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Introduction

Presburger arithmetic is decidable. linear constraints

Tarski proved that polynomial constraints over real numbers is

decidable. 1930

Collins proposed Cylindrical Algebraic Decomposition (CAD).

DEXPTIME, 1975

Related works Not many SMT for polynomial constraints

iSAT applies classical interval arithmetic.

MiniSmt performs on rational (possibly irrational) domains.

Barcelogic focuses on integer numbers.

CVC3 is also a popular SMT.

Applications

checking roundoff/overflow error

measures for proving termination
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Interval Arithmetic (IA)

Why IA?

Example 1

x = [0, 2] and y = [−1, 3]
(check-sat (x2 − 2x2y + y > 16))

x2 − 2x2y + y = [-17.25, 15.5]

(unsatisfiable)

Example 2

x = [−2, 2] and y = [−1, 3]
(check-sat (2xy − 2x3y + x > −2))

With x = [0, 1] and y = [0, 1]

2xy − 2x3y + x = [-1.9375, 3.03125]

(satisfiable)

f(x1, x2, …, xn) ≥ k

Bound of polynomial function

k

IA-UNSATIA-UNSAT

k

IA-SAT

kk

IA-UNKNOWN
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Classical Interval and Affine Interval

Classical Interval - CI

Let x = [0, 2], x− x = [0, 2]− [0, 2] = [−2, 2].

Affine Interval

Introducing noise symbols ε which is interpreted as a value in [−1, 1].

Noise symbols are used for symbolic manipulation (to get better

precision of substraction).

x = [0, 2] = 1 + ε then x− x = (1 + ε)− (1 + ε) = 0.

The problem is how to treat multiplication like ε2, εε′
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Classical Interval and Affine Interval

Classical Interval - CI

Let x = [0, 2], x− x = [0, 2]− [0, 2] = [−2, 2].

Affine Interval

Introducing noise symbols ε which is interpreted as a value in [−1, 1].

Noise symbols are used for symbolic manipulation (to get better

precision of substraction).

x = [0, 2] = 1 + ε then x− x = (1 + ε)− (1 + ε) = 0.

The problem is how to treat multiplication like ε2, εε′

SMT for polynomial constraints over Real numbers 7/30



Affine Interval

Ideas Choices for multiplication are:

εε′ is replaced by a fresh noise symbol (AF) Stolfi, 93

εε′ is pushed into the fixed noise symbol ε± (AF1, AF2) Messine, 02

ε2 is replaced by ε+ (−ε2 by ε−) (AF2) Messine, 02

εε′ is replaced with [−1, 1]ε or [−1, 1]ε′ (EAI) Ngoc, 09

Example 3
x = [0, 2] and y = 2− x. Compute x ∗ y?

x = 1+ ε, y = 2− x = 1− ε where ε is interpreted as a value in [−1, 1].

AF: x ∗ y = 1− ε2 = 1 + ε′, ε′ is interpreted as a value in [−1, 1].

AF1: x ∗ y = 1− ε2 = 1+ ε±, ε± is interpreted as a value in [−1, 1].

AF2: x ∗ y = 1− ε2 = 1 + ε−, ε− is interpreted as a value in [−1, 0]

EAI: x ∗ y = 1− ε2 = 1 + [−1, 1]ε
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Chebyshev Approximation Interval - CAI1, CAI2

1

y

(a) Chebyshev approximation for y = x.x

-0.25

x
-1

1

1

y

-0.25

0.25

1-1

-1

x

(b) Chebyshev approximation for y = x.|x|

-1

Symbolic manipulation: CAI1, CAI2

ε× ε = |ε| × |ε| = |ε|+ [− 1
4 , 0] and ε× |ε| = ε+ [− 1

4 ,
1
4 ]

Keeping products εiεj of noise symbols in their forms CAI2

Example 3: x = [0, 2] and y = 2− x. Compute x ∗ y?

x = 1 + ε, y = 2− x = 1− ε.
x ∗ y = (1 + ε)(1− ε) = 1− ε2 = 1− (|ε|+ [− 1

4 , 0]) = [1, 54 ]− |ε|.
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Example
Example 4

Given f = x3y − 2xy + x2y2 − x2 with x ∈ [−1, 1] and

y ∈ [−2, 0], the bounds of f are as follows:

AF1 : [−15, 15]
AF2 : [−15, 14]
CAI1: [−13.75, 12]
CAI2: [−12, 10.25]

Example 5
Taylor expansion of sin(x) = x− x3

3! +
x5

5! −
x7

7! +
x9

9!

with x ∈ [0, 0.523598] (x from 0 to π
6 ), the bounds of sin(x) are:

AF1 : 10−6[−6290.49099241, 523927.832027]

AF2 : 10−6[−6188.00580507, 514955.797111]

CAI1: 10−6[−1591.61467700, 503782.471931]

CAI2: 10−6[−1591.61467700, 503782.471931]
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Comparision
Dependent operands

