SMT for polynomial constraints over Real numbers

To Van Khanh
July 2012

Japan Advanced Institute of Science and Technology

Outline

Aim Combination of SAT solver and two theories

- Interval Arithmetic: aiming to decide unsatisfiability
- Testing: aiming to decide satisfiability

Outline

Aim Combination of SAT solver and two theories

- Interval Arithmetic: aiming to decide unsatisfiability
- Testing: aiming to decide satisfiability

CONTENT

- Introduction
- Interval arithmetic and Testing
- Framework of SMT solver
- Preliminary experiments

Outline

Aim Combination of SAT solver and two theories

- Interval Arithmetic: aiming to decide unsatisfiability
- Testing: aiming to decide satisfiability

CONTENT

- Introduction
- Interval arithmetic and Testing
- Framework of SMT solver
- Preliminary experiments

Introduction

- Presburger arithmetic is decidable.
- Tarski proved that polynomial constraints over real numbers is decidable.
- Collins proposed Cylindrical Algebraic Decomposition (CAD).

Introduction

- Presburger arithmetic is decidable.
- Tarski proved that polynomial constraints over real numbers is decidable.
- Collins proposed Cylindrical Algebraic Decomposition (CAD).

DEXPTIME, 1975

Related works

Not many SMT for polynomial constraints

- iSAT applies classical interval arithmetic.
- MiniSmt performs on rational (possibly irrational) domains.
- Barcelogic focuses on integer numbers.
- CVC3 is also a popular SMT.

Introduction

- Presburger arithmetic is decidable.
linear constraints
- Tarski proved that polynomial constraints over real numbers is decidable.
- Collins proposed Cylindrical Algebraic Decomposition (CAD).

DEXPTIME, 1975

Related works Not many SMT for polynomial constraints

- iSAT applies classical interval arithmetic.
- MiniSmt performs on rational (possibly irrational) domains.
- Barcelogic focuses on integer numbers.
- CVC3 is also a popular SMT.

Applications

- checking roundoff/overflow error
- measures for proving termination

Outline

Aim Combination of SAT solver and two theories

- Interval Arithmetic: aiming to decide unsatisfiability
- Testing: aiming to decide satisfiability

CONTENT

- Introduction
- Interval arithmetic and Testing
- Framework of SMT solver
- Preliminary experiments

Interval Arithmetic (IA)

Why IA?

- Example 1

$$
\begin{aligned}
& x=[0,2] \text { and } y=[-1,3] \\
& \left(\text { check-sat }\left(x^{2}-2 x^{2} y+y>16\right)\right)
\end{aligned}
$$

Interval Arithmetic (IA)

Why IA?

- Example 1

$$
\begin{aligned}
& x=[0,2] \text { and } y=[-1,3] \\
& \left(\text { check-sat }\left(x^{2}-2 x^{2} y+y>16\right)\right) \\
& x^{2}-2 x^{2} y+y=[-17.25,15.5] \\
& \text { (unsatisfiable) }
\end{aligned}
$$

Interval Arithmetic (IA)

Why IA?

- Example 1

$$
\begin{aligned}
& x=[0,2] \text { and } y=[-1,3] \\
& \left(\text { check-sat }\left(x^{2}-2 x^{2} y+y>16\right)\right) \\
& x^{2}-2 x^{2} y+y=[-17.25,15.5] \\
& \text { (unsatisfiable) }
\end{aligned}
$$

- Example 2

$$
\begin{aligned}
& x=[-2,2] \text { and } y=[-1,3] \\
& \left(\text { check-sat }\left(2 x y-2 x^{3} y+x>-2\right)\right)
\end{aligned}
$$

Interval Arithmetic (IA)

Why IA?

- Example 1

$$
x=[0,2] \text { and } y=[-1,3]
$$

(check-sat $\left(x^{2}-2 x^{2} y+y>16\right)$)
$x^{2}-2 x^{2} y+y=[-17.25,15.5]$
(unsatisfiable)

- Example 2

$$
\begin{aligned}
& x=[-2,2] \text { and } y=[-1,3] \\
& \left(\text { check-sat }\left(2 x y-2 x^{3} y+x>-2\right)\right)
\end{aligned}
$$

With $x=[0,1]$ and $y=[0,1]$
$2 x y-2 x^{3} y+x=[-1.9375,3.03125]$

Interval Arithmetic (IA)

Why IA?

