CRISYS:
 Constrained-system Rewriting Induction SYStem

Naoki Nishida

joint work with T. Sakata, Y. Nakano, W.-L. Ding, M. Sakai, T. Sakabe, K. Kusakari

Nagoya University

Kickoff Meeting of Austria-Japan Joint Project Gamagori, July 4, 2012

My Very Boring Work in the First Semester (2005-)

C-programming exercise class

- 1 TA to mark reports.
- 70^{-}students (60^{-}are active).
- 30^{-}exercises (3 in a week) and 10^{+}additional ones (1 in a week).

My Very Boring Work in the First Semester (2005-)

C-programming exercise class

- 1 TA to mark reports.
- 70^{-}students (60^{-}are active).
- 30^{-}exercises (3 in a week) and 10^{+}additional ones (1 in a week).
- 180^{+}reports to review in a week $\left(2 \mathrm{~K}^{+}\right.$in a semester).

My Very Boring Work in the First Semester (2005-)

C-programming exercise class

- 1 TA to mark reports.
- 70^{-}students (60^{-}are active).
- 30^{-}exercises (3 in a week) and 10^{+}additional ones (1 in a week).
- 180^{+}reports to review in a week $\left(2 \mathrm{~K}^{+}\right.$in a semester).
- Hard to prove procedural programs, especially written by students.

My Very Boring Work in the First Semester (2005-)

C-programming exercise class

- 1 TA to mark reports.
- 70^{-}students (60^{-}are active).
- 30^{-}exercises (3 in a week) and 10^{+}additional ones (1 in a week).
- 180^{+}reports to review in a week $\left(2 \mathrm{~K}^{+}\right.$in a semester).
- Hard to prove procedural programs, especially written by students.

To make this work interesting, I started a research on automated inductive theorem proving on constrained TRSs (2005).

Our Research Topics on Constrained TRSs

- Inductionless induction based on completion [Furuichi et al, 08]
- Transformation of C programs into constrained TRSs
- Rewriting induction [Sakata et al, 09]
- main part of theorem proving
- Termination prover for constrained TRSs [Sakata et al, 11]
- necessary in the RI method
- Lemma generation [Nakabayashi et al, 10]
- necessary in many cases
- Verification via tree homomorphisms [Takakuwa et al, 11]
- light equivalence prover
- Constrained tee automata [Nishida et al, 12]
- necessary(?) for automating the RI method

Constrained Rewriting [Bouhoula et al, 08][Furuichi et al, 08]

- Given
- \mathcal{F} a set of uninterpretable function symbols,
- \mathcal{G} a set of interpretable function symbols,
- \mathcal{P} a set of predicate symbols,
- \mathcal{S} a structure for \mathcal{G} and \mathcal{P} (e.g., supported by SMT solvers),
a constrained TRS \mathcal{R} is a finite set of constrained rewrite rules

$$
I \rightarrow r \llbracket \phi \rrbracket
$$

where $I \in T(\mathcal{F} \cup \mathcal{G}, \mathcal{V}) \backslash \mathcal{V}, r \in T(\mathcal{F} \cup \mathcal{G}, \mathcal{V})$, and ϕ is a formula over $\mathcal{G}, \mathcal{P}, \mathcal{V}$.

- $C[/ \sigma] \rightarrow_{\mathcal{R}} C[r \sigma]$ iff

$$
I \rightarrow r \llbracket \phi \rrbracket \in \mathcal{R}, \forall x \in \operatorname{fv}(\phi) . \sigma(x) \in T(\mathcal{G}, \mathcal{V}), \text { and } \sigma(\phi) \text { is } \mathcal{S} \text {-valid. }
$$

Example of Constrained TRSs (LIA constraints)

