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My Very Boring Work in the First Semester (2005–)

C-programming exercise class

1 TA to mark reports.

70− students (60− are active).

30− exercises (3 in a week) and 10+ additional ones (1 in a week).

180+ reports to review in a week (2K+ in a semester).

Hard to prove procedural programs, especially written by students.

To make this work interesting, I started a research on automated inductive
theorem proving on constrained TRSs (2005).
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Our Research Topics on Constrained TRSs

Inductionless induction based on completion [Furuichi et al, 08]
I Transformation of C programs into constrained TRSs

Rewriting induction [Sakata et al, 09]
I main part of theorem proving

Termination prover for constrained TRSs [Sakata et al, 11]
I necessary in the RI method

Lemma generation [Nakabayashi et al, 10]
I necessary in many cases

Verification via tree homomorphisms [Takakuwa et al, 11]
I light equivalence prover

Constrained tee automata [Nishida et al, 12]
I necessary(?) for automating the RI method
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Constrained Rewriting [Bouhoula et al, 08][Furuichi et al, 08]

Given
I F a set of uninterpretable function symbols,
I G a set of interpretable function symbols,
I P a set of predicate symbols,
I S a structure for G and P (e.g., supported by SMT solvers),

a constrained TRS R is a finite set of constrained rewrite rules

l → r [[ φ ]]

where l ∈ T (F ∪ G,V) \ V, r ∈ T (F ∪ G,V), and φ is a formula
over G,P,V.

C [lσ] →R C [rσ] iff
l → r [[ φ ]] ∈ R, ∀x ∈ fv(φ). σ(x) ∈ T (G,V), and σ(φ) is S-valid.
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Example of Constrained TRSs (LIA constraints)

F = { sum }
GLIA = { 0, s, p, add },
PLIA = { =, 6=, <, ≤, >, ≥ },
SLIA with the universe N and

I 0SLIA := 0,
I sSLIA(x) := x + 1,
I pSLIA(x) := x − 1,
I addSLIA(x , y) := x + y ,
I x =SLIA x := x = y ,
I . . .

Rsum =



sum(x)→ 0 [[ x ≤ 0 ]]
sum(s(x))→ add(s(x), sum(x)) [[ x ≥ 0 ]]
add(0, y)→ y

add(s(x), y)→ s(add(x , y))
add(p(x), y)→ p(add(x , y))

s(p(x))→ x
p(s(x))→ x


sum(s10(0))→R add(s10(0), sum(s9(0)))→∗R s55(0)
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Example: outline of verifying C programs [Furuichi et al, 08]

C program

int sum1(int x){

int i=0, z=0;

for( i=0 ; i<=x ; i++ ){

z += i;

}

return z;

}

Specification
sum(x) = 0 if x ≤ 0

sum(s(x)) = s(x) + sum(x)
if x ≥ 0

1. The C program and specification are transformed and simplified into

Rsum1 = Rplus∪


sum1(x)→ U1(x , 0, 0)

U1(x , i , z)→ U1(x , s(i), plus(z , i)) [[i ≤ x ]]
U1(x , i , z)→ z [[¬(i ≤ x)]]


Rsum = . . .
Rplus = { plus(0, y)→ y plus(s(x), y)→ s(plus(x , y)) . . . }

2. If sum1(x) ≈ sum(x) is an inductive theorem of Rsum1 ∪ Rsum, then
sum1 satisfies the specification on sum.
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Our Inductive Theorem Prover

has the own SMT solver for LIA.

has the own termination prover.

automatically proves that sum1(x) ≈ sum(x) is an inductive theorem
of Rsum1 ∪ Rsum.

I An appropriate lemma is automatically generated.
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Why Implemented an SMT Solver?

When proving sum1(x) ≈ sum(x), satisifiability of the following
formula has to be decided:

∀x . ∀x2. ∀i . ∀x3.
((x + 1 > i ∧ x2 + 1 > x3 ∧ x = x2 ∧ i + 1 = x3) =⇒ −x3 > x7)

Satisfiability of LIA formulas is decidable.

Yices, CVC3, Z3 return “unknown”.
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Rewriting Induction for Constrained Equations [Sakata et al, 09]

If
(E0, ∅) = (E0,H0) ` (E1,H1) ` · · · ` (En,Hn) = (∅,H0)

then all equations in E are inductive theorems of R, where

Simplification (E ∪ {s ' C [lσ] [[ φ ]]},H) ` (E ∪ {s ' C [rσ] [[ φ ]]},H)
where l → r [[ ψ ]] ∈ R ∪H, φ is S-sat, and φ⇒ σ(ψ) is
S-valid.

