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@ Testing: aiming to decide satisfiability
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Introduction

@ Presburger arithmetic is decidable.

@ Tarski proved that polynomial constraints over real numbers is
decidable.

@ Collins proposed Cylindrical Algebraic Decomposition (CAD).
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Introduction

@ Presburger arithmetic is decidable.

@ Tarski proved that polynomial constraints over real numbers is
decidable.

@ Collins proposed Cylindrical Algebraic Decomposition (CAD).

Not many SMT for polynomial constraints

iSAT applies classical interval arithmetic.

MiniSmt performs on rational (possibly irrational) domains.
Barcelogic focuses on integer numbers.

CVC3 is also a popular SMT.

Applications

@ checking roundoff/overflow error

@ measures for proving termination
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Interval Arithmetic (1A)

@ Example 1
x=10,2] and y = [—1, 3]
(check-sat (22 — 2%y + y > 16))
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Interval Arithmetic (1A)

@ Example 1
x=10,2] and y = [—1, 3]
(check-sat (22 — 2%y + y > 16))

22 — 222y + y = [-17.25, 15.5]

@ Example 2
r=[-2,2] and y = [-1, 3]
(check-sat (2zy — 22y + 2 > —2))
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Interval Arithmetic (1A)

@ Example 1
x=1[0,2] and y = [—1, 3]
(check-sat (22 — 222y +y > 16))

22 — 222y + y = [-17.25, 15.5]

@ Example 2
r=[-2,2] and y = [-1, 3]
(check-sat (2zy — 22y + 2 > —2))

With 2 = [0,1] and y = [0, 1]
22y — 223y + o = [-1.9375, 3.03125]
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Interval Arithmetic (1A)

° Example 1 Bound of polynomial function {ZZ22223
x=10,2] and y = [—1, 3]
(check-sat (22 — 2%y + y > 16))

"""""" ] I.(
[
x? — 222y +y = [-17.25, 15.5] IA-UNSAT
'u( Fimi——
e Example 2 1A-SAT
x=[-2,2]and y = [-1,3] L
(check-sat (2zy — 223y + 2 > —2)) ——
IA-UNKNOWN

With 2 = [0,1] and y = [0, 1]
2zy — 223y + o = [-1.9375, 3.03125]
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Classical Interval and Affine Interval

‘ Classical Interval - Cl I

Let x =[0,2], x —ax =[0,2] — [0,2] = [-2,2].
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Classical Interval and Affine Interval

‘ Classical Interval - Cl I

Let 2 =[0,2], z — 2 = [0,2] — [0,2] = [2,2)].

Affine Interval

@ Introducing noise symbols € which is interpreted as a value in [—1, 1].

@ Noise symbols are used for symbolic manipulation (to get better
precision of substraction).
r=100,2l=1+ethenz—xz=(14+¢)—(1+¢) =0.

@ The problem is how to treat multiplication like €2, e€’
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Affine Interval

Choices for multiplication are:

o c¢' is replaced by a fresh noise symbol (AF)

@ cc’ is pushed into the fixed noise symbol ¢ (AF1, AF2)
e ? is replaced by ¢, (—¢* by ¢_) (AF2)

@ cc’ is replaced with [—1,1]e or [—1, 1]¢ (EAI)
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Affine Interval

Choices for multiplication are:

o c¢' is replaced by a fresh noise symbol (AF)

@ cc’ is pushed into the fixed noise symbol ¢ (AF1, AF2)
e ? is replaced by ¢, (—¢* by ¢_) (AF2)

@ cc’ is replaced with [—1,1]e or [—1, 1]¢ (EAI)

a:: [0,2] and y = 2 — 2. Compute x * y?

x=1+¢ y=2—2x=1— ¢ where € is interpreted as a value in [—1,1].
@ AF: zxy=1—¢>=1+¢, ¢ isinterpreted as a value in [—1,1].
@ AFLl: %y =1—¢€?>=1+¢ey, e is interpreted as a value in [—1,1].
@ AF2: wxy=1—¢>=1+¢€_, ¢ isinterpreted as a value in [—1,0]

EAL zxy=1—-€=1+[-1,1]¢
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Chebyshev Approximation Interval - CAI1, CAI2

@ Symbolic manipulation:

exe=le|x|e|=|e|+[-1,0] and € X |e| = e+ [-1, 1]
@ Keeping products €;¢; of noise symbols in their forms
e Example 3: 2 =10,2] and y = 2 — 2. Compute z * y?