- $\mathcal{F}=\{$ sum $\}$
- $\mathcal{G}_{\mathrm{LIA}}=\{0, \mathrm{~s}, \mathrm{p}$, add $\}$,
- $\mathcal{P}_{\text {LIA }}=\{=, \neq,<, \leq,>, \geq\}$,
- $\mathcal{S}_{\text {LIA }}$ with the universe \mathbb{N} and
- $0^{\mathcal{S}_{\text {LIA }}}:=0$,
- $\mathrm{s}^{\mathcal{S}_{\text {LIA }}}(x):=x+1$,
- $\mathrm{p}^{\mathcal{S}_{\mathrm{LA}}}(x):=x-1$,
- $\operatorname{add}^{\mathcal{S}_{\text {LA }}}(x, y):=x+y$,
- $x=^{\mathcal{S}_{\mathrm{LA}}} x:=x=y$,

$$
\begin{gathered}
\mathcal{R}_{\text {sum }}=\left\{\begin{array}{cl}
\operatorname{sum}(x) \rightarrow 0 & \llbracket x \leq 0 \rrbracket \\
\operatorname{sum}(\mathrm{~s}(x)) \rightarrow \operatorname{add}(\mathrm{s}(x), \operatorname{sum}(x)) & \llbracket x \geq 0 \rrbracket \\
\operatorname{add}(0, y) \rightarrow y & \\
\operatorname{add}(\mathrm{~s}(x), y) \rightarrow \mathrm{s}(\operatorname{add}(x, y)) & \\
\operatorname{add}(\mathrm{p}(x), y) \rightarrow \mathrm{p}(\operatorname{add}(x, y)) & \\
\mathrm{s}(\mathrm{p}(x)) \rightarrow x & \\
\mathrm{p}(\mathrm{~s}(x)) \rightarrow x &
\end{array}\right\} \\
\\
\operatorname{sum}\left(\mathrm{s}^{10}(0)\right) \rightarrow \mathcal{R} \operatorname{add}\left(\mathrm{s}^{10}(0), \operatorname{sum}\left(\mathrm{s}^{9}(0)\right)\right) \rightarrow_{\mathcal{R}}^{*} \mathrm{~s}^{55}(0)
\end{gathered}
$$

Example: outline of verifying C programs [Furuichi et al, 08]

C program

int sum1 (int x) \{
int $\mathrm{i}=0, \mathrm{z}=0$;
for (i=0 ; i<=x ; i++) \{
z += i;
\}
return z;
\}

1. The C program and specification are transformed and simplified into

$$
\begin{array}{ll}
R_{\text {sum } 1}=R_{\text {plus }} \cup\left\{\begin{array}{c}
\operatorname{sum} 1(x) \rightarrow \mathrm{U}_{1}(x, 0,0) \\
\mathrm{U}_{1}(x, i, z) \rightarrow \mathrm{U}_{1}(x, \mathrm{~s}(i), \text { plus }(z, i)) \llbracket i \leq x \rrbracket \\
\mathrm{U}_{1}(x, i, z) \rightarrow z \llbracket \neg(i \leq x) \rrbracket
\end{array}\right\} \\
R_{\text {sum }}= & \ldots \\
R_{\text {plus }}= & \{\operatorname{plus}(0, y) \rightarrow y \quad \operatorname{plus}(\mathrm{~s}(x), y) \rightarrow \mathrm{s}(\operatorname{plus}(x, y)) \quad \ldots\}
\end{array}
$$

2. If $\operatorname{sum} 1(x) \approx \operatorname{sum}(x)$ is an inductive theorem of $R_{\text {sum } 1} \cup R_{\text {sum }}$, then sum1 satisfies the specification on sum.

Our Inductive Theorem Prover

- has the own SMT solver for LIA.
- has the own termination prover.
- automatically proves that $\operatorname{sum} 1(x) \approx \operatorname{sum}(x)$ is an inductive theorem of $R_{\text {sum } 1} \cup R_{\text {sum }}$.
- An appropriate lemma is automatically generated.

Why Implemented an SMT Solver?

- When proving $\operatorname{sum} 1(x) \approx \operatorname{sum}(x)$, satisifiability of the following formula has to be decided:
$\forall x . \forall x_{2} . \forall i . \forall x_{3}$.

$$
\left(\left(x+1>i \wedge x_{2}+1>x_{3} \wedge x=x_{2} \wedge i+1=x_{3}\right) \Longrightarrow-x_{3}>x_{7}\right)
$$

- Satisfiability of LIA formulas is decidable.
- Yices, CVC3, Z3 return "unknown".

