
GlueMiniSat2.2.5:
A fast SAT solver with

 an aggressive acquiring strategy
 of glue clauses

Hidetomo NABESHIMA*

Koji IWANUMA*

Katsumi INOUE**

* University of Yamanashi
** National Institute of Informatics

1

GlueMiniSat 2.2.5

 Application category of SAT 2011 competition
 1st in CPU time UNSAT class
 2nd in CPU time SAT+UNSAT class
 2nd in Wall-clock time UNSAT class (including parallel SAT solvers)

2

Boolean satisfiability testing program (a SAT solver)

 Variant of LBD which is an evaluation criteria of learnt clauses

 Aggressive restart strategy to get good learnt clauses

[Eén and Sörensson 03] [Audemard and Simon 09]

MiniSat2.2 + Glucose1.0 + α

Outline
 SAT
 CDCL (Conflict Driven Clause Learning) Algorithm

 [Silva 99, Bayardo 97]

 Evaluation Criteria of Learnt Clauses
 Literal Blocks Distance [Audemard 09]

 GlueMiniSat2.2 & 2.2.5
 Experimental Results

 SAT 2009 Application
 SAT 2011 Application
 Covering Arrays

 Conclusion

3

Determines the satisfiability of a given formula

SAT
 Boolean satisfiability testing
 First NP-complete problem [Cook, 1971]
 Usually, represented in CNF formula

（a∨b∨c)∧(￢a∨￢c)∧(￢a∨c)

Purpose

Literals
Boolean variables or their negations

Clauses
Disjunctions of literals

Progress in SAT Solvers
 Dramatic performance improvement from the late 90s
 Can handle problems consisting of millions of variables
 Various techniques in the state-of-the-art SAT solvers

 Basic procedure: DPLL [Davis+ 62]

 Conflict driven clause learning (CDCL) [Silva+ 99, Bayardo+ 97]

 Backjumping [Silva+ 99, Bayardo+ 97]

 Fast unit propagation by watched literals [Moskewicz +01]

 Effective variable selection heuristics [Moskewicz+ 01]

 Restart strategy [Gomes+ 98, Luby+ 93]

 Phase caching [Pipatsrisawat+ 07]

 Fast identification of satisfied clauses
[Jain+ 07][Schubert+ 07][Sorensson+ 08]

 Canonical SAT solver: MiniSat [Eén+ 03]

Problem Solving by SAT

6

 Planning / scheduling
 Hardware / software verification
 Theorem proving
 Constraint satisfaction / optimization problems

 Sugar [Tamura 08] which is a SAT-based CSP solver got
first places in 3 categories of 2009 CSP solver competition

Fast SAT solver

Original
problem

SAT
problem

A model
of SAT Solution

Encode

Decode

Outline
 SAT
 CDCL (Conflict Driven Clause Learning) Algorithm

 [Silva 99, Bayardo 97]

 Evaluation Criteria of Learnt Clauses
 Literal Blocks Distance [Audemard 09]

 GlueMiniSat2.2.0 & 2.2.5
 Experimental Results

 SAT 2009 Application
 SAT 2011 Application
 Covering Arrays

 Conclusion

7

{+1}
{+1,+2,+4}
{+2,+9}
{-1,+4,+9}
{-2,+3}
{-2,-5,+6}
{-1,-4,+5}
{-5,-3,+7}
{-6,+8}
{-7,-8}

CDCL Algorithm [Silva 99, Bayardo 97]

Lv 0

Lv 1

Lv 2

+1

+2 +3

+4 +6 +7 +5

Decision Stack

(1) Finds unit clauses and satisfies them (unit propagation)
(2) If no unit clause, selects an unassigned var and assigns 1 or 0
(3) If a conflict occurs, analyzes a cause of the conflict and learns

the negation of the cause as a clause, and then backjumps to
the level in which the learned clause becomes unit

Implication

Decision
Conflict!

← UC

2 is selected and assigned
as true by heuristics ← UC

4 is selected and assigned
as true by heuristics ← UC

← UC

← UC

Conflict Driven Clause Learning

Reason Side

Conflict Side

Decision
Variable

{+1}
{+1,+2,+4}
{+2,+9}
{-1,+4,+9}
{-2,+3}
{-2,-5,+6}
{-1,-4,+5}
{-5,-3,+7}
{-6,+8}
{-7,-8}

Conflict!

Lv 0

Lv 1

Lv 2

+1

+2 +3

+4 +6 +7 +5

Decision Stack

+1@0

+4@2 +5@2

+6@2

+7@2

+8@2

-8@2

+3@1

+2@1

First UIP

If +2 ∧ +5 ∧ +3, then contradicts

Learns the clause -2 ∨ -5 ∨ -3

Implication Graph

Management of Learnt Clauses

 Learnt clauses are useful to prevent same conflicts
 However there is a trade-off:

 It is difficult to preserve all learnt clauses since it consumes
memory and unit propagations becomes slow.

