SMT for polynomial constraints over Real numbers

To Van Khanh July 2012

Japan Advanced Institute of Science and Technology

SMT for polynomial constraints over Real numbers

1/30

Aim Combination of SAT solver and two theories

- Interval Arithmetic: aiming to decide unsatisfiability
- Testing: aiming to decide satisfiability

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ●

Aim Combination of SAT solver and two theories

- Interval Arithmetic: aiming to decide unsatisfiability
- Testing: aiming to decide satisfiability

CONTENT

- Introduction
- Interval arithmetic and Testing

CAI1 and CAI2

- Framework of SMT solver
- Preliminary experiments

QF_NRA of SMT-LIB

Aim Combination of SAT solver and two theories

- Interval Arithmetic: aiming to decide unsatisfiability
- Testing: aiming to decide satisfiability

CONTENT

Introduction

Interval arithmetic and Testing CAl1 and CAl2
 Framework of SMT solver
 Preliminary experiments QF_NRA of SMT-LIB

Introduction

• Presburger arithmetic is decidable.

linear constraints

- Tarski proved that polynomial constraints over real numbers is decidable.
- Collins proposed Cylindrical Algebraic Decomposition (CAD).

DEXPTIME, 1975

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Introduction

- Presburger arithmetic is decidable.
- Tarski proved that polynomial constraints over real numbers is decidable.
- Collins proposed Cylindrical Algebraic Decomposition (CAD).

DEXPTIME, 1975

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

Related works Not many SMT for polynomial constraints

- iSAT applies classical interval arithmetic.
- MiniSmt performs on rational (possibly irrational) domains.
- Barcelogic focuses on integer numbers.
- CVC3 is also a popular SMT.

Introduction

- Presburger arithmetic is decidable.
- Tarski proved that polynomial constraints over real numbers is decidable. 1
- Collins proposed Cylindrical Algebraic Decomposition (CAD).

DEXPTIME, 1975

Related works Not many SMT for polynomial constraints

- iSAT applies classical interval arithmetic.
- MiniSmt performs on rational (possibly irrational) domains.
- Barcelogic focuses on integer numbers.
- CVC3 is also a popular SMT.

Applications

- checking roundoff/overflow error
- measures for proving termination

Aim Combination of SAT solver and two theories

- Interval Arithmetic: aiming to decide unsatisfiability
- Testing: aiming to decide satisfiability

CONTENT

- Introduction
- Interval arithmetic and Testing
- Framework of SMT solver
- Preliminary experiments

CAI1 and CAI2

QF_NRA of SMT-LIB

Why IA?

• Example 1

$$x = [0, 2]$$
 and $y = [-1, 3]$
(check-sat $(x^2 - 2x^2y + y > 16)$)

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

Why IA?

• Example 1

$$x = [0, 2]$$
 and $y = [-1, 3]$
(check-sat $(x^2 - 2x^2y + y > 16)$)

$$x^2 - 2x^2y + y =$$
 [-17.25, 15.5]
(unsatisfiable)

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

Why IA?

• Example 1

$$x = [0, 2]$$
 and $y = [-1, 3]$
(check-sat $(x^2 - 2x^2y + y > 16)$)

$$x^2 - 2x^2y + y =$$
 [-17.25, 15.5]
(unsatisfiable)

• Example 2 x = [-2, 2] and y = [-1, 3](check-sat $(2xy - 2x^3y + x > -2)$)

SMT for polynomial constraints over Real numbers

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Why IA?

• Example 1

$$x = [0, 2]$$
 and $y = [-1, 3]$
(check-sat $(x^2 - 2x^2y + y > 16)$)

$$x^2 - 2x^2y + y =$$
 [-17.25, 15.5] (unsatisfiable)

• Example 2

$$x = [-2, 2]$$
 and $y = [-1, 3]$
(check-sat $(2xy - 2x^3y + x > -2)$)
With $x = [0, 1]$ and $y = [0, 1]$
 $2xy - 2x^3y + x = [-1.9375, 3.03125]$

Why IA?

Classical Interval and Affine Interval

Classical Interval - CI

Let x = [0, 2], x - x = [0, 2] - [0, 2] = [-2, 2].