Rewriting Induction for Constrained Equations [Sakata et al, 09]

If

$$
\left(\mathcal{E}_{0}, \emptyset\right)=\left(\mathcal{E}_{0}, \mathcal{H}_{0}\right) \vdash\left(\mathcal{E}_{1}, \mathcal{H}_{1}\right) \vdash \cdots \vdash\left(\mathcal{E}_{n}, \mathcal{H}_{n}\right)=\left(\emptyset, \mathcal{H}_{0}\right)
$$

then all equations in \mathcal{E} are inductive theorems of \mathcal{R}, where
Simplification $(\mathcal{E} \cup\{s \simeq C[/ \sigma] \llbracket \phi \rrbracket\}, \mathcal{H}) \vdash(\mathcal{E} \cup\{s \simeq C[r \sigma] \llbracket \phi \rrbracket\}, \mathcal{H})$ where $I \rightarrow r \llbracket \psi \rrbracket \in \mathcal{R} \cup \mathcal{H}, \phi$ is \mathcal{S}-sat, and $\phi \Rightarrow \sigma(\psi)$ is \mathcal{S}-valid.
EQ-Deletion $(\mathcal{E} \cup\{C[s] \approx C[t] \llbracket \phi \rrbracket\}, \mathcal{H})$
 where $s, t \in \mathcal{T}(\mathcal{G}, \mathcal{V})$ and \mathcal{V} ar $(s, t) \subseteq \operatorname{fv}(\phi)$.
Deletion $(\mathcal{E} \cup\{s \approx t \llbracket \phi \rrbracket\}, \mathcal{H}) \vdash(\mathcal{E}, \mathcal{H})$ where $s \equiv t$ or ϕ is not \mathcal{S}-sat.
Expansion $(\mathcal{E} \cup\{s \approx t \llbracket \phi \rrbracket\}, \mathcal{H})$

$$
\vdash\left(\mathcal{E} \cup \operatorname{Expd}_{p}(s \rightarrow t \llbracket \phi \rrbracket), \mathcal{H} \cup\{s \rightarrow t \llbracket \phi \rrbracket\}\right)
$$

where $\mathcal{R} \cup \mathcal{H} \cup\{s \rightarrow t \llbracket \phi \rrbracket\}$ terminates, p is an \mathcal{R}-complete occurrence, and $\operatorname{Expd}_{p}(s \rightarrow t \llbracket \phi \rrbracket)$ is the set of critical pairs between $s \rightarrow t \llbracket \phi \rrbracket$ and rules in \mathcal{R} at position p of s.

Standard Strategy for Inferences

Given \mathcal{R} and \mathcal{E}, apply the following steps to (\mathcal{E}, \emptyset) until E becomes empty:

1. apply Simplification as much as possible,
2. apply EQ-Deletion once to each equation,
3. apply Deletion as much as possible,
4. if \mathcal{E} is empty, then halt successfully, and o/w, apply Expansion once. If Expansion is not applicable, then halt unsuccessfully.

Divergence of Constrained Equations

$$
\begin{aligned}
& \mathcal{R}_{\text {sum } 1} \cup \mathcal{R}_{\text {sum }}=\left\{\begin{array}{ll}
(1) \operatorname{sum} 1(x) \rightarrow \mathrm{U}_{1}(x, \mathrm{~s}(0), 0) & \\
(2) \mathrm{U}_{1}(x, i, z) \rightarrow \mathrm{U}_{1}(x, \mathrm{~s}(i), \operatorname{plus}(z, i)) \llbracket i \leq x \rrbracket \\
(3) \mathrm{U}_{1}(x, i, z) \rightarrow z & \llbracket \neg i \leq x \rrbracket \\
(4) \operatorname{sum}(x) \rightarrow 0 & \llbracket x \leq 0 \rrbracket \\
(5) \operatorname{sum}(\mathrm{s}(x)) \rightarrow \operatorname{plus}(\operatorname{sum}(x), \mathrm{s}(x)) & \llbracket x \geq 0 \rrbracket
\end{array}\right\} \cup \mathcal{R}_{\text {plus }} \\
& \qquad \mathcal{E}=\{\operatorname{sum} 1(x) \approx \operatorname{sum}(x)\}
\end{aligned}
$$

The proof of \mathcal{E} has the following divergence:

```
        plus(
plus(U
```