 If learnt clauses are not preserved, the search process
repeats same conflicts and becomes slow

 Hence, CDCL solvers reduce learnt clauses periodically

10

How to select learnt clauses which will be preserved?

Evaluation Criteria of Learnt Clauses
 Length

 Short learnt clauses have high pruning power

 Activity
 Chaff [Moskewicz+ 01] , MiniSat [Eén+ 03]
 Defines activity for each learnt clause, removes clauses whose activity

is less than a certain threshold
 Activity is raised when the clause is used to produce a contradiction
 Least recently used (LRU) learnt clauses are removed

 LBD (Literal Blocks Distance)
 LBD is a measure to evaluate the possibility of use of learnt clauses in

the future
 Glucose1.0 [Audemard and Simon, 09]

 1st in UNSAT class and 2nd in SAT+UNSAT class at Application category
of SAT 2009 Competition

11

LBD

12

} , , , , , { 654321 LLLLLLLearnt clause

Decision level 7 5 5 2 2 2

Decision Stack

Lv 0

Lv 1

Lv 2

Lv 3

Lv 4

Lv 5

Lv 6

Lv 7

-L4 -L5 -L6

-L3 -L2

-L1

Implication

Decision

Conflict

 A set of variables assigned at the same DLV is called a block
 LBD of a clause C is defined as # blocks in C

Blocks

LBD

 Variables in a block have possibility that they will be assigned
as false at the same time by unit propagations

 LBD can be considered as a generalization of length criteria
13

} , , , , , { 654321 LLLLLLLearnt clause

Decision level 7 5 5 2 2 2

Glue Clauses

Glucose never removes glue clauses
14

} , , , , , { 654321 LLLLLLLearnt clause

Decision level 7 5 5 5 5 5

L1 is propagated when L2 ～ L6 are assigned as false

 Especially, clauses whose LBD=2 are called glue clauses
 Glue clauses promote unit propagations even if they are long

GlueMiniSat2.2
GlueMiniSat2.2 = MiniSat2.2 + Glucose1.0

15

MiniSat
2.0

MiniSat
2.2

Glucose
1.0

GlueMiniSat
2.2

Var selection
heuristics VSIDS VSIDS VSIDS VSIDS

Randomness 2% 0% 2% 0%

Evaluation criteria
of learnts LRU LRU LBD LBD

Reduction strategy
of learnts

Exponential

(#C/3)*1.1r
Exponential

(#C/3)*1.1d
Linear

20000+500x

Linear

20000+10000x

Restart strategy
Exponential
100 * 1.5r Luby Dynamic

(LBD)
Dynamic

(LBD)

Phase caching
Fast identification of

satisfied clauses
Memory

management malloc Single area malloc Single area

0

100

200

300

400

500

600

700

800

900

1000

60 80 100 120 140 160

CP
U

 ti
m

e
lim

it
[s

ec
]

solved

MiniSat2.0

MiniSat2.2

glucose1.0

GlueMiniSat2.2.0

Experimental Results in SAT 2009 Application

16

(a) Aggressive restart strategy
(b) Expanding a set of preserved learnt clauses which are

never removed

From Development of GlueMiniSat 2.2

17

We got the following assumptions:
(a) Important to promote acquiring clauses with small LBD
(b) For unsatisfiability proof, important to preserve useful

learned clauses as many as possible

Expanding Preserved Learnts
 Low performance if it holds learnts with LBD ≦ 3

18

0

100

200

300

400

500

600

700

800

900

1000

70 90 110 130 150

CP
U

 T
im

e
[s

ec
]

solved

MiniSat2.0

MiniSat2.2

glucose1.0

GlueMiniSat2.2

GlueMiniSat2.2
LBD <= 3

Disimproved

Details of LBD Computation
 A clause C is glue

(1) when C is generated from a conflict and the LBD is 2
(2) when C is used in unit propagations and the LBD is 2

(LBD is recalculated by the current truth assignment)

(2) (1)

Glue clauses

(2) is more dominant than (1)

19

When? (1) generated
 from a conflict

(2) used
in unit propagations

Leant clause

Decision Lv

LBD 3 3

Pseudo LBD
3

same as LBD
4

LBD + 1

Pseudo LBD

 GlueMiniSat holds learnt clauses with pseudo LBD ≦ 3
 A learnt clause from (1) always contains unit literal block. Hence, the

clause somewhat promotes unit propagations even if LBD is 3
 A learnt clause from (2) may not contain unit literal block.