SMT for polynomial constraints over Real numbers

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Classical Interval and Affine Interval

Classical Interval - CI

Let x = [0, 2], x - x = [0, 2] - [0, 2] = [-2, 2].

Affine Interval

- Introducing noise symbols ϵ which is interpreted as a value in [-1, 1].
- Noise symbols are used for symbolic manipulation (to get better precision of substraction).

 $x = [0, 2] = 1 + \epsilon$ then $x - x = (1 + \epsilon) - (1 + \epsilon) = 0$.

• The problem is how to treat multiplication like ϵ^2 , $\epsilon\epsilon'$

Affine Interval

Ideas Choices for multiplication are:

- $\epsilon\epsilon'$ is replaced by a fresh noise symbol (AF) Stolfi, 93
- $\epsilon\epsilon'$ is pushed into the fixed noise symbol ϵ_{\pm} (AF1, AF2) Messine, 02
- ϵ^2 is replaced by ϵ_+ ($-\epsilon^2$ by ϵ_-) (AF2) Messine, 02
- $\epsilon \epsilon'$ is replaced with $[-1,1]\epsilon$ or $[-1,1]\epsilon'$ (EAI) Ngoc, 09

Affine Interval

Ideas Choices for multiplication are:

- $\epsilon\epsilon'$ is replaced by a fresh noise symbol (AF) Stolfi, 93
- $\epsilon\epsilon'$ is pushed into the fixed noise symbol ϵ_{\pm} (AF1, AF2) Messine, 02
- ϵ^2 is replaced by ϵ_+ ($-\epsilon^2$ by ϵ_-) (AF2) Messine, 02
- $\epsilon \epsilon'$ is replaced with $[-1,1]\epsilon$ or $[-1,1]\epsilon'$ (EAI) Ngoc, 09

Example 3

$$x = [0, 2]$$
 and $y = 2 - x$. Compute $x * y$?
 $x = 1 + \epsilon$, $y = 2 - x = 1 - \epsilon$ where ϵ is interpreted as a value in $[-1, 1]$.
• AF: $x * y = 1 - \epsilon^2 = 1 + \epsilon'$, ϵ' is interpreted as a value in $[-1, 1]$.
• AF1: $x * y = 1 - \epsilon^2 = 1 + \epsilon_{\pm}$, ϵ_{\pm} is interpreted as a value in $[-1, 1]$.
• AF2: $x * y = 1 - \epsilon^2 = 1 + \epsilon_{-}$, ϵ_{-} is interpreted as a value in $[-1, 0]$
• EAI: $x * y = 1 - \epsilon^2 = 1 + [-1, 1]\epsilon$

Chebyshev Approximation Interval - CAI1, CAI2

• Symbolic manipulation:

CAI1, CAI2

 $\epsilon\times\epsilon=|\epsilon|\times|\epsilon|=|\epsilon|+[-\tfrac{1}{4},0] \text{ and } \epsilon\times|\epsilon|=\epsilon+[-\tfrac{1}{4},\tfrac{1}{4}]$

- Keeping products $\epsilon_i \epsilon_j$ of noise symbols in their forms
- Example 3: x = [0, 2] and y = 2 x. Compute x * y?

 $x = 1 + \epsilon, \ y = 2 - x = 1 - \epsilon.$

 $x * y = (1 + \epsilon)(1 - \epsilon) = 1 - \epsilon^2 = 1 - (|\epsilon| + [-\frac{1}{4}, 0]) = [1, \frac{5}{4}] - |\epsilon|.$

Example

Example 4 Given $f = x^3y - 2xy + x^2y^2 - x^2$ with $x \in [-1, 1]$ and $y \in [-2, 0]$, the bounds of f are as follows:

- AF1 : [-15, 15]
- AF2 : [-15, 14]
- CAI1: [-13.75, 12]
- CAI2: [-12, 10.25]

Example

Example 4 Given $f = x^3y - 2xy + x^2y^2 - x^2$ with $x \in [-1, 1]$ and $y \in [-2, 0]$, the bounds of f are as follows:

- AF1 : [-15, 15]
- AF2 : [-15, 14]
- CAI1: [-13.75, 12]
- CAI2: [-12, 10.25]

