 
ing information, i.e. Iwo(O) I, is defined as 1. 

If an agent gets a high value of fr, which sug- 
gests that the agent can recognize words spoken by 
others and its speaking words are recognized by 
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Fig. 4. Time step vs. the average handling information (see the 
definition in the text): In the first 700 time steps, stepwise evolu- 
tion can be observed. The stepwise changes reflect alternate 
evolution of ECW and the algorithmic evolution. 

other agents. When some ECWs conflict with the 
other ECWs, the averaged handling information in 
a population, 

pP 
(fr)= cp 

p=I 

does not increase. After some ECWs occupy the 
whole network, long and new words will be 
spoken and recognized again by agents. Punc- 
tuated equilibrium phenomena in the amount of 
(f,> is explained by the scenario. 

4. Score of being recognizea 

We have three parameters in the definition of 
total score (see e.g. Eq. (8)). Here, we will see the 
effect of the parameter rbr. If it is given a positive 
value, the tendency to recognize each other will be 
encouraged. But if it is given a negative value the 
opposite tendency begins to spread. We display 
how it depends on the parameter rb,. If rb, iS 

larger than 4.0, both the variety of words spoken 
and the average handling information are sup 
pressed. Agents get higher scores by speaking and 
recognizing the same words and short words. If 
rbr becomes less than 3.0, the average handling in- 
formation will go down (Fig. 5(b)) since it reflects 
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‘br 
Fig. 5. (a) variety of words and (b) the average handling infor- 
mation vs. rbr, coefficient of score of being recognixed, at 
several time steps. The other parameter values are rSP = 3.0 and 
rref = 1.0. The number attached to each line represents time 
step. (a) In the lower range of the parameter (rbr s -3.0) vari- 
ety of words shows middle level, midway in the parameter 
(-3.0 S r, s 2.0) it has a high variety, and in the higher 
range it shows a low level. (b) For each range (fr) shows low, 
high and quite low levels, respectively. 

the degree of being recognized. Variety, on the 
other hand, is kept middle level in the range rbr < 
-3.0 (Fig. 5(a)). In such range, agents make higher 
scores by speaking less frequent and less 
recognizable words. It maintains variety of words 
in the middle level even when rb, is less than -3.0. 
In earlier stages (time step C MO), simulation 
with rbr = -2.0 has shown quick evolution. How- 
ever, it is saturated at Q,~ = 0.0 and below (time 
step z 1500). We conclude that a slight negative 
value of rbr accelerates the evolution at the highest 
speed. 
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5. Some implidons of ECW 

5.1. Connection with natural language 

We consider two significant evolutionary pro- 
cesses in natural language. 

In language, there is a process called affixation, 
whereby a group of letters is added to a word to 
produce another word. Affixes added to the heads 
of words are called prefixes. Un-, mis-, pre- are ex- 
amples in English. Affixes added to the ends of 
words are called suffixes, -ful, -less, -ish are such 
examples. The module-type evolution we have 
found in our simulation can be related with word 
formation processes involving affixes. The module 
rules are used to produce new words by attaching 
themselves to other words. That is, they behave as 
affixes. 

The other kind of process produces nested sen- 
tences. Complex sentences, phrases within phrases, 
and clauses within clauses are such examples. For 
example, ‘A man with a colorful umbrella who is 
walking over there will be a candidate of the politi- 
cal party which suffered a setback.’ This sentence 
can be decomposed into four independent simple 
sentences without any nesting: ‘A man has a color- 
ful umbrella. He is walking over there. He will be 
a candidate of a political party. The party suffered 
a setback.’ This nested structure is a very impor- 
tant feature of natural language which has to deal 
with situations in finite time steps. If natural lan- 
guage were only required to serve as a mere signal- 
ing tool, complex syntactic structures might not 
have evolved. In order for nested sentences to be 
produced, a complex grammar is likely to appear. 

ECW (ensemble with a common set of words) is 
characterized by a shared set of words. Individual 
grammars comprising an ECW are restricted to 
deriving words freely. In order to speak and recog- 
nize sharing words quickly, it is advantageous to 
have their words as single rules (i.e. S - words), 
and to combine several rules of non-terminal sym- 
bols on their right hand sides (e.g. A - OBS) to 
speak/recognize other words. This can be regarded 
as double articulation in natural language. Be- 
cause a sentence consists of words and a word con- 
sists of symbols, we can have infinite sentences 
with finite symbols. Double articulation con- 

stitutes one of the most important features of natu- 
ral language. Such structure is good for recog- 
nizing frequently spoken words quickly and speak- 
ing many longer words. When we only ‘concern a 
recognizing score in a language game, almighty 
agents appear and a variety of words is! suppress- 
ed, since such a structure as double articulation is 
not likely to develop. 