- Example 1

$$
\begin{aligned}
& x=[0,2] \text { and } y=[-1,3] \\
& \left(\text { check-sat }\left(x^{2}-2 x^{2} y+y>16\right)\right) \\
& x^{2}-2 x^{2} y+y=[-17.25,15.5] \\
& \text { (unsatisfiable) }
\end{aligned}
$$

- Example 2

$$
\begin{aligned}
& x=[-2,2] \text { and } y=[-1,3] \\
& \left(\text { check-sat }\left(2 x y-2 x^{3} y+x>-2\right)\right)
\end{aligned}
$$

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \geq k
$$

IA-UNSAT

IA-UNKNOWN

With $x=[0,1]$ and $y=[0,1]$
$2 x y-2 x^{3} y+x=[-1.9375,3.03125]$

Classical Interval and Affine Interval

Classical Interval-CI

Let $x=[0,2], x-x=[0,2]-[0,2]=[-2,2]$.

Classical Interval and Affine Interval

Classical Interval-CI

Let $x=[0,2], x-x=[0,2]-[0,2]=[-2,2]$.

Affine Interval

- Introducing noise symbols ϵ which is interpreted as a value in $[-1,1]$.
- Noise symbols are used for symbolic manipulation (to get better precision of substraction).

$$
x=[0,2]=1+\epsilon \text { then } x-x=(1+\epsilon)-(1+\epsilon)=0 .
$$

- The problem is how to treat multiplication like $\epsilon^{2}, \epsilon \epsilon^{\prime}$

Affine Interval

Ideas Choices for multiplication are:

- $\epsilon \epsilon^{\prime}$ is replaced by a fresh noise symbol (AF)
- $\epsilon \epsilon^{\prime}$ is pushed into the fixed noise symbol $\epsilon_{ \pm}$(AF1, AF2)

Messine, 02

- ϵ^{2} is replaced by $\epsilon_{+}\left(-\epsilon^{2}\right.$ by $\left.\epsilon_{-}\right)$(AF2)
- $\epsilon \epsilon^{\prime}$ is replaced with $[-1,1] \epsilon$ or $[-1,1] \epsilon^{\prime}$ (EAI)

Affine Interval

Ideas Choices for multiplication are:

- $\epsilon \epsilon^{\prime}$ is replaced by a fresh noise symbol (AF)
- $\epsilon \epsilon^{\prime}$ is pushed into the fixed noise symbol $\epsilon_{ \pm}$(AF1, AF2)

Messine, 02

- ϵ^{2} is replaced by $\epsilon_{+}\left(-\epsilon^{2}\right.$ by $\left.\epsilon_{-}\right)$(AF2)
- $\epsilon \epsilon^{\prime}$ is replaced with $[-1,1] \epsilon$ or $[-1,1] \epsilon^{\prime}$ (EAI)

Example 3

$$
x=[0,2] \text { and } y=2-x . \text { Compute } x * y \text { ? }
$$

$x=1+\epsilon, y=2-x=1-\epsilon$ where ϵ is interpreted as a value in $[-1,1]$.

- AF: $x * y=1-\epsilon^{2}=1+\epsilon^{\prime}, \epsilon^{\prime}$ is interpreted as a value in $[-1,1]$.
- AF1: $x * y=1-\epsilon^{2}=1+\epsilon_{ \pm}, \epsilon_{ \pm}$is interpreted as a value in $[-1,1]$.
- AF2: $x * y=1-\epsilon^{2}=1+\epsilon_{-}, \epsilon_{-}$is interpreted as a value in $[-1,0]$
- EAI: $x * y=1-\epsilon^{2}=1+[-1,1] \epsilon$