Example 5 Taylor expansion of $sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!}$ with $x \in [0, 0.523598]$ (x from 0 to $\frac{\pi}{6}$), the bounds of sin(x) are:

- AF1: 10⁻⁶[-6290.49099241, 523927.832027]
- AF2 : 10⁻⁶[-6188.00580507, 514955.797111]
- CAI1: 10⁻⁶[-1591.61467700, 503782.471931]
- CAI2: 10⁻⁶[-1591.61467700, 503782.471931]

Comparision

 $\label{eq:Dependent operands} \begin{array}{|c|c|c|c|c|} \hline \mbox{Dependent operands} \end{array} \mbox{Affine interval may give better results than CI.} $$x = [0,2]$ and $y = 2 - x$. Compute $x * y$? $$x = 1 + ϵ and $y = 2 - x = 1 - ϵ where $$\epsilon \in [-1,1]$ $$ CI $$:$x * $y = [0,2] * ([2,2] - [0,2]) = [0,2] * [0,2] = [0,4]$ $$ $$ AF $$:$x * $y = 1 - ϵ^2 = 1 + ϵ' = 1 + [-1,1] = [0,2]$ $$ $$ $$ AF2 :$x * $y = 1 - ϵ^2 = 1 + ϵ_- = 1 + [-1,0] = [0,1]$ $$ \end{tabular}$

Comparision

 $\begin{array}{l} \hline \textbf{Dependent operands} \\ \hline \textbf{Dependent operands} \\ \hline \textbf{Affine interval may give better results than Cl.} \\ \hline x = [0,2] \text{ and } y = 2-x. \\ \hline \textbf{Compute } x * y? \\ \hline x = 1+\epsilon \text{ and } y = 2-x = 1-\epsilon \text{ where } \epsilon \in [-1,1] \\ \hline \bullet CI \quad :x * y = [0,2] * ([2,2]-[0,2]) = [0,2] * [0,2] = [0,4] \\ \hline \bullet AF \quad :x * y = 1-\epsilon^2 = 1+\epsilon' = 1+[-1,1] = [0,2] \\ \hline \bullet AF2 :x * y = 1-\epsilon^2 = 1+\epsilon_- = 1+[-1,0] = [0,1] \end{array}$

Independent operands CI often gives better results than affine interval.

- $x \in [0,2]$ and $y \in [-1,5]$. Compute x * y?
 - CI : x * y = [0, 2] * [-1, 5] = [-2, 10]
 - AF: x = 1 − ε₁ and y = 2 + 3ε₂ where ε₁, ε₂, ε' are noise symbols and they are interpreted as values in [−1, 1].
 x * y = (1 − ε₁)(2 + 3ε₂) = 2 − 2ε₁ + 3ε₂ + 3ε' = [−6, 10]

Aim Combination of SAT solver and two theories

- Interval Arithmetic: aiming to decide unsatisfiability
- Testing: aiming to decide satisfiability

CONTENT

- Introduction
- Interval arithmetic and Testing
- Framework of SMT solver
- Preliminary experiments

QF_NRA of SMT-LIB

Testing

Testing

- k-random ticks
- k-periodic ticks
- Sensitive variables, which has large coefficient, are considered for generating more test cases.

э

Aim Combination of SAT solver and two theories

- Interval Arithmetic: aiming to decide unsatisfiability
- Testing: aiming to decide satisfiability

CONTENT

- Introduction
- Interval arithmetic and Testing

CAI1 and CAI2

- Framework of SMT solver
- Preliminary experiments

QF_NRA of SMT-LIB

Polynomial Constraints

DEFINITION

A polynomial inequality constraint is in the form of

$$(\exists x_1 \in [l_1, h_1] \cdots x_n \in [l_n, h_n]. \bigwedge_j^m f_j(x_1, \cdots, x_n) > 0)$$

where $l_i, h_i \in \mathbb{R}$ and $f_j(x_1, \cdots, x_n)$ is a polynomial over variables x_1, \cdots, x_n .