r=14+€cy=2—xrx=1—c¢
rry=(1+l-e=1-c=1-(d+[-10)=[13 I
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Example

Given f = 23y — 22y + 2%y* — 2% with 2 € [~1,1] and
y € [—2,0], the bounds of f are as follows:

o AF1: [—15,15]
o AF2: [~15,14]
o CAIL: [~13.75,12]
o CAI2: [~12,10.25]
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Example

Given f = 23y — 22y + 2%y* — 2% with 2 € [~1,1] and

y € [—2,0], the bounds of f are as follows:
e AF1: [-15,15]

o AF2: [~15,14]
o CAIL: [~13.75,12]
o CAI2: [—12,10.25)
Taylor expansion of sin(x) =« — ”g—? + 955—, — ’;—,7 + g—?

with = € [0,0.523598] (= from 0 to ), the bounds of sin(x) are:
e AF1: 107%[—6290.49099241, 523927.832027]
e AF2: 10~ °[—6188.00580507, 514955.797111]
e CAIL: 107%[—1591.61467700, 503782.471931]
e CAI2: 107%[—1591.61467700, 503782.471931]
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Comparision

Depend d . .
‘ cpendent operands I Affine interval may give better results than Cl.

x=1[0,2] and y = 2 — 2. Compute x * y?
r=14+eandy=2—x=1—cwhereeec[-1,1]
o CI wxy=10,2]*([2,2] —[0,2]) =[0,2] x[0,2] = [0, 4]
@ AF wxy=1-€=1+¢ =1+4[-1,11=10,2]
o AF2 wxy=1—-€*>=1+e_=1+[-1,0=[0,1]
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Comparision

Depend d . .
‘ cpendent operands I Affine interval may give better results than Cl.

x=1[0,2] and y = 2 — 2. Compute x * y?
r=14+eandy=2—x=1—cwhereeec[-1,1]
o CI wxy=10,2]*([2,2] —[0,2]) =[0,2] x[0,2] = [0, 4]
@ AF wxy=1-€=1+¢ =1+4[-1,11=10,2]
o AF2 wxy=1—-€*>=1+e_=1+[-1,0=[0,1]

Independent operands . . .
‘ ’ ? | Cl often gives better results than affine interval.

x €[0,2] and y € [—1,5]. Compute x * y?
o Cl:zxy=10,2]x[-1,5] = [-2,10]
@ AF: 2 =1 —¢€; and y = 2 + 3e where €1, €9, € are noise symbols
and they are interpreted as values in [—1, 1].
xxy=(1—¢€1)(24 3€3) =2 — 2¢1 + 3e2 + 3¢/ = [—6, 10]
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Testing

Satisfiable test case [
Unsatisfiable test case @

f(xy, Xy, oo X)) 2 k

k
B

Test-UNSAT

k
e e e | e

Test-SAT
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Testing

[ Arandom test case @

Satisfiable test case
A periodic test case

Unsatisfiable test case @

k-random ticks = {c,, c,, ..., ¢}

f(xy, Xy, oo X)) 2 k i ) )
¢, € [ag+(i-1)B, a,+i8] with 6 = (a,-ay)/k
k
— o oo —fjeo | o} o | e |
Test-UNSAT % a3 & A A

K k-periodic ticks = {c, ¢+, ..., c+(k-1)0}

[ S S T—— € € [ay, a,+6] is randomly generated with 8 = (a-a)/k
Test-SAT —e— } ——
a, a, a, LI

@ k-random ticks

@ k-periodic ticks

@ Sensitive variables, which has large coefficient, are considered for
generating more test cases.
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Polynomial Constraints

DEFINITION

A polynomial inequality constraint is in the form of

m

(Fzq € [l1,ha] - @y € [ln, By /\f/(Tl s xp) > 0)
J

where [;, h; € R and f;(z1,--- ,x,) is a polynomial over variables
T1, T,
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Framework of SMT solver: refinement loop

| Initial interval decomposition

Testing-Unsat
(Unknown)

SAT solver

Result
(UNSAT)

[ 1

1 Dynamic Interval | learnt
! decomposition 1 clauses
- ! learnt
clauses

SAT
instance

Testing Interval Arithmetic Learning
propagation (Cl, AF1, AF2, CAI1, CAI2) analysis