Chebyshev Approximation Interval - CAI1, CAI2

(a) Chebyshev approximation for $\mathrm{y}=\mathrm{x} . \mathrm{x}$

(b) Chebyshev approximation for $\mathrm{y}=\mathrm{x} .|\mathrm{x}|$

- Symbolic manipulation:

$$
\epsilon \times \epsilon=|\epsilon| \times|\epsilon|=|\epsilon|+\left[-\frac{1}{4}, 0\right] \text { and } \epsilon \times|\epsilon|=\epsilon+\left[-\frac{1}{4}, \frac{1}{4}\right]
$$

- Keeping products $\epsilon_{i} \epsilon_{j}$ of noise symbols in their forms
- Example 3: $x=[0,2]$ and $y=2-x$. Compute $x * y$?

$$
\begin{aligned}
& x=1+\epsilon, y=2-x=1-\epsilon \\
& x * y=(1+\epsilon)(1-\epsilon)=1-\epsilon^{2}=1-\left(|\epsilon|+\left[-\frac{1}{4}, 0\right]\right)=\left[1, \frac{5}{4}\right]-|\epsilon|
\end{aligned}
$$

Example

Example 4 Given $f=x^{3} y-2 x y+x^{2} y^{2}-x^{2}$ with $x \in[-1,1]$ and $y \in[-2,0]$, the bounds of f are as follows:

- AF1 : $[-15,15]$
- AF2 : $[-15,14]$
- CAI1: $[-13.75,12]$
- CAI2: $[-12,10.25]$

Example

Example 4 Given $f=x^{3} y-2 x y+x^{2} y^{2}-x^{2}$ with $x \in[-1,1]$ and $y \in[-2,0]$, the bounds of f are as follows:

- AF1 : $[-15,15]$
- AF2 : $[-15,14]$
- CAI1: $[-13.75,12]$
- CAI2: $[-12,10.25]$

Example 5 Taylor expansion of $\sin (x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\frac{x^{9}}{9!}$ with $x \in[0,0.523598]$ (x from 0 to $\frac{\pi}{6}$), the bounds of $\sin (x)$ are:

- AF1 : $10^{-6}[-6290.49099241,523927.832027]$
- AF2 : $10^{-6}[-6188.00580507,514955.797111]$
- CAI1: $10^{-6}[-1591.61467700,503782.471931]$
- CAI2: $10^{-6}[-1591.61467700,503782.471931]$

Comparision

Dependent operands
Affine interval may give better results than Cl .
$x=[0,2]$ and $y=2-x$. Compute $x * y$?
$x=1+\epsilon$ and $y=2-x=1-\epsilon$ where $\epsilon \in[-1,1]$

- CI $\quad: x * y=[0,2] *([2,2]-[0,2])=[0,2] *[0,2]=[0,4]$
- AF $: x * y=1-\epsilon^{2}=1+\epsilon^{\prime}=1+[-1,1]=[0,2]$
- AF2 : $x * y=1-\epsilon^{2}=1+\epsilon_{-}=1+[-1,0]=[0,1]$

Comparision

Dependent operands
Affine interval may give better results than Cl .
$x=[0,2]$ and $y=2-x$. Compute $x * y$?
$x=1+\epsilon$ and $y=2-x=1-\epsilon$ where $\epsilon \in[-1,1]$

- CI $\quad: x * y=[0,2] *([2,2]-[0,2])=[0,2] *[0,2]=[0,4]$
- AF : $x * y=1-\epsilon^{2}=1+\epsilon^{\prime}=1+[-1,1]=[0,2]$
- AF2 : $x * y=1-\epsilon^{2}=1+\epsilon_{-}=1+[-1,0]=[0,1]$

Independent operands
Cl often gives better results than affine interval.
$x \in[0,2]$ and $y \in[-1,5]$. Compute $x * y$?

- $\mathrm{Cl}: x * y=[0,2] *[-1,5]=[-2,10]$
- AF: $x=1-\epsilon_{1}$ and $y=2+3 \epsilon_{2}$ where $\epsilon_{1}, \epsilon_{2}, \epsilon^{\prime}$ are noise symbols and they are interpreted as values in $[-1,1]$.

$$
x * y=\left(1-\epsilon_{1}\right)\left(2+3 \epsilon_{2}\right)=2-2 \epsilon_{1}+3 \epsilon_{2}+3 \epsilon^{\prime}=[-6,10]
$$

