CRISYS:
Constrained-system Rewriting Induction SYStem

Naoki Nishida

joint work with T. Sakata, Y. Nakano, W.-L. Ding,
M. Sakai, T. Sakabe, K. Kusakari

Nagoya University

Kickoff Meeting of Austria—Japan Joint Project
Gamagori, July 4, 2012

25



My Very Boring Work in the First Semester (2005-)

C-programming exercise class
o 1 TA to mark reports.
@ 70~ students (60~ are active).

@ 30 exercises (3 in a week) and 10" additional ones (1 in a week).

25



My Very Boring Work in the First Semester (2005-)

C-programming exercise class
o 1 TA to mark reports.
@ 70~ students (60~ are active).

@ 30 exercises (3 in a week) and 10" additional ones (1 in a week).

@ 180" reports to review in a week (2K in a semester).

25



My Very Boring Work in the First Semester (2005-)

C-programming exercise class

1 TA to mark reports.
70~ students (60~ are active).

30~ exercises (3 in a week) and 10" additional ones (1 in a week).

180" reports to review in a week (2K in a semester).

Hard to prove procedural programs, especially written by students.

N

25



My Very Boring Work in the First Semester (2005-)

C-programming exercise class

o 1 TA to mark reports.

@ 70~ students (60~ are active).

@ 30 exercises (3 in a week) and 10" additional ones (1 in a week).
@ 180" reports to review in a week (2K™ in a semester).
°

Hard to prove procedural programs, especially written by students.

To make this work interesting, | started a research on automated inductive
theorem proving on constrained TRSs (2005).

N

25



Our Research Topics on Constrained TRSs

@ Inductionless induction based on completion [Furuichi et al, 08]
» Transformation of C programs into constrained TRSs

Rewriting induction [Sakata et al, 09]
» main part of theorem proving

@ Termination prover for constrained TRSs [Sakata et al, 11]
> necessary in the Rl method

@ Lemma generation [Nakabayashi et al, 10]
> necessary in many cases

@ Verification via tree homomorphisms [Takakuwa et al, 11]

> light equivalence prover

Constrained tee automata [Nishida et al, 12]
> necessary(?) for automating the Rl method

25



Constrained Rewriting [Bouhoula et al, 08][Furuichi et al, 08]

e Given

» F a set of uninterpretable function symbols,

» G a set of interpretable function symbols,

> P a set of predicate symbols,

» S a structure for G and P (e.g., supported by SMT solvers),

a constrained TRS R is a finite set of constrained rewrite rules

I—=r]o]

where | € T(FUG,V)\V, re T(FUG,V), and ¢ is a formula
over G, P, V.
o C[lo] =r Clro] iff
I—=ro] € R, Vx € fv(p). o(x) € T(G,V), and (o) is S-valid.



Example of Constrained TRSs (LIA constraints)

o F={sum}

° ngA = { 07 S, P, add },
°7DLIA:{:’ 7éa < Sv >, Z}'
@ Sia with the universe N and

» 0SuA =,
> sSUA(x) 1= x + 1,
> pSL'A(X) =x—1,
> add‘Z“A(x,y) = x4y,
> X =°UA x 1= Xx =y,
( sum(x) —
sum(s(x ))—>add(s( ), sum(x))
add(0,y) —
Rsum = add(s(x),y) — s(add( y))
add(p(x), Y)%p(add( y))
s(p(x)) —
p(s(x)) = x

sum(s'(0)) —x add(s*°(0), sum(s°(0))) —

x<0]
[x=0]

* 55(0)

Y

5/25



Example: outline of verifying C programs [Furuichi et al, 08]

C program Specification
int suml(int x){ sum(x)=0 if x <0
int i=0, z=0; sum(s(x)) = s(x) + sum(x)
for( i=0 ; i<=x ; i++ ){ if x>0
z += 1i;
}
return z;
}

1. The C program and specification are transformed and simplified into

suml(x) — Ui(x,0,0)
Rsum1 = RpiusU § U1(x, i, z) = U1(x,s(i), plus(z,i)) [/ < x]
Ui(x,i,z) = z [-(i < x)]
Raum = e
Rolus = {plus(0,y) =y plus(s(x),y) = s(plus(x,y)) ...}
2. If sum1(x) ~ sum(x) is an inductive theorem of Rsym1 U Reym, then

suml satisfies the specification on sum.
6/25



Our Inductive Theorem Prover

@ has the own SMT solver for LIA.