A desired lemma is

$$
\operatorname{plus}\left(\mathrm{U}_{1}(x, i, z), \mathrm{s}(x)\right) \approx \mathrm{U}_{1}(\mathrm{~s}(x), \mathrm{s}(i), \operatorname{plus}(i, z)) \llbracket i \leq \mathrm{s}(x) \rrbracket
$$

How to Get a (Candidate of) Lemma Equations

$$
\mathcal{R}_{\text {sum } 1} \cup \mathcal{R}_{\text {sum }}=\left\{\begin{array}{ll}
(1) \operatorname{sum} 1(x) \rightarrow \mathrm{U}_{1}(x, \mathrm{~s}(0), 0) & \\
(2) \mathrm{U}_{1}(x, i, z) \rightarrow \mathrm{U}_{1}(x, s(i), \text { plus }(z, i)) & \llbracket i \leq x \rrbracket \\
(3) \mathrm{U}_{1}(x, i, z) \rightarrow z & \llbracket \neg i \leq x \rrbracket \\
(4) \operatorname{sum}(x) \rightarrow 0 & \llbracket x \leq 0 \rrbracket \\
(5) \operatorname{sum}(\mathrm{s}(x)) \rightarrow \operatorname{plus}(\operatorname{sum}(x), \mathrm{s}(x)) & \llbracket x \geq 0 \rrbracket
\end{array}\right\} \cup \mathcal{R}_{\text {plus }}
$$

The proof of \mathcal{E} has the following divergence:

$$
\begin{gathered}
\text { plus }\left(\mathrm{U}_{1}(x, \mathrm{~s}(0), 0), \mathrm{s}(x)\right) \approx \mathrm{U}_{1}\left(\mathrm{~s}(x), \mathrm{s}^{2}(0), \text { plus }(0, \mathrm{~s}(0))\right) \\
\operatorname{plus}\left(\mathrm{U}_{1}\left(x, \mathrm{~s}^{2}(0), \mathrm{s}(0)\right), \mathrm{s}(x)\right) \approx \mathrm{U}_{1}\left(\mathrm{~s}(x), \mathrm{s}^{3}(0), \operatorname{plus}\left(\mathrm{s}(0), \mathrm{s}^{2}(0)\right)\right) \llbracket \mathrm{s}^{2}(0) \leq \mathrm{s}(x) \rrbracket
\end{gathered}
$$

A desired lemma is

$$
\operatorname{plus}\left(\mathrm{U}_{1}(x, i, z), \mathrm{s}(x)\right) \approx \mathrm{U}_{1}(\mathrm{~s}(x), \mathrm{s}(i), \operatorname{plus}(i, z)) \llbracket i \leq \mathrm{s}(x) \rrbracket
$$

Strategy with Lemma Discovery [Nakabayashi et al, 09]

Given \mathcal{R} and \mathcal{E}, apply the following steps to (\mathcal{E}, \emptyset) until \mathcal{E} becomes empty:

1. apply Simplification by as much as possible,
2. apply EQ-Deletion once to each equation,
3. apply Deletion as much as possible,
4. if an equation is diverging and the equation can be generalized to e, then try proving $(\{e\}, \emptyset)$:

- if succeeded by $(\{e\}, \emptyset) \vdash \cdots \vdash\left(\emptyset, \mathcal{H}^{\prime}\right)$, then add \mathcal{H}^{\prime} to \mathcal{H} and go to 1 ,
- o/w, go to the next.

5. if \mathcal{E} is empty, then halt successfully, and o/w, apply Expansion once. If Expansion is not applicable, then halt unsuccessfully.

Our Research Topics on Constrained TRSs

- Inductionless induction based on completion [Furuichi et al, 08]
- Transformation of C programs into constrained TRSs
- Rewriting induction [Sakata et al, 09]
- main part of theorem proving
- Termination prover for constrained TRSs [Sakata et al, 11]
- necessary in the RI method
- Lemma generation [Nakabayashi et al, 10]
- necessary in many cases
- Verification via tree homomorphisms [Takakuwa et al, 11]
- light equivalence prover
- Constrained tee automata [Nishida et al, 12]
- necessary(?) for automating the RI method

Experiments of Transforming C Programs for sum

 [Ishigaki et al, 07][Takakuwa et al, 09]- An exercise of C Programming Exercise Class in 2006
- Write a function to, given n, compute the summation from 0 to n, without recursive calls.
- We succeeded in transforming 59 programs into constrained TRSs.
- After simplifying them, many programs were converted to the similar forms.