SMT for polynomial constraints over Real numbers

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Framework of SMT solver: refinement loop

Framework of SMT solver: refinement loop

Initial interval decomposition

$$\begin{array}{l} x_1 \in [a_0, a_1] \lor x_1 \in \\ [a_2, a_3] \\ \lor \ldots \lor x_1 \in [a_{n-1}, a_n] \\ x_2 \in [b_0, b_1] \lor x_2 \in [b_2, b_3] \\ \lor \ldots \lor x_2 \in [b_{m-1}, b_m] \end{array}$$

Framework of SMT solver: refinement loop

Problem P1

 $\begin{array}{l} (x \in [-1,0]) \lor (x \in [0,1]) \lor (x \in [1,2]) \lor (x \in [2,3]) \lor (x \in [3,4]) \\ (y \in [-1,0]) \lor (y \in [0,1]) \lor (y \in [1,2]) \lor (y \in [2,3]) \lor (y \in [3,4]) \\ (assert \ (f = 4x + 3y - xy > 12)) \end{array}$

Problem P1

 $\begin{array}{l} (x \in [-1,0]) \lor (x \in [0,1]) \lor (x \in [1,2]) \lor (x \in [2,3]) \lor (x \in [3,4]) \\ (y \in [-1,0]) \lor (y \in [0,1]) \lor (y \in [1,2]) \lor (y \in [2,3]) \lor (y \in [3,4]) \\ (assert \ (f = 4x + 3y - xy > 12)) \end{array}$

Unsat areas (red) are marked by IA.

Problem P1

 $\begin{array}{l} (x \in [-1,0]) \lor (x \in [0,1]) \lor (x \in [1,2]) \lor (x \in [2,3]) \lor (x \in [3,4]) \\ (y \in [-1,0]) \lor (y \in [0,1]) \lor (y \in [1,2]) \lor (y \in [2,3]) \lor (y \in [3,4]) \\ (assert \ (f = 4x + 3y - xy > 12)) \end{array}$

Dynamic interval decomposition

Problem P1

 $\begin{array}{l} (x \in [-1,0]) \lor (x \in [0,1]) \lor (x \in [1,2]) \lor (x \in [2,3]) \lor (x \in [3,4]) \\ (y \in [-1,0]) \lor (y \in [0,1]) \lor (y \in [1,2]) \lor (y \in [2,3]) \lor (y \in [3,4]) \\ (assert \ (f = 4x + 3y - xy > 12)) \end{array}$

Dynamic interval decomposition

Problem P1

 $\begin{array}{l} (x \in [-1,0]) \lor (x \in [0,1]) \lor (x \in [1,2]) \lor (x \in [2,3]) \lor (x \in [3,4]) \\ (y \in [-1,0]) \lor (y \in [0,1]) \lor (y \in [1,2]) \lor (y \in [2,3]) \lor (y \in [3,4]) \\ (assert \ (f = 4x + 3y - xy > 12)) \end{array}$

Sat solution by testing: x = 3.33821 and y = 1.31143

Problem P2

 $\begin{aligned} &(x \in [-2,0]) \lor (x \in [0,2]) \\ &(y \in [-1,1]) \lor (y \in [1,3]) \\ &(assert \ (f=x^3-2x^2(1+y^2)-2y(x+y)+y > 6.5)) \end{aligned}$

Problem P2

 $(x \in [-2, -1]) \lor (x \in [-1, 0]) \lor (x \in [0, 2])$ $(y \in [-1, 0]) \lor (y \in [0, 1]) \lor (y \in [1, 3])$ $(assert (f = x^3 - 2x^2(1 + y^2) - 2y(x + y) + y > 6.5))$

SMT for polynomial constraints over Real numbers

Problem P2

 $\begin{aligned} &(x \in [-2, -1]) \lor (x \in [-1, 0]) \lor (x \in [0, 1]) \lor (x \in [1, 2]) \\ &(y \in [-1, 0]) \lor (y \in [0, 1]) \lor (y \in [1, 3]) \\ &(assert \ (f = x^3 - 2x^2(1 + y^2) - 2y(x + y) + y > 6.5)) \end{aligned}$

SMT for polynomial constraints over Real numbers

SMT for polynomial constraints over Real numbers

Aim Combination of SAT solver and two theories

- Interval Arithmetic: aiming to decide unsatisfiability
- Testing: aiming to decide satisfiability