@ has the own termination prover.
@ automatically proves that sum1(x) & sum(x) is an inductive theorem
of Rsuml U Rsum-
> An appropriate lemma is automatically generated.

25



Why Implemented an SMT Solver?

@ When proving suml(x) ~ sum(x), satisifiability of the following
formula has to be decided:

Vx. Vxo. Vi. Vxs.
(x+1>iAx+1l>xa3Ax=xAi+1l=x3) = —x3> x7)

@ Satisfiability of LIA formulas is decidable.
@ Yices, CVC3, Z3 return “unknown’.

25



Rewriting Induction for Constrained Equations [Sakata et al, 09]

If

(£0,0) = (&0, Ho) F (€1, Ha) b -+ - = (En, Ha) = (0, Ho)
then all equations in £ are inductive theorems of R, where
Simplification (EU{s~ C[lo] [¢]},H)F (EU{s~Clra]l [ ¢ ]}, H)

EQ-Deletion

Deletion

Expansion

where | - r[¢] € RUH, ¢ is S-sat, and ¢ = o(v)) is
S-valid.
(Eu{Clsl=Clt o1}, H)

FEU{Cls]=Clt] [¢ns#t]}H)
where s, t € T(G,V) and Var(s, t) C £v(9).
(Eu{s~t[o]},H)F(£H)
where s =t or ¢ is not S-sat.

(EU{s~t[o]hH)

(€U Bpdy(s > t []),HU{s =t []})
where RUH U {s — t [ ¢ ]} terminates, p is an R-complete
occurrence, and Expd,(s — t [ ¢ ]) is the set of critical
pairs between s — t [ ¢ ] and rules in R at position p of s.

9/25



Standard Strategy for Inferences

Given R and &, apply the following steps to (€, () until E becomes empty:

apply Simplification as much as possible,
apply EQ-Deletion once to each equation,

apply Deletion as much as possible,

e

if £ is empty, then halt successfully, and o/w, apply Expansion once.
If Expansion is not applicable, then halt unsuccessfully.

10/25



Divergence of Constrained Equations

(1) suml(x) — Ui(x,s(0),0)

(2) Ui(x,i,z) — Ul(x s(i), plus(z, /) [ < x]
Rsum1iURsum = (3) (X i Z) |I - < X]] Uprlus

(4)  sum(x) — [x<0]

(5) sum(s(x)) — plus(sum(x) s(x)) [x>0]

E={ suml(x)~sum(x) }
The proof of £ has the following divergence:

plus(U1(x,s(0),0),s(x)) =~ U1 (s(x), s(0), plus(0, s(0))) [0<
plus(U1(x,s%(0),s(0)),s(x)) =~ U1 (s(x),s3(0), plus(s(0),s(0))) [

A desired lemma is

plus(Ui(x, i, z),s(x)) = Ui(s(x),s(), plus(i, z)) [ i < s(x) ]

11/25



How to Get a (Candidate of) Lemma Equations

(1) suml(x) — Ui(x,s(0),0)

(2) Ui(x,i,z) — U1( s(i),plus(z, i) [ < x]
ReumiURsum = { (3) U1(x,i,z) — [-i<x] pURpus

(4)  sum(x) — [x<0]

(5) sum(s(x)) — plus(sum(x) s(x)) [x>0]

E={ suml(x)~sum(x) }
The proof of £ has the following divergence:

plus(U1(x,s(0),0),s(x)) ~ U1 (s(x),s%(0), plus(0,s(0))) [0 <
plus(U1(x,s%(0),5(0)),s(x)) =~ U1 (s(x),s3(0), plus(s(0),s>(0))) [

A desired lemma is

plus(Ui(x, 7, z),s(x)) = Ui(s(x),s(7), plus(i, z)) [ 7 < s(x) ]

12 /25



Strategy with Lemma Discovery [Nakabayashi et al, 09]

Given R and &, apply the following steps to (£, () until £ becomes empty:

1. apply Simplification by as much as possible,

N

> w

apply EQ-Deletion once to each equation,

apply Deletion as much as possible,
if an equation is diverging and the equation can be generalized to e,
then try proving ({e}, 0):
» if succeeded by ({e},0) -+ (0,H'), then add H' to H and go to 1,
» o/w, go to the next.
if £ is empty, then halt successfully, and o/w, apply Expansion once.
If Expansion is not applicable, then halt unsuccessfully.