Outline

Aim Combination of SAT solver and two theories

- Interval Arithmetic: aiming to decide unsatisfiability
- Testing: aiming to decide satisfiability

CONTENT

- Introduction
- Interval arithmetic and Testing
- Framework of SMT solver
- Preliminary experiments

Testing

Satisfiable test case
Unsatisfiable test case

Test-UNSAT

Test-SAT

Testing

Satisfiable test case
Unsatisfiable test case

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \geq k
$$

Test-UNSAT

Test-SAT

A random test case
A periodic test case
k-random ticks $=\left\{\mathbf{c}_{\mathbf{1}}, \mathrm{c}_{\mathbf{2}}, \ldots, \mathrm{c}_{\mathrm{k}}\right\}$
$c_{i} \in\left[a_{0}+(i-1) \theta, a_{0}+i \theta\right]$ with $\theta=\left(a_{k}-a_{0}\right) / k$

k-periodic ticks $=\{c, c+\theta, \ldots, c+(k-1) \theta\}$
$c \in\left[a_{0}, a_{0}+\theta\right]$ is randomly generated with $\theta=\left(a_{k}-a_{0}\right) / k$

- k-random ticks
- k-periodic ticks
- Sensitive variables, which has large coefficient, are considered for generating more test cases.

Outline

Aim Combination of SAT solver and two theories

- Interval Arithmetic: aiming to decide unsatisfiability
- Testing: aiming to decide satisfiability

CONTENT

- Introduction
- Interval arithmetic and Testing
- Framework of SMT solver
- Preliminary experiments

Polynomial Constraints

Definition

A polynomial inequality constraint is in the form of

$$
\left(\exists x_{1} \in\left[l_{1}, h_{1}\right] \cdots x_{n} \in\left[l_{n}, h_{n}\right] . \bigwedge_{j}^{m} f_{j}\left(x_{1}, \cdots, x_{n}\right)>0\right)
$$

where $l_{i}, h_{i} \in \mathbb{R}$ and $f_{j}\left(x_{1}, \cdots, x_{n}\right)$ is a polynomial over variables x_{1}, \cdots, x_{n}.

Framework of SMT solver: refinement loop

Framework of SMT solver: refinement loop

Initial interval decomposition

$$
\begin{aligned}
& x_{1} \in\left[a_{0}, a_{1}\right] \vee x_{1} \in \\
& {\left[a_{2}, a_{3}\right]} \\
& \vee \ldots \vee x_{1} \in\left[a_{n-1}, a_{n}\right] \\
& x_{2} \in\left[b_{0}, b_{1}\right] \vee x_{2} \in\left[b_{2}, b_{3}\right] \\
& \vee \ldots \vee x_{2} \in\left[b_{m-1}, b_{m}\right]
\end{aligned}
$$

Framework of SMT solver: refinement loop

Initial interval decomposition

$x_{1} \in\left[a_{0}, a_{1}\right] \vee x_{1} \in$ $\left[a_{2}, a_{3}\right]$
$\vee \ldots \vee x_{1} \in\left[a_{n-1}, a_{n}\right]$
$x_{2} \in\left[b_{0}, b_{1}\right] \vee x_{2} \in\left[b_{2}, b_{3}\right]$ $\vee \ldots \vee x_{2} \in\left[b_{m-1}, b_{m}\right]$
...

SAT solver MiniSAT2.2

Theory propagation

- Very lazy approach

Sat example by Testing

Problem P1

$$
\begin{aligned}
& (x \in[-1,0]) \vee(x \in[0,1]) \vee(x \in[1,2]) \vee(x \in[2,3]) \vee(x \in[3,4]) \\
& (y \in[-1,0]) \vee(y \in[0,1]) \vee(y \in[1,2]) \vee(y \in[2,3]) \vee(y \in[3,4]) \\
& (\operatorname{assert}(f=4 x+3 y-x y>12))
\end{aligned}
$$

Sat example by Testing

Problem P1

$$
\begin{aligned}
& (x \in[-1,0]) \vee(x \in[0,1]) \vee(x \in[1,2]) \vee(x \in[2,3]) \vee(x \in[3,4]) \\
& (y \in[-1,0]) \vee(y \in[0,1]) \vee(y \in[1,2]) \vee(y \in[2,3]) \vee(y \in[3,4]) \\
& (\operatorname{assert}(f=4 x+3 y-x y>12))
\end{aligned}
$$

Unsat areas (red) are marked by IA.