CONTENT

- Introduction
- Interval arithmetic and Testing CAl1 and CAl2
 Framework of SMT solver
 Preliminary experiments QF_NRA of SMT-LIB

Preliminary experiments: QF_NRA of SMT-LIB and problem P

Initial interval decomposition $x \ge 0$

- $[0, 0.5] \lor \ldots \lor [2.0, 2.5]$
- Number of variables
 - AF1, AF2: ≥ 15
 - CAI1: < 15
 - CAI2: <= 10

Testing 2-random ticks

Problem	No. Variables	No. Constraints	Interval Arithmetic	Result	Time (s)
Р	13	10	AF1	unknown	0.031
Р	13	10	AF2	unknown	0.109
Р	13	10	CAI1	UNSAT	0.046
Р	13	10	CAI2	UNSAT	0.796
matrix-1-all-01	19	22	AF2	unknown	0.093
matrix-1-all-2	14	9	CAI1	SAT	8.328
matrix-1-all-3	19	21	AF1	SAT	175.968
matrix-1-all-4	16	20	AF1	SAT	20.328
matrix-1-all-11	19	17	AF1	SAT	17.687
matrix-1-all-14	14	16	CAI1	SAT	66.484
matrix-1-all-15	10	14	CAI1	unknown	26.656
matrix-1-all-18	6	10	CAI2	SAT	14.156
matrix-1-all-20	16	16	AF2	SAT	1.062
matrix-1-all-21	13	17	AF1	SAT	2753.72
matrix-1-all-24	11	12	CAI1	unknown	50.828
matrix-1-all-33	13	6	CAI1	SAT	68.756
matrix-1-all-34	20	14	AF2	SAT	3349.89
matrix-1-all-36	18	19	AF2	SAT	54.015
matrix-1-all-37	19	46	AF2	unknown	3730.66
matrix-1-all-39	19	23	AF2	unknown	85.781
matrix-1-all-43	16	9	AF2	unknown	0.343
matrix-2-all-6	17	10	AF2	unknown	15.75

Experiments: problem P

 $\begin{aligned} \exists x_0, x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10} \in [0,3] \ x_{11} \in [-3,2] \ x_{12} \in [-1,3]. \\ x_1 x_3 - x_1 x_7 > 0 \ \land \ x_1 x_2 - x_1 x_6 > 0 \ \land x_1 x_3 - x_3 > 0 \ \land \\ x_1 x_2 - x_4 > 0 \ \land \ x_7 - x_3 > 0 \ \land \ x_6 - x_2 > 0 \ \land \\ x_8 + x_6 x_9 - x_{10} > 0 \ \land \ x_3 x_9 - x_7 x_9 > 0 \ \land \ x_2 x_9 - x_6 x_9 > 0 \ \land \\ x_{11}^3 - 2x_{11}^2 - 2x_{11}^2 x_{12}^2 - 2x_{12} x_{11} - 2x_{12} x_{12} + x_{12} - 6.5 > 0 \end{aligned}$

Experiments: problem P

 $\begin{aligned} \exists x_0, x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10} \in [0,3] \ x_{11} \in [-3,2] \ x_{12} \in [-1,3]. \\ x_1 x_3 - x_1 x_7 > 0 \ \land \ x_1 x_2 - x_1 x_6 > 0 \ \land x_1 x_3 - x_3 > 0 \ \land \\ x_1 x_2 - x_4 > 0 \ \land \ x_7 - x_3 > 0 \ \land \ x_6 - x_2 > 0 \ \land \\ x_8 + x_6 x_9 - x_{10} > 0 \ \land \ x_3 x_9 - x_7 x_9 > 0 \ \land \ x_2 x_9 - x_6 x_9 > 0 \ \land \\ x_{11}^3 - 2x_{11}^2 - 2x_{11}^2 x_{12}^2 - 2x_{12} x_{11} - 2x_{12} x_{12} + x_{12} - 6.5 > 0 \end{aligned}$