13 /25



Our Research Topics on Constrained TRSs

@ Inductionless induction based on completion [Furuichi et al, 08]
» Transformation of C programs into constrained TRSs

Rewriting induction [Sakata et al, 09]
» main part of theorem proving

@ Termination prover for constrained TRSs [Sakata et al, 11]
> necessary in the Rl method

@ Lemma generation [Nakabayashi et al, 10]
> necessary in many cases

@ Verification via tree homomorphisms [Takakuwa et al, 11]

> light equivalence prover

Constrained tee automata [Nishida et al, 12]
> necessary(?) for automating the Rl method

14 /25



Experiments of Transforming C Programs for sum
[Ishigaki et al, 07][Takakuwa et al, 09]

@ An exercise of C Programming Exercise Class in 2006

» Write a function to, given n, compute the summation from 0 to n,
without recursive calls.

@ We succeeded in transforming 59 programs into constrained TRSs.

o After simplifying them, many programs were converted to the similar
forms.

15/25



Example of Transforming into the Same

int suml(int x){ int suml(int x){
int i=0, z=0; int i=0, z=0;
for( i=0 ; i<=x ; i++ ){ while( i<= x ){

z += i; i++; z += i-1;
} }
return z; return z;
} }

Both of the above are transformed into
suml(x) — Ui(x,0,0)

Rsum1 = Rplus U & Ui(x, 7, 2) = Us(x,s(i), plus(z, 7)) [i < x]
Ui(x,i,z) = z [-(i < x)]

16

25



Example of Transforming into Syntactically Similar Ones

int suml(int x){ int suml(int y){
int i=0, z=0; int z=0, j=0, i=0;
for( i=0 ; i<=x ; i++ ){ for( i=0 ; i <=y ; i++ ){
z += i; zZ += 1i;
} }
return z; return z;
} }

The above are transformed into (resp.)
suml(x) — Ui(x,0,0)
7?fsuml = Rplus U Ul(Xa i,Z) — Ul(X7S(i)7 plus(z, ’)) III < X]]
Ui(x,i,z) = z [-(i < x)]
suml(y) — Ua(y,0,0,0)
;uml = RP|U5 U U2(y7 Zv.j7 ’) — U2(y7 plus(z, 1)7175(’)) |[I S y]]
Ua(y, z,Jj,1) = z [(i < y)]

17/25



Equivalence of sum1 and suml

suml(x) — Ui(x,0,0)
Rsum1 = Rplus U { Ui(x, i, z) = U1(x,s(i), plus(z, 1)) [i < x] }
Ui(x,i,z) = z [-(i < x)]

suml(y) — Ua(y,0,0,0)
;uml = Rp|us U Uz(y,Z,j, i) — U2()/a plus(z, i)aja S(i)) [[i < y]]
U2(y727.j7 I) —Zz |[_\(I S y)]]

/ .
@ suml of Reym1 and suml of R ,; are equivalent.

18 /25



Equivalence of sum1 and suml

suml(x) — Ui(x,0,0)
Rsum1 = Rplus U & U1(x, 7, 2) = Us(x,s(i), plus(z, 7)) [i < x]
Ui(x,i,z) = z [-(i < x)]

suml(y) — Ua(y,0,0,0)
;uml = Rp|us U Uz(y,Z,j, i) — U2()/a plus(z, i)aja S(i)) [[i < y]]
U2(y727.j7 I) —Zz |[_\(I S y)]]

/ .
@ suml of Reym1 and suml of R ,; are equivalent.