EQ-Deletion (E ∪ {C [s] ≈ C [t] [[ φ ]]},H)
` (E ∪ {C [s] ≈ C [t] [[ φ ∧ s 6= t ]]},H)

where s, t ∈ T (G,V) and Var(s, t) ⊆ fv(φ).

Deletion (E ∪ {s ≈ t [[ φ ]]},H) ` (E ,H)
where s ≡ t or φ is not S-sat.

Expansion (E ∪ {s ≈ t [[ φ ]]},H)
` (E ∪ Expdp(s → t [[ φ ]]),H ∪ {s → t [[ φ ]]})

where R∪H∪{s → t [[ φ ]]} terminates, p is an R-complete
occurrence, and Expdp(s → t [[ φ ]]) is the set of critical
pairs between s → t [[ φ ]] and rules in R at position p of s.
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Standard Strategy for Inferences

Given R and E , apply the following steps to (E , ∅) until E becomes empty:

1. apply Simplification as much as possible,

2. apply EQ-Deletion once to each equation,

3. apply Deletion as much as possible,

4. if E is empty, then halt successfully, and o/w, apply Expansion once.
If Expansion is not applicable, then halt unsuccessfully.
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Divergence of Constrained Equations

Rsum1∪Rsum =


(1) sum1(x)→ U1(x , s(0), 0)
(2) U1(x , i , z)→ U1(x , s(i), plus(z , i)) [[ i ≤ x ]]
(3) U1(x , i , z)→ z [[ ¬i ≤ x ]]
(4) sum(x)→ 0 [[ x ≤ 0 ]]
(5) sum(s(x))→ plus(sum(x), s(x)) [[ x ≥ 0 ]]

∪Rplus

E = { sum1(x) ≈ sum(x) }
The proof of E has the following divergence:

plus(U1(x , s(0), 0), s(x))≈ U1(s(x), s2(0), plus(0, s(0))) [[ 0 ≤ s(x) ]]
plus(U1(x , s2(0), s(0)), s(x))≈ U1(s(x), s3(0), plus(s(0), s2(0))) [[ s2(0) ≤ s(x) ]]

...

A desired lemma is

plus(U1(x , i , z), s(x)) ≈ U1(s(x), s(i), plus(i , z)) [[ i ≤ s(x) ]]
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How to Get a (Candidate of) Lemma Equations

Rsum1∪Rsum =


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Strategy with Lemma Discovery [Nakabayashi et al, 09]

Given R and E , apply the following steps to (E , ∅) until E becomes empty:

1. apply Simplification by as much as possible,

2. apply EQ-Deletion once to each equation,

3. apply Deletion as much as possible,

4. if an equation is diverging and the equation can be generalized to e,
then try proving ({e}, ∅):

I if succeeded by ({e}, ∅) ` · · · ` (∅,H′), then add H′ to H and go to 1,
I o/w, go to the next.

5. if E is empty, then halt successfully, and o/w, apply Expansion once.
If Expansion is not applicable, then halt unsuccessfully.
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Experiments of Transforming C Programs for sum
[Ishigaki et al, 07][Takakuwa et al, 09]

An exercise of C Programming Exercise Class in 2006
I Write a function to, given n, compute the summation from 0 to n,

without recursive calls.

We succeeded in transforming 59 programs into constrained TRSs.

After simplifying them, many programs were converted to the similar
forms.
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Example of Transforming into the Same

int sum1(int x){

int i=0, z=0;

for( i=0 ; i<=x ; i++ ){

z += i;

}

return z;

}

int sum1(int x){

int i=0, z=0;

while( i<= x ){

i++; z += i-1;

}

return z;

}

Both of the above are transformed into

Rsum1 = Rplus ∪


sum1(x)→ U1(x , 0, 0)

U1(x , i , z)→ U1(x , s(i), plus(z , i)) [[i ≤ x ]]
U1(x , i , z)→ z [[¬(i ≤ x)]]


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Example of Transforming into Syntactically Similar Ones

int sum1(int x){

int i=0, z=0;

for( i=0 ; i<=x ; i++ ){

z += i;

}

return z;

}

int sum1(int y){

int z=0, j=0, i=0;

for( i=0 ; i <= y ; i++ ){

z += i;

}

return z;

}

The above are transformed into (resp.)