Initial interval decomposition

 $(x_0 \in [0,1]) \lor (x_0 \in [1,2]) \lor (x_0 \in [2,3])$ $(x_1 \in [0,1]) \lor (x_1 \in [1,2]) \lor (x_1 \in [2,3])$

 $(x_{10} \in [0,1]) \lor (x_{10} \in [1,2]) \lor (x_{10} \in [2,3])$ $(x_{11} \in [-1,0]) \lor (x_{11} \in [0,1]) \lor (x_{11} \in [1,2]) \lor (x_{11} \in [2,3])$ $(x_{12} \in [-1,0]) \lor (x_{12} \in [0,1]) \lor (x_{12} \in [1,2]) \lor (x_{12} \in [2,3])$

SMT for polynomial constraints over Real numbers

Experiments: problem P

 $\begin{aligned} \exists x_0, x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10} \in [0,3] \ x_{11} \in [-3,2] \ x_{12} \in [-1,3]. \\ x_1 x_3 - x_1 x_7 > 0 \ \land \ x_1 x_2 - x_1 x_6 > 0 \ \land x_1 x_3 - x_3 > 0 \ \land \\ x_1 x_2 - x_4 > 0 \ \land \ x_7 - x_3 > 0 \ \land \ x_6 - x_2 > 0 \ \land \\ x_8 + x_6 x_9 - x_{10} > 0 \ \land \ x_3 x_9 - x_7 x_9 > 0 \ \land \ x_2 x_9 - x_6 x_9 > 0 \ \land \\ x_{11}^3 - 2x_{11}^2 - 2x_{11}^2 x_{12}^2 - 2x_{12} x_{11} - 2x_{12} x_{12} + x_{12} - 6.5 > 0 \end{aligned}$

Initial interval decomposition

 $(x_0 \in [0,1]) \lor (x_0 \in [1,2]) \lor (x_0 \in [2,3])$ $(x_1 \in [0,1]) \lor (x_1 \in [1,2]) \lor (x_1 \in [2,3])$

$$\begin{aligned} &(x_{10} \in [0,1]) \lor (x_{10} \in [1,2]) \lor (x_{10} \in [2,3]) \\ &(x_{11} \in [-1,0]) \lor (x_{11} \in [0,1]) \lor (x_{11} \in [1,2]) \lor (x_{11} \in [2,3]) \\ &(x_{12} \in [-1,0]) \lor (x_{12} \in [0,1]) \lor (x_{12} \in [1,2]) \lor (x_{12} \in [2,3]) \\ &x_{11}^3 - 2x_{11}^2 - 2x_{11}^2x_{12}^2 - 2x_{12}x_{11} - 2x_{12}x_{12} + x_{12} - 6.5 > 0 \\ & \text{UNSAT} \end{aligned}$$

Future works: How to handle polynomial equality (idea)

$$\exists x_1 \in [l_1, h_1] \cdots x_n \in [l_n, h_n]. \bigwedge_j^m f_j(x_1, \cdots, x_n) > 0 \land g(x_1, \cdots, x_n) = 0$$

Applying Intermediate value theorem

- By interval arithmetic $\forall x_1 \in [l_1, h_1] \cdots x_n \in [l_n, h_n].$ $\bigwedge_j^m f_j(x_1, \cdots, x_n) > 0.$
- By testing
 - $g(a_1, a_2, ..., a_n) > 0$
 - $g(b_1, b_2, ..., b_n) < 0$

y f(x,y) d g(x,y) g(x,y) $g(u_1,v_1) > 0$ $g(u_2,v_2) < 0$ $g(u_2,v_2) < 0$ $g(u_2,v_2) < 0$ $g(u_2,v_2) < 0$

 $\exists x \in [l_1, h_1] \ y \in [l_2, h_2]. f(x, y) > 0 \land g(x, y) = 0$

Future works

- Test data generation strategies
 - Reducing number of test cases for generation
- Oynamic interval decomposition
- Heuristic strategies for learnt clauses
 - Based on bounds of constraints getting from IA
 - The number of test cases are taken
- Scalability and practical experiments
 - Number of variables: > 20

not yet implemented

IA, Testing

SMT for polynomial constraints over Real numbers

Thank you :)

Question?

SMT for polynomial constraints over Real numbers

30/30

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?