Example of Transforming into the Same

```
int sum1(int x){
    int i=0, z=0;
    for( i=0 ; i<=x ; i++ ){
    z += i;
    }
    return z;
}
```

```
int sum1(int x){
```

int sum1(int x){
int i=0, z=0;
int i=0, z=0;
while(i<= x){
while(i<= x){
i++; z += i-1;
i++; z += i-1;
}
}
return z;
return z;
}

```
}
```

Both of the above are transformed into

$$
\mathcal{R}_{\text {sum } 1}=\mathcal{R}_{\text {plus }} \cup\left\{\begin{array}{l}
\operatorname{sum} 1(x) \rightarrow \mathrm{U}_{1}(x, 0,0) \\
\mathrm{U}_{1}(x, i, z) \rightarrow \mathrm{U}_{1}(x, \mathrm{~s}(i), \text { plus }(z, i)) \llbracket i \leq x \rrbracket \\
\mathrm{U}_{1}(x, i, z) \rightarrow z \llbracket \neg(i \leq x) \rrbracket
\end{array}\right\}
$$

Example of Transforming into Syntactically Similar Ones

```
int sum1 (int \(x\) ) \{
    int \(i=0, z=0\);
    for ( i=0 ; i<=x ; i++ ) \{
    z += i;
    \}
    return z;
\}
```

```
int sum1 (int y)\{
```

int sum1 (int y)\{
int $z=0, j=0, i=0$;
int $z=0, j=0, i=0$;
for (i=0 ; i <= y ; i++) \{
for (i=0 ; i <= y ; i++) \{
z += i;
z += i;
\}
\}
return z;
return z;
\}

```
\}
```

The above are transformed into (resp.)

$$
\begin{gathered}
\mathcal{R}_{\text {sum } 1}=\mathcal{R}_{\text {plus }} \cup\left\{\begin{array}{c}
\operatorname{sum} 1(x) \rightarrow \mathrm{U}_{1}(x, 0,0) \\
\mathrm{U}_{1}(x, i, z) \rightarrow \mathrm{U}_{1}(x, \mathrm{~s}(i), \text { plus }(z, i)) \llbracket i \leq x \rrbracket \\
\mathrm{U}_{1}(x, i, z) \rightarrow z \llbracket \neg(i \leq x) \rrbracket
\end{array}\right\} \\
\mathcal{R}_{\text {sum } 1}^{\prime}=\mathcal{R}_{\text {plus }} \cup\left\{\begin{array}{c}
\operatorname{sum} 1(y) \rightarrow \mathrm{U}_{2}(y, 0,0,0) \\
\mathrm{U}_{2}(y, z, j, i) \rightarrow \mathrm{U}_{2}(y, \operatorname{plus}(z, i), j, \mathrm{~s}(i)) \llbracket i \leq y \rrbracket \\
\mathrm{U}_{2}(y, z, j, i) \rightarrow z \llbracket \neg(i \leq y) \rrbracket
\end{array}\right\}
\end{gathered}
$$

Equivalence of sum1 and sum1

$$
\begin{gathered}
\mathcal{R}_{\text {sum } 1}=\mathcal{R}_{\text {plus }} \cup\left\{\begin{array}{c}
\operatorname{sum} 1(x) \rightarrow \mathrm{U}_{1}(x, 0,0) \\
\mathrm{U}_{1}(x, i, z) \rightarrow \mathrm{U}_{1}(x, \text { s(i), plus }(z, i)) \llbracket i \leq x \rrbracket \\
\mathrm{U}_{1}(x, i, z) \rightarrow z \llbracket \neg(i \leq x) \rrbracket
\end{array}\right\} \\
\mathcal{R}_{\text {sum } 1}^{\prime}=\mathcal{R}_{\text {plus }} \cup\left\{\begin{array}{c}
\operatorname{sum} 1(y) \rightarrow \mathrm{U}_{2}(y, 0,0,0) \\
\mathrm{U}_{2}(y, z, j, i) \rightarrow \mathrm{U}_{2}(y, \text { plus }(z, i), j, \mathrm