Affine interval may give better results than CI.

x = [0, 2] and y = 2− x. Compute x ∗ y?

x = 1 + ε and y = 2− x = 1− ε where ε ∈ [−1, 1]

CI :x ∗ y = [0, 2] ∗ ([2, 2]− [0, 2]) = [0, 2] ∗ [0, 2] = [0, 4]

AF :x ∗ y = 1− ε2 = 1 + ε′ = 1 + [−1, 1] = [0, 2]

AF2 :x ∗ y = 1− ε2 = 1 + ε− = 1 + [−1, 0] = [0, 1]

Independent operands
CI often gives better results than affine interval.

x ∈ [0, 2] and y ∈ [−1, 5]. Compute x ∗ y?

CI : x ∗ y = [0, 2] ∗ [−1, 5] = [−2, 10]

AF: x = 1− ε1 and y = 2 + 3ε2 where ε1, ε2, ε
′ are noise symbols

and they are interpreted as values in [−1, 1].
x ∗ y = (1− ε1)(2 + 3ε2) = 2− 2ε1 + 3ε2 + 3ε′ = [−6, 10]
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Testing

Satisfiable test case 

Unsatisfiable test case 

f(x1, x2, …, xn) ≥ k

k

Test-UNSAT

Test-SAT

k

Test-SAT

A random test case 

A periodic test case

k-random ticks = {c , c , …, c }

a aa

k-random ticks = {c1, c2, …, ck}

ci Є [a0+(i-1)θ, a0+iθ] with θ = (ak-a0)/k

a0 a1 a2
akak-1

k-periodic ticks = {c, c+θ, …, c+(k-1)θ}k-periodic ticks = {c, c+θ, …, c+(k-1)θ}

c Є [a0, a0+θ] is randomly generated with θ = (ak-a0)/k

a0 a1 a2
akak-1

k-random ticks

k-periodic ticks

Sensitive variables, which has large coefficient, are considered for
generating more test cases.
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Polynomial Constraints

Definition

A polynomial inequality constraint is in the form of

(∃x1 ∈ [l1, h1] · · ·xn ∈ [ln, hn].

m∧
j

fj(x1, · · · , xn) > 0)

where li, hi ∈ R and fj(x1, · · · , xn) is a polynomial over variables
x1, · · · , xn.

SMT for polynomial constraints over Real numbers 15/30



Framework of SMT solver: refinement loop

Initial interval decomposition

SAT solver

Dynamic Interval learnt 

UNSATTesting-Unsat

(Unknown)

Result

(UNSAT)

UNSAT

Dynamic Interval 

decomposition
learnt 

clauses

learnt 
clauses

SAT
instance

Interval Arithmetic

(CI, AF1, AF2, CAI1, CAI2)

Learning 

analysis

Testing 

propagation

UNSAT

UNKNOWN SAT
Test-UNSAT

Testing
SAT

Result

(SAT)

Initial interval decomposition

x1 ∈ [a0, a1] ∨ x1 ∈
[a2, a3]
∨... ∨ x1 ∈ [an−1, an]

x2 ∈ [b0, b1]∨x2 ∈ [b2, b3]
∨... ∨ x2 ∈ [bm−1, bm]

...

SAT solver MiniSAT2.2

Theory propagation

Very lazy approach
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Sat example by Testing

Problem P1

(x ∈ [−1, 0]) ∨ (x ∈ [0, 1]) ∨ (x ∈ [1, 2]) ∨ (x ∈ [2, 3]) ∨ (x ∈ [3, 4])
(y ∈ [−1, 0]) ∨ (y ∈ [0, 1]) ∨ (y ∈ [1, 2]) ∨ (y ∈ [2, 3]) ∨ (y ∈ [3, 4])
(assert (f = 4x+ 3y − xy > 12))

Unsat areas (red) are marked by
IA.

IA-Unsat

IA-Sat

IA-Unknown(y)

4

3

4

1

2

0

1

-1 (x)0 1 2 3 4

-1
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4

Sat solution
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IA-Unsat

IA-Sat
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-1 (x)0 1 2 3 4
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Unsat example by IA

Problem P2

(x ∈ [−2, 0]) ∨ (x ∈ [0, 2])

(y ∈ [−1, 1]) ∨ (y ∈ [1, 3])

(assert (f = x3 − 2x2(1 + y2)− 2y(x+ y) + y > 6.5))

Unsat

Sat

Unknown

(y)

3

1

-2

(x)

0 2

-1
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Unsat example by IA

Problem P2
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3 Unsat
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Unknown

1

0
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0 2
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Unsat example by IA

Problem P2 Unsatifiable

(x ∈ [−2,−1]) ∨ (x ∈ [−1, 0]) ∨ (x ∈ [0, 1]) ∨ (x ∈ [1, 2])
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Interval Arithmetic: aiming to decide unsatisfiability

Testing: aiming to decide satisfiability
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Preliminary experiments: QF NRA of SMT-LIB and problem P

Initial interval decomposition
x ≥ 0

[0, 0.5] ∨ ... ∨ [2.0, 2.5]

IA Number of variables

AF1, AF2: ≥ 15

CAI1: < 15

CAI2: <= 10

Testing
2-random ticks

Problem
No. 