Test-UNSAT

UNKNOWN

SAT
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Framework of SMT solver: refinement loop

| Initial interval decomposition

Testing-Unsat Result
(Unknown) SAT solver (UNSAT)

| . 1
1 Dynamic Interval | learnt

! decomposition 1 clauses
il el learnt
| : clauses

SAT
instance

Learning
ELEIVSH

Interval Arithmetic
(Cl, AF1, AF2, CAI1, CAI2)

Testing
propagation

Test-UNSAT

UNKNOWN

SAT

SAT Result
(SAT)

Testing

‘ Initial interval decomposition |

SMT for polynomial constraints over Real numbers

x1 € [ag,a1] Va1 €

[a27a3}
V.V € [an—1,an)

To € [bo,bl]\/l‘g S [bg,bg]
V...Vxg € [bm_l,bm]
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Framework of SMT solver: refinement loop

| Initial interval decomposition

SAT solver

Testing-Unsat
(Unknown)

[ 1
1 Dynamic Interval | learnt
! decomposition 1 clauses
Lo oo m =

SAT
instance

Testing Interval Arithmetic

propagation

Test-UNSAT
UNKNOWN

Testing

(Cl, AF1, AF2, CAI1, CAI2)

Result
(UNSAT)

learnt
clauses

Learning
ELEIVSH

SAT

SAT Result
(SAT)

SMT for polynomial constraints over Real numbers

‘ Initial interval decomposition |

T € [ao,aﬂ Va e
[a27a3}
V.V € [an—1,an)

To € [bo,bl]\/l‘g S [bg,bg]
V...Vxg € [bm_l,bm]

SAT solver MiniSAT?2.2

@ Very lazy approach
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Sat example by Testing

Problem P1

(ze[-L0)V(ze0,1)V(re[l,2)V(zel23])V(re34)
(el[-LO)Vyeld,)V(yeL2)V(yel23)V(yel34)
(assert (f = 4z + 3y — xy > 12))
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Sat example by Testing
(ze[-1,0)V(zel01)V(zel,2)V(zel23])V(zel34])
E L0 Vv(yelo,1))vye[L2)Vv(yel2,3])V(yel34)

assert ( =4z + 3y —xy > 12))

Unsat areas (red) are marked by
IA. 3

4 (x)
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Sat example by Testing
(ze[-1,0)V(zel01)V(zel,2)V(zel23])V(zel34])
E L0 Vv(yelo,1))vye[L2)Vv(yel2,3])V(yel34)

assert ( =4x 4+ 3y —xy > 12))

Dynamic interval decomposition

4 (x)
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Sat example by Testing

Problem P1

(ze[-L0)V(ze0,1)V(re[l,2)V(zel23])V(re34)
E [~LODV(yel0,1)V(yell,2))V(yel23])V(ye34)

assert ( =4x 4+ 3y —xy > 12))

Dynamic interval decomposition

-1 0 1 2 3 4 (x)

SMT for polynomial constraints over Real numbers 19/30



Sat example by Testing

~1,0)V (z € [0,1)V(ze[L2)V(a

(z € €
(yel-L0)V(yel0,1)v(yell,2)V(yel23])V(ye3,4])
(assert ( =dx + 3y —zy > 12))

|
1A-Sat | | Sat solution

y=1.31143 | x=3.33821

Sat solution by testing:
x = 3.33821 and y = 1.31143

-1 0 1 2 3 4 (x)
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Unsat example by IA

(z € [=2,0)) v (z €0,2])
(yel[-L1)Vv(yel,3))
(assert (f = 2® —222(1 4+ y?) — 2y(z +y) +y > 6.5))

(y)

3

(x)
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Unsat example by IA

(ze[=2,-1)V(zel[-1,0)V(zel02])
(ye[-L0)V(ye[0,1])V(ye[L3])
(assert (f = 2% —222(1 +4°) — 2y(z + y) + y > 6.5))

(y)

3 Unsat
s ||
Unknown[_]

(x)
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Unsat example by IA

Problem P2

(ze[-2,-1)V(ze[-L0)V(zel01])V(re(l2)
(ye[-L0)V(ye[0,1])V(ye[L3])
(assert (f = 2% — 222(1 +4°) — 2y(z + y) + y > 6.5))

(y)
3 Unsat
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Unsat example by IA
Unsatifiable

(re-2,~1)V e [-L0)V (e 1)V (el
(yel[-L0)v(yelo1])vye[L2)V(yel23])
(assert (f = 2% —22%2(1 +9?) — 2y(x + y) +y > 6.5))

(y)

3
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Preliminary experiments: QF_NRA of SMT-LIB and problem P