Sat example by Testing

Problem P1

$$
\begin{aligned}
& (x \in[-1,0]) \vee(x \in[0,1]) \vee(x \in[1,2]) \vee(x \in[2,3]) \vee(x \in[3,4]) \\
& (y \in[-1,0]) \vee(y \in[0,1]) \vee(y \in[1,2]) \vee(y \in[2,3]) \vee(y \in[3,4]) \\
& (\operatorname{assert}(f=4 x+3 y-x y>12))
\end{aligned}
$$

Dynamic interval decomposition

Sat example by Testing

Problem P1

$$
\begin{aligned}
& (x \in[-1,0]) \vee(x \in[0,1]) \vee(x \in[1,2]) \vee(x \in[2,3]) \vee(x \in[3,4]) \\
& (y \in[-1,0]) \vee(y \in[0,1]) \vee(y \in[1,2]) \vee(y \in[2,3]) \vee(y \in[3,4]) \\
& (\operatorname{assert}(f=4 x+3 y-x y>12))
\end{aligned}
$$

Dynamic interval decomposition

Sat example by Testing

Problem P1

$$
\begin{aligned}
& (x \in[-1,0]) \vee(x \in[0,1]) \vee(x \in[1,2]) \vee(x \in[2,3]) \vee(x \in[3,4]) \\
& (y \in[-1,0]) \vee(y \in[0,1]) \vee(y \in[1,2]) \vee(y \in[2,3]) \vee(y \in[3,4]) \\
& (\operatorname{assert}(f=4 x+3 y-x y>12))
\end{aligned}
$$

Sat solution by testing:
$x=3.33821$ and $y=1.31143$

Unsat example by IA

Problem P2

$(x \in[-2,0]) \vee(x \in[0,2])$
$(y \in[-1,1]) \vee(y \in[1,3])$
$\left(\right.$ assert $\left.\left(f=x^{3}-2 x^{2}\left(1+y^{2}\right)-2 y(x+y)+y>6.5\right)\right)$

Unsat example by IA

Problem P2

$(x \in[-2,-1]) \vee(x \in[-1,0]) \vee(x \in[0,2])$
$(y \in[-1,0]) \vee(y \in[0,1]) \vee(y \in[1,3])$
$\left(\operatorname{assert}\left(f=x^{3}-2 x^{2}\left(1+y^{2}\right)-2 y(x+y)+y>6.5\right)\right)$

Unsat example by IA

Problem P2

$(x \in[-2,-1]) \vee(x \in[-1,0]) \vee(x \in[0,1]) \vee(x \in[1,2])$
$(y \in[-1,0]) \vee(y \in[0,1]) \vee(y \in[1,3])$
$\left(\operatorname{assert}\left(f=x^{3}-2 x^{2}\left(1+y^{2}\right)-2 y(x+y)+y>6.5\right)\right)$

Unsat example by IA

Problem P2 Unsatifiable

$$
\begin{aligned}
& (x \in[-2,-1]) \vee(x \in[-1,0]) \vee(x \in[0,1]) \vee(x \in[1,2]) \\
& (y \in[-1,0]) \vee(y \in[0,1]) \vee(y \in[1,2]) \vee(y \in[2,3]) \\
& \left(\operatorname{assert}\left(f=x^{3}-2 x^{2}\left(1+y^{2}\right)-2 y(x+y)+y>6.5\right)\right)
\end{aligned}
$$

Outline

Aim Combination of SAT solver and two theories

- Interval Arithmetic: aiming to decide unsatisfiability
- Testing: aiming to decide satisfiability

CONTENT

- Introduction
- Interval arithmetic and Testing
- Framework of SMT solver
- Preliminary experiments