5.2. Net-grammar - an emergent upper structure 

In biological systems ranging from ants’ society 
to human society, social laws and norms develop. 
The essential problem is how such ordered upper 
structures evolve from local interactions (Kauff- 
man, 1987; Taylor, 1991). It is suggested that 
homeochaos or the edge of chaos is formed to es- 
tablish cooperation (Kaneko and Ikegami, 1992; 
Yoshikawa and Ikegami, 1996, unpublished 
data). In the iterated prisoner’s dilemma, game, the 
Tit For Tat strategy is formed in cooperative 
societies (Axelrod, 1984). Once such a social struc- 
ture appears, it in turn restricts local dynamics. A 
recursive loop between global structures and local 
structures continues endlessly3. This is stressed as 
evidence of ‘emergence’, which is one of the central 
concerns in artificial life studies (Taylor, 1991; 
Kawata and Toquenaga, 1994). 

We here propose ‘children’s play’ as an example 
of such emergent phenomena. Children sometimes 
change rules of a game while playing it. The rules 
dictate how the player is to behave and new rules 
emerge from children’s play. Children’s play often 
looks like a language game; trendy words con- 
tinuously come and go. In general linguistic com- 
munities, social dialects are frequently observed 
(Shibata, 1978). Social dialects are language varia- 
tions used in different groups based on various so- 
cial variables, such as social classes, education 
levels, occupations and age groups. Peculiar us- 
ages emerge from conversations in a small group. 
Once established, they constrain the variety of 
words. It is said that group words such as social 
dialects are likely to emerge when a group consists 
of about eight members (Shibata, 1978). 

3 Taylor described such a recursive relationship as ‘LOCAL 
to GLOBAL back to LOCAL, inter-level feedback loops’ 
(Taylor, 1991). 
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Within our language game, an ECW produces 
dialects, irrespective of individual grammars. We 
will use the term net-grammar to refer to the way 
an ECW produces dialects and restricts the poten- 
tial computational ability of individual grammars. 

Our language game favors agents that: (i) speak 
long and infrequent words; (ii) recognize long 
words quickly; and (iii) speak words which are not 
recognized by other agents. Therefore, players try 
to encipher their expressions. As a result, diversity 
of words and complexity of grammar get enhanc- 
ed. Such a tendency of players is valid through the 
whole situation, a tendency to speak/recognize a 
common set of words emerges in an ECW, which 
we call a net-grammar. The attempts by agents to 
speak the same words is tantamount to their trying 
to communicate with each other. This is what we 
believe to be one of the main purposes of language. 
Conflicts between encryption and establishing lan- 
guage result in punctuated equilibria. 

5.3. Communication at the edge of chaos 

Agents in our game are in a dilemma. They try 
to speak words which others cannot recognize, but 
at the same time, to recognize what others say 
based on the same grammar. This dilemma some- 
how resembles imitation games of the kind pro- 
posed by Suzuki and Kaneko (Suzuki and 
Kaneko, 1994; Kaneko and Suzuki, 1994). It is a 
simple model for mutually mimicking birds. In 
their papers, a bird with a complex song is stronger 
when it comes to defending its territory, since com- 
plex songs are difficult for other birds to imitate. 
But at the same time, a bird imitates other birds’ 
songs by the same mechanism. A song is a time 
series generated by a logistic map. Evolution of a 
bird’s song is achieved by mutating the parameter 
of logistic map. They observe evolution of a song 
towards the edge between the periodic window 
and chaos, that is, birds singing songs of marginal 
stability seem stronger. 

Crutchtield shows that the complexity of auto- 
mata which accept the time series of dynamical 
mappings is the highest at the onset of chaos 
(Crutchfield and Karl, 1990; Crutchfield, 1994). In 
his model, input to automata is a quantized time 
series of maps. By replacing this input by output 

of other automata, there may be a similarity to our 
model. An ensemble of Crutchfield’s automata 
may give rise to complexity through a language 
game. 