Rsum1 = Rplus ∪


sum1(x)→ U1(x , 0, 0)

U1(x , i , z)→ U1(x , s(i), plus(z , i)) [[i ≤ x ]]
U1(x , i , z)→ z [[¬(i ≤ x)]]


R′sum1 = Rplus ∪


sum1(y)→ U2(y , 0, 0, 0)

U2(y , z , j , i)→ U2(y , plus(z , i), j , s(i)) [[i ≤ y ]]
U2(y , z , j , i)→ z [[¬(i ≤ y)]]


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Equivalence of sum1 and sum1

Rsum1 = Rplus ∪


sum1(x)→ U1(x , 0, 0)

U1(x , i , z)→ U1(x , s(i), plus(z , i)) [[i ≤ x ]]
U1(x , i , z)→ z [[¬(i ≤ x)]]


R′sum1 = Rplus ∪


sum1(y)→ U2(y , 0, 0, 0)

U2(y , z , j , i)→ U2(y , plus(z , i), j , s(i)) [[i ≤ y ]]
U2(y , z , j , i)→ z [[¬(i ≤ y)]]


sum1 of Rsum1 and sum1 of R′sum1 are equivalent.

Rsum1 is a tree homomorphic image of R′sum1:

I Let H be a linear tree homomorphism H s.t.
F H(sum1) = sum1(x1)
F H(U2) = U1(x1, x4, x2)
F H(f ) = f (x1, · · · , xn) for other n-ary symbols f .

I Then Rsum1 = H(R′
sum1).
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Tree Homomorphism H from F to T (F ′,V) [TATA, 07]

A mapping such that H(f ) ∈ T (F ′, {x1, · · · , xn}) for any n-ary f ∈
F .
Extended to T (F ] G,V) as follows:

I H(x) = x for x ∈ V,
I H(f (t1, · · · , tn)) = H(f ){xi 7→ H(ti ) | 1 ≤ i ≤ n} for f ∈ F , and
I H(g(t1, · · · , tn)) = g(H(t1), · · · ,H(tn)) for g ∈ G.

Extended to constrained TRSs as follows:

H(R) = {H(l)→ H(r) [[H(φ)]] | l → r [[φ]] ∈ R}

In this talk, we only consider H s.t. H(φ) = φ.

Linear if H(f ) is linear for all f ∈ F .

ε-free (or non-erasing) if H(f ) is not a variable for any f ∈ F .

Root-injective if root(H(f )) 6= root(H(g)) for all f and g in F such
that f 6= g .

Complete if Var(H(f )) = {x1, · · · , xn} for all n-ary f ∈ F .

Symbol-to-symbol if H(f ) is of the form f ′(xi1 , · · · , xik ) for all f ∈ F .
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Equivalence of sum1 and sum1

Rsum1 = Rplus ∪
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I Then Rsum1 = H(R′
sum1).
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Sufficient Condition for Equivalence between Functions

Theorem

Let

R0 and R1 be constrained TRSs over (F0,G,P,S) and (F1,G,P,S),
resp., obtained from C functions,

H be a tree homomorphism from DR1 to T (F0 ∪ G,V).

Then, f0 ∈ DR0 and f1 ∈ DR1 are equivalent if all of the following hold:

R0 = H(R1),

arity(f0) = arity(f1),

H(f1) = f0(x1, · · · , xarity(f0)),
H is linear, and

H is injective w.r.t. root symbols.

The number of H is finite, and thus, this sufficient condition is decidable.
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Experiments

Two exercises of C Programming Exercise Class in 2006
I Write functions sum (fib, resp.) to, given n, compute Σn

i=0i (the n-th
Fibonacci number, reps.), without recursive calls.

We succeeded in transforming 59 and 21 programs into constrained
TRSs.

After simplifying them (P1, · · · ,Pk), we grouped them as follows:
I if Pi belongs to Group j , then the index i is minimum or ∃k < i . Pk

belongs to Group j and Pk is a tree homomorphic image of Pi .

# groups total time ave. time

sum 59 25 16.7 sec (2412 checks) 6.9 msec/check

fib 21 21 3.0 sec (420 checks) 7.1 msec/check
machine spec.: Athlon 64 X2 4800+ (2.4 GHz/L2cache 2 * 1 MB), 4GB memory
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Conclusion

The C programming exercise class is not so boring.

The framework is applicable to 1 exercise only.

Future work:
I apply the framework to programs with arrays, pointers, etc.
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