Preliminary experiments: QF_NRA of SMT-LIB and problem P

Initial interval decomposition

$$
x \geq 0
$$

$[0,0.5] \vee \ldots \vee[2.0,2.5]$

IA Number of variables

- AF1, AF2: ≥ 15
- CAI1: < 15
- CAI2: <= 10

Testing
2-random ticks

Problem	No. Variables	No. Constraints	Interval Arithmetic	Result	Time (s)
P	13	10	AF1	unknown	0.031
P	13	10	AF2	unknown	0.109
P	13	10	CAI1	UNSAT	0.046
matrix-1-all-01	13	10	CAI2	UNSAT	0.796
matrix-1-all-2	14	22	AF2	unknown	0.093
matrix-1-all-3	19	21	AF1	SAT	175.968
matrix-1-all-4	16	20	AF1	SAT	20.328
matrix-1-all-11	19	17	AF1	SAT	17.687
matrix-1-all-14	14	16	CAI1	SAT	66.484
matrix-1-all-15	10	14	CAI1	unknown	26.656
matrix-1-all-18	6	10	CAI2	SAT	14.156
matrix-1-all-20	16	16	AF2	SAT	1.062
matrix-1-all-21	13	17	AF1	SAT	2753.72
matrix-1-all-24	11	12	CAI1	unknown	50.828
matrix-1-all-33	13	6	CAI1	SAT	68.756
matrix-1-all-34	20	14	AF2	SAT	3349.89
matrix-1-all-36	18	19	AF2	SAT	54.015
matrix-1-all-37	19	46	AF2	unknown	3730.66
matrix-1-all-39	19	23	AF2	unknown	85.781
matrix-1-all-43	16	9	AF2	unknown	0.343
matrix-2-all-6	17	10	AF2	unknown	15.75

Experiments: problem \mathbf{P}

$$
\begin{aligned}
& \exists x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}, x_{10} \in[0,3] x_{11} \in[-3,2] x_{12} \in[-1,3] . \\
& x_{1} x_{3}-x_{1} x_{7}>0 \wedge x_{1} x_{2}-x_{1} x_{6}>0 \wedge x_{1} x_{3}-x_{3}>0 \wedge \\
& x_{1} x_{2}-x_{4}>0 \wedge x_{7}-x_{3}>0 \wedge x_{6}-x_{2}>0 \wedge \\
& x_{8}+x_{6} x_{9}-x_{10}>0 \wedge x_{3} x_{9}-x_{7} x_{9}>0 \wedge x_{2} x_{9}-x_{6} x_{9}>0 \wedge \\
& x_{11}^{3}-2 x_{11}^{2}-2 x_{11}^{2} x_{12}^{2}-2 x_{12} x_{11}-2 x_{12} x_{12}+x_{12}-6.5>0
\end{aligned}
$$

Experiments: problem \mathbf{P}

$$
\begin{aligned}
& \exists x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}, x_{10} \in[0,3] x_{11} \in[-3,2] x_{12} \in[-1,3] . \\
& x_{1} x_{3}-x_{1} x_{7}>0 \wedge x_{1} x_{2}-x_{1} x_{6}>0 \wedge x_{1} x_{3}-x_{3}>0 \wedge \\
& x_{1} x_{2}-x_{4}>0 \wedge x_{7}-x_{3}>0 \wedge x_{6}-x_{2}>0 \wedge \\
& x_{8}+x_{6} x_{9}-x_{10}>0 \wedge x_{3} x_{9}-x_{7} x_{9}>0 \wedge x_{2} x_{9}-x_{6} x_{9}>0 \wedge \\
& x_{11}^{3}-2 x_{11}^{2}-2 x_{11}^{2} x_{12}^{2}-2 x_{12} x_{11}-2 x_{12} x_{12}+x_{12}-6.5>0
\end{aligned}
$$

Initial interval decomposition

$$
\begin{aligned}
& \left(x_{0} \in[0,1]\right) \vee\left(x_{0} \in[1,2]\right) \vee\left(x_{0} \in[2,3]\right) \\
& \left(x_{1} \in[0,1]\right) \vee\left(x_{1} \in[1,2]\right) \vee\left(x_{1} \in[2,3]\right) \\
& \ldots \\
& \left(x_{10} \in[0,1]\right) \vee\left(x_{10} \in[1,2]\right) \vee\left(x_{10} \in[2,3]\right) \\
& \left(x_{11} \in[-1,0]\right) \vee\left(x_{11} \in[0,1]\right) \vee\left(x_{11} \in[1,2]\right) \vee\left(x_{11} \in[2,3]\right) \\
& \left(x_{12} \in[-1,0]\right) \vee\left(x_{12} \in[0,1]\right) \vee\left(x_{12} \in[1,2]\right) \vee\left(x_{12} \in[2,3]\right)
\end{aligned}
$$