Variables

No. 

Constraints

Interval 

Arithmetic
Result Time (s)

P 13 10 AF1 unknown 0.031

P 13 10 AF2 unknown 0.109P 13 10 AF2 unknown 0.109

P 13 10 CAI1 UNSAT 0.046

P 13 10 CAI2 UNSAT 0.796

matrix-1-all-01 19 22 AF2 unknown 0.093

matrix-1-all-2 14 9 CAI1 SAT 8.328

matrix-1-all-3 19 21 AF1 SAT 175.968

matrix-1-all-4 16 20 AF1 SAT 20.328

matrix-1-all-11 19 17 AF1 SAT 17.687matrix-1-all-11 19 17 AF1 SAT 17.687

matrix-1-all-14 14 16 CAI1 SAT 66.484

matrix-1-all-15 10 14 CAI1 unknown 26.656

matrix-1-all-18 6 10 CAI2 SAT 14.156

matrix-1-all-20 16 16 AF2 SAT 1.062

matrix-1-all-21 13 17 AF1 SAT 2753.72

matrix-1-all-24 11 12 CAI1 unknown 50.828

matrix-1-all-33 13 6 CAI1 SAT 68.756matrix-1-all-33 13 6 CAI1 SAT 68.756

matrix-1-all-34 20 14 AF2 SAT 3349.89

matrix-1-all-36 18 19 AF2 SAT 54.015

matrix-1-all-37 19 46 AF2 unknown 3730.66matrix-1-all-37 19 46 AF2 unknown 3730.66

matrix-1-all-39 19 23 AF2 unknown 85.781

matrix-1-all-43 16 9 AF2 unknown 0.343

matrix-2-all-6 17 10 AF2 unknown 15.75
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Experiments: problem P

∃x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10 ∈ [0, 3] x11 ∈ [−3, 2] x12 ∈ [−1, 3].
x1x3 − x1x7 > 0 ∧ x1x2 − x1x6 > 0 ∧ x1x3 − x3 > 0 ∧
x1x2 − x4 > 0 ∧ x7 − x3 > 0 ∧ x6 − x2 > 0 ∧
x8 + x6x9 − x10 > 0 ∧ x3x9 − x7x9 > 0 ∧ x2x9 − x6x9 > 0 ∧
x311 − 2x211 − 2x211x

2
12 − 2x12x11 − 2x12x12 + x12 − 6.5 > 0

Initial interval decomposition

(x0 ∈ [0, 1]) ∨ (x0 ∈ [1, 2]) ∨ (x0 ∈ [2, 3])

(x1 ∈ [0, 1]) ∨ (x1 ∈ [1, 2]) ∨ (x1 ∈ [2, 3])

...

(x10 ∈ [0, 1]) ∨ (x10 ∈ [1, 2]) ∨ (x10 ∈ [2, 3])

(x11 ∈ [−1, 0]) ∨ (x11 ∈ [0, 1]) ∨ (x11 ∈ [1, 2]) ∨ (x11 ∈ [2, 3])
(x12 ∈ [−1, 0]) ∨ (x12 ∈ [0, 1]) ∨ (x12 ∈ [1, 2]) ∨ (x12 ∈ [2, 3])
x311 − 2x211 − 2x211x

2
12 − 2x12x11 − 2x12x12 + x12 − 6.5 > 0 UNSAT
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Future works: How to handle polynomial equality (idea)

∃x1 ∈ [l1, h1] · · ·xn ∈ [ln, hn].

m∧
j

fj(x1, · · · , xn) > 0 ∧ g(x1, · · · , xn) = 0

Applying Intermediate value theorem

By interval arithmetic

∀x1 ∈ [l1, h1] · · ·xn ∈ [ln, hn].∧m
j fj(x1, · · · , xn) > 0.

By testing

g(a1, a2, ..., an) > 0

g(b1, b2, ..., bn) < 0

y
f(x,y)

0),(0),(].,[],[ 2211 =∧>∈∈∃ yxgyxfhly hl x    

f(x,y) > 0
d

f(x,y)

g(u ,v ) > 0

c

g(x,y)

g(u1,v1) > 0

g(u2,v2) < 0
c

ba x
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Future works

1 Test data generation strategies

Reducing number of test cases for generation

2 Dynamic interval decomposition not yet implemented

3 Heuristic strategies for learnt clauses IA, Testing

Based on bounds of constraints getting from IA

The number of test cases are taken

4 Scalability and practical experiments

Number of variables: > 20
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Thank you :)

Question?
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