Hence, GlueMiniSat holds learnts with pseudo LBD ≦ 3 (LBD ≦ 2)
20

} , , , , , { 654321 LLLLLL

7 5 5 5 4 4

} , , , , , { 654321 LLLLLL

7 7 5 5 4 4

LBD vs Pseudo LBD

21

0

100

200

300

400

500

600

700

800

900

1000

70 90 110 130 150 170

CP
U

 T
im

e
[s

ec
]

solved

MiniSat2.0

MiniSat2.2

glucose1.0

GlueMiniSat2.2

GlueMiniSat2.2
LBD <= 3
Pseudo LBD <= 3

Slightly
improved

(a) Aggressive restart strategy

(b) Expanding a set of preserved learnt clauses

From Development of GlueMiniSat 2.2

22

We got the following assumptions:
(a) Important to promote acquiring glue clauses
(b) For unsatisfiability proof, important to preserve

learned clauses which will be used in the future

Restart Strategy of GlueMiniSat

23

Restarts if either condition is satisfied
Purpose is to reduce DLVs and get small LBD clauses

 Restart strategy for DLVs

 Restart strategy for LBDs (same as Glucose1.0)

Local avg. of DLVs
over the last 50 conflicts

Global avg. of DLVs * 1.0 >

Local avg. of LBDs over
the last 50 learnt clauses Global avg. of LBDs * 0.8 >

0

100

200

300

400

500

600

700

800

900

1000

70 90 110 130 150 170

CP
U

 T
im

e
[s

ec
]

solved

MiniSat2.0

MiniSat2.2

glucose1.0

GlueMiniSat2.2

GlueMiniSat2.2
LBD <= 3
Pseudo LBD <= 3

Pseudo LBD <= 3
Restart by DLV
Pseudo LBD <= 3
Restart by DLV + LBD

Results of Restart by DLV and LBD

24

Slightly
improved

Experimental Results in SAT 2009 Application

 Enhanced the strength for UNSAT
 Restarts very aggressively

25

Environment: Mac mini, Core 2 Duo 1.83GHz, 2GB RAM
1000 CPU sec / instance

MiniSat
2.0

Glucose
1.0

MiniSat
2.2

GlueMiniSat

2.2 Pseudo
LBD + AR

solved
(SAT / UNSAT)

109
(49 / 60)

133
(52 / 81)

141
(60 / 81)

154
(60 / 94)

161
(61 / 100)

Average time
[sec] 193 206 167 197 199

Restart speed
[confs/restart] 14229 1152 528 456 117

CPU Time
Gold Silver Bronze

SAT+UNSAT Glucose2.0 GlueMiniSat Lingeling

SAT contrasat
(MiniSat hack)

cir_minisat
(MiniSat hack)

mphasesat64

UNSAT GlueMiniSat Glucose2.0 QuteRSat

WC Time
Gold Silver Bronze

SAT+UNSAT Plingeling // CryptoMiniSat // ppfolio //

SAT ppfolio // Plingeling // contrasat
(MiniSat hack)

UNSAT CryptoMiniSat // GlueMiniSat Plingeling //

SAT 2011 Application

// means a parallel solver which uses multiple CPU cores 26

• Strong for UNSAT
• Weak for SAT (19th of 20 solvers in final stage)

Conclusion
 GlueMiniSat is strong for UNSAT proof

 GlueMiniSat holds more glue clauses than Glucose
 Prevents losing useful clauses required to prove unsatisfiability

 GlueMiniSat restarts more aggressively than Glucose
 Contributes to acquire good learnt clauses

Future Work
 Comparison with strong algorithms for SAT
 Extension from sequential to parallel

27

	GlueMiniSat2.2.5:�A fast SAT solver with� an aggressive acquiring strategy� of glue clauses�
	GlueMiniSat 2.2.5
	Outline
	SAT
	Progress in SAT Solvers
	Problem Solving by SAT
	Outline
	CDCL Algorithm [Silva 99, Bayardo 97]
	Conflict Driven Clause Learning
	Management of Learnt Clauses
	Evaluation Criteria of Learnt Clauses
	LBD
	LBD
	Glue Clauses
	GlueMiniSat2.2
	Experimental Results in SAT 2009 Application
	From Development of GlueMiniSat 2.2
	Expanding Preserved Learnts
	Details of LBD Computation
	Pseudo LBD
	LBD vs Pseudo LBD
	From Development of GlueMiniSat 2.2
	Restart Strategy of GlueMiniSat
	Results of Restart by DLV and LBD
	Experimental Results in SAT 2009 Application
	SAT 2011 Application
	Conclusion
	SAT 2011 Application
	Experimental Results in SAT 2011 Application
	スライド番号 30
	Comparison with Glucose2.0
	Hard UNSAT Instances of Covering Arrays