The above works treat communication and lan- 
guage as encryption processes. However, processes 
of constituting smooth communication should be 
treated as something that runs counter to encryp- 
tion. We establish language because we want to 
communicate. Encryption comes afterwards. On 
the other hand, the best mutual cooperation is at- 
tained at the edge of chaos (Yoshikawa and 
Ikegami, 1996, unpublished data). We do not 
know whether the edge of chaos still works in a 
mixed situation such as our language game. 

5.4. Punctuated equilibrium 

Algorithmic evolution and restriction by an 
ECW causes punctuated equilibria even in lan- 
guage systems. It is brought about by two factors: 
modification of grammars and network structures. 

Punctuated equilibrium in genetic systems is 
produced by genetic fusion operators, which com- 
bine genes with module genes (Ikegami and 
Kaneko, 1990). (Note that the module rules which 
we define in the present paper are different from 
the module species used by Ikegami and Kaneko 
(1990). The module species are frequently utilized 
as fusion partners by many other species but the 
module rules are used to speak or recognize many 
words within a single agent.) By crossover oper- 
ators, different schemata can evolve in parallel, 
being combined into a better fitness (Holland, 
1992). Consequently, intermittent patterns will ap- 
pear if crossover is introduced as a genetic 
operator. There are no module agents or parallel 
evolutions, as we do not incorporate such 
operators as fusion or crossover that combine 
one’s grammar with that of others. But rules in a 
grammar have epistasis, that is, they interact with 
each other to produce words. Consequently a 
slight modification of a rule may cause large 
changes in the ability to speak and recognize 
words and accordingly algorithmic evolution can 
occur. 

If agents give randomly generated words, the va- 
riety of words produced according to grammars 
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exhibit no punctuated equilibrium. Instead it 
almost linearly increases, because agents cannot 
form an ensemble structure. 

6. Coneluslon 

We have studied the evolution of symbolic 
grammars, by introducing a network model of 
communicating agents. Bach agent has its own 
grammar system, being expressed as a set of 
rewriting rules. Via a rule set, each agent speaks 
words to the other agents and tries to recognize 
words spoken by the other agents. When muta- 
tional dynamics of rules is introduced, the gram- 
mars of the agents change in the course of time. 
Generally, an agent can speak and recognize more 
words if it has more rules. Hence, grammars with 
more rules are more hereditable. However, the 
number of recognizable words is not a simple func- 
tion of the number of rules. 

In the present paper, we have shown two types 
of evolutionary dynamics. One is a module-type 
evolution. What it means for a rule to be a module 
is that it can be utilized by other rules in a gram- 
mar to generate nearly twice as many words as 
before. The number of recognizable words rapidly 
increases when this module emerges in a grammar. 
The other type is a loop forming evolution. A 
grammar equipped with a loop structure can 
derive recursively many words. A grammar with a 
loop structure cannot be represented in a tree 
shape. That is, the grammar system climbs up 
Chomsky’s hierarchy from type 3 to type 2 by ac- 
quiring loops. Hence we call such a loop forming 
evolution an algorithmic evolution. We have 
found that no other process other than a loop for- 
mation brings about an algorithmic evolution. 

It is generally believed that a grammar system 
higher in the hierarchy will perform better. Hence, 
it may be argued that agents belonging to the 
highest rank in the hierarchy will emerge sooner or 
later. This argument will be valid if grammars 
without ensemble structures can evolve. But this is 
not necessarily so when agents form a communica- 
tion network. Synergetic behavior of agents gener- 
ates a macrostructure named ECW (ensemble with 
a common set of words). Within this ensemble, the 
common words which characterize the ECW 

should be spoken and recognized in order for an 
agent to stay in the ECW. This becomes a restric- 
tive condition for individual grammars. Any agent 
that survives in the ensemble must evolve their 
grammars subject to this restriction. 

An ECW disturbs a smooth evolution to the 
higher ability grammar systems. Therefore, an 
almighty agent, i.e. a grammar system #which can 
speak and recognize all possible words, is difficult 
to evolve. The emergent restriction on each gram- 
mar can be called a net-grammar. If we define a 
meta-grammar that places restrictions on a gram- 
mar, this ensemble structure can be a source of 
such a me&grammar. 

We assumed that there are grammars and lan- 
guage games beforehand. But grammars may not 
actually exist in our brain. Nor do we know why 
we play a language game. Starting with such an 
assumption, we have succeeded in showing the in- 
teresting structure and dynamics conducive to 
understanding an actual language system. Next, 
we will study the emergence of language games. 
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