Experiments: problem \mathbf{P}

$$
\begin{aligned}
& \exists x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}, x_{10} \in[0,3] x_{11} \in[-3,2] x_{12} \in[-1,3] . \\
& x_{1} x_{3}-x_{1} x_{7}>0 \wedge x_{1} x_{2}-x_{1} x_{6}>0 \wedge x_{1} x_{3}-x_{3}>0 \wedge \\
& x_{1} x_{2}-x_{4}>0 \wedge x_{7}-x_{3}>0 \wedge x_{6}-x_{2}>0 \wedge \\
& x_{8}+x_{6} x_{9}-x_{10}>0 \wedge x_{3} x_{9}-x_{7} x_{9}>0 \wedge x_{2} x_{9}-x_{6} x_{9}>0 \wedge \\
& x_{11}^{3}-2 x_{11}^{2}-2 x_{11}^{2} x_{12}^{2}-2 x_{12} x_{11}-2 x_{12} x_{12}+x_{12}-6.5>0
\end{aligned}
$$

Initial interval decomposition

$$
\begin{aligned}
& \left(x_{0} \in[0,1]\right) \vee\left(x_{0} \in[1,2]\right) \vee\left(x_{0} \in[2,3]\right) \\
& \left(x_{1} \in[0,1]\right) \vee\left(x_{1} \in[1,2]\right) \vee\left(x_{1} \in[2,3]\right)
\end{aligned}
$$

$$
\left(x_{10} \in[0,1]\right) \vee\left(x_{10} \in[1,2]\right) \vee\left(x_{10} \in[2,3]\right)
$$

$$
\left(x_{11} \in[-1,0]\right) \vee\left(x_{11} \in[0,1]\right) \vee\left(x_{11} \in[1,2]\right) \vee\left(x_{11} \in[2,3]\right)
$$

$$
\left(x_{12} \in[-1,0]\right) \vee\left(x_{12} \in[0,1]\right) \vee\left(x_{12} \in[1,2]\right) \vee\left(x_{12} \in[2,3]\right)
$$

$$
x_{11}^{3}-2 x_{11}^{2}-2 x_{11}^{2} x_{12}^{2}-2 x_{12} x_{11}-2 x_{12} x_{12}+x_{12}-6.5>0
$$

Future works: How to handle polynomial equality (idea)

$$
\exists x_{1} \in\left[l_{1}, h_{1}\right] \cdots x_{n} \in\left[l_{n}, h_{n}\right] . \bigwedge_{j}^{m} f_{j}\left(x_{1}, \cdots, x_{n}\right)>0 \wedge g\left(x_{1}, \cdots, x_{n}\right)=0
$$

Applying Intermediate value theorem

$$
\exists x \in\left[l_{1}, h_{1}\right] y \in\left[l_{2}, h_{2}\right] . f(x, y)>0 \wedge g(x, y)=0
$$

- By interval arithmetic

$$
\begin{gathered}
\forall x_{1} \in\left[l_{1}, h_{1}\right] \cdots x_{n} \in\left[l_{n}, h_{n}\right] . \\
\bigwedge_{j}^{m} f_{j}\left(x_{1}, \cdots, x_{n}\right)>0 .
\end{gathered}
$$

- By testing
- $g\left(a_{1}, a_{2}, \ldots, a_{n}\right)>0$
- $g\left(b_{1}, b_{2}, \ldots, b_{n}\right)<0$

Future works

(1) Test data generation strategies

- Reducing number of test cases for generation
(2) Dynamic interval decomposition
- Heuristic strategies for learnt clauses
- Based on bounds of constraints getting from IA
- The number of test cases are taken
- Scalability and practical experiments
- Number of variables: >20

Thank you :)

Question?