® Roum1 is a tree homomorphic image of R, .;:

20 /25



Tree Homomorphism H from F to T (F', V) [TATA, 07]

@ A mapping such that H(f) € T(F',{x1, -+ ,x,}) for any n-ary f €
F.
e Extended to T(F W G,V) as follows:
» H(x) = xforx € V,
» H(f(t1, -~ ,ty)) = HIf){xi— H(t)) | 1 <i<n} for f € F, and
> H(g(tr,-- . tn)) = g(H(t1),- -, H(tn)) for g € G.
@ Extended to constrained TRSs as follows:

H(R) = {H() = H(r) TH(@) | I = r [¢] € R}

In this talk, we only consider H s.t. H(¢) = ¢.
o Linear if H(f) is linear for all f € F.

21/25



Equivalence of sum1 and suml

suml(x) — Ui(x,0,0)
Rsuml = 7?'p|us U Ul(Xv i,Z) — Ul(X’S(i)v plUS(Z, ’)) II’ < X]]
Ui(x,i,z) = z [-(i < x)]

suml(y) — Ua(y,0,0,0)
;uml = Rp|us U Uz(y,Z,j, i) — U2()/a plus(z, i)aja S(i)) [[i < y]]
U2(y727.j7 I) —Zz |[_\(I S y)]]

@ suml of Reym1 and suml of R,

1 are equivalent.
® Roum1 is a tree homomorphic image of R, .;:
> Let H be a linear tree homomorphism H s.t.
* H(suml) = suml(xi)
* H(UQ) = U1(X1,X4,X2)
* H(f) = f(x1, -+, xa) for other n-ary symbols f.

» Then Roum1 = H(RL,m1)



Sufficient Condition for Equivalence between Functions

Theorem
Let

e Ry and Ry be constrained TRSs over (Fo,G,P,S) and (F1,G,P,S),
resp., obtained from C functions,

e H be a tree homomorphism from Dg, to T (Fo UG, V).
Then, fy € Dr, and fi € Dg, are equivalent if all of the following hold:
Ro = H(Ry),
arity(fy) = arity(f),
H(fl) = fb(xlv T 7Xarity(fo))'
H is linear, and

H is injective w.r.t. root symbols.

The number of H is finite, and thus, this sufficient condition is decidable.

23 /25




Experiments

@ Two exercises of C Programming Exercise Class in 2006

» Write functions sum (fib, resp.) to, given n, compute X7 ;i (the n-th
Fibonacci number, reps.), without recursive calls.

@ We succeeded in transforming 59 and 21 programs into constrained
TRSs.

24 /25



Experiments

@ Two exercises of C Programming Exercise Class in 2006
» Write functions sum (fib, resp.) to, given n, compute X7 ;i (the n-th
Fibonacci number, reps.), without recursive calls.
@ We succeeded in transforming 59 and 21 programs into constrained
TRSs.
o After simplifying them (P, -, Px), we grouped them as follows:

> if P; belongs to Group j, then the index i is minimum or Jk < i. Py
belongs to Group j and Py is a tree homomorphic image of P;.

24 /25



Experiments

@ Two exercises of C Programming Exercise Class in 2006
» Write functions sum (fib, resp.) to, given n, compute X7 ;i (the n-th
Fibonacci number, reps.), without recursive calls.
@ We succeeded in transforming 59 and 21 programs into constrained
TRSs.
o After simplifying them (P, -, Px), we grouped them as follows:

> if P; belongs to Group j, then the index i is minimum or Jk < i. Py
belongs to Group j and Py is a tree homomorphic image of P;.

’ ‘ # H groups ‘ total time ‘ ave. time ‘

sum | 59 25 16.7 sec (2412 checks) | 6.9 msec/check

fib | 21 21 3.0 sec (420 checks) | 7.1 msec/check
machine spec.: Athlon 64 X2 4800+ (2.4 GHz/L2cache 2 * 1 MB), 4GB memory

24 /25



Conclusion

@ The C programming exercise class is not so boring.

@ The framework is applicable to 1 exercise only.
o Future work:
» apply the framework to programs with arrays, pointers, etc.

25 /25