Problem e el Time (s)
Varnables Constramts Arithmetic

‘ Initial interval decomposition |

20— Lo
3 n o uew oms

0.0.5] V... V [2.0,2.5) v m om0 ow wer om
ka1 2 w2 neow o

macidts 15 o s sas

Number of variables mnciats 3 a an s wsss
o W B et

o AFL AF2: > 15 mancidb 1 o s e
mamcials 10 3 o o 2ess6.

o CAIL: < 15 mncidls 6 a0 o s e
ka3 w2 s e

o CAI2: <= 10 mmcida 3 v s amn
momcidts 3 2 o o soms

mncias 3 s o s e

| maids o a0 wwr s
2-random ticks mamciaiss w9 e s sios
it 15 45w unown 37066

manciass 1 3 w2 eow s

macidka 169w om0

mamczats 70w o 75
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Experiments: problem P

Jxg, w1, T2, 23, T4, T5, T, T7, T, Tg, T10 € [0,3] 211 € [-3,2] 210 € [-1,3].
123 — 127 >0 A 2129 — 2126 > 0 A3 — 23 >0 A
T1To — 24 >0 AN x7—x3 >0 AN g —22 >0 A
Tg + TgT9g —T10 >0 N x3T9 — T7T9 >0 A Xoxg — TgT9 > 0 A
3, — 222, — 223,225 — 2w19711 — 2212712 + T12 — 6.5 > 0
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Experiments: problem P

3wo, 21,72, T3, T4, T5, Te, T7, Tg, Tg, T10 € [0,3] w11 € [-3,2] 12 € [-1,3].
123 — 127 >0 A 2129 — 2126 > 0 A3 — 23 >0 A
T1To — 24 >0 AN x7—x3 >0 AN g —22 >0 A
Tg + TgT9g —T10 >0 N x3T9 — T7T9 >0 A Xoxg — TgT9 > 0 A
.5(11131 — 2.73%1 — 21‘%11‘%2 — 2T19x11 — 2212T12 + 12 — 6.5 >0

‘ Initial interval decomposition |

(.’El € ,1] V (1’1 S V ((El € [2,3])

(.1310 S [0, 1]) V (1‘10 S [1,2]) V (3310 S [2,3])

(mn S [*1,0}) V (1711 S [O, 1}) \ (1’11 € [1,2}) vV (1’11 € [2,3})
(212 € [-1,0]) V (z12 € [0,1]) V (212 € [1,2]) V (212 € [2,3])
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Experiments: problem P

3wo, 21,72, T3, T4, T5, Te, T7, Tg, Tg, T10 € [0,3] w11 € [-3,2] 12 € [-1,3].
123 — 127 >0 A 2129 — 2126 > 0 A3 — 23 >0 A
T1To — 24 >0 AN x7—x3 >0 AN g —22 >0 A
Tg + TgT9g —T10 >0 N x3T9 — T7T9 >0 A Xoxg — TgT9 > 0 A
.5(11131 — 2.7311 21‘111‘12 2x12T11 — 2x12T12 + 12 — 6.5 >0

‘ Initial interval decomposition |

(.1310 S [0, 1]

) \Y (1‘10 S [1,2]) vV (3310 S [2,3])
(z11 € [-1,0)) V (z11 € [0,1]) V (z11 € [1,2]) V (z11 € [2,3])
ZT19 € [ 1 OD ($12 S [0 ].D (1’12 € []. 2}) (1'12 € [2 3})
o3, — 222, — 223, 2%, — 2319211 — 2T12%12 + 212 — 6.5 > 0
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Future works: How to handle polynomial equality (idea)

m

ElfL'l S [llahﬂ ey € [ln»hn]~ /\fj(‘Ll? : 71'71) > O/\g(lev ,lL'n) =0
J

Applying Intermediate value theorem
CxOfl,, h] yOll,. . f(x, y) >0Cg(x,y) =0

@ By interval arithmetic
v5(;1 € [Zl, hl} o Tp € [l'rl,7 h'n,]-
/\Zn fi(z1,--- ,xy) > 0.

@ By testing c "‘._’

o g(ai,az,..,an) >0
° g(blaan-“abn) <0
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Future works

@ Test data generation strategies

o Reducing number of test cases for generation
@ Dynamic interval decomposition
© Heuristic strategies for learnt clauses

o Based on bounds of constraints getting from IA

o The number of test cases are taken
@ Scalability and practical experiments

o Number of variables: > 20
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Thank you :)

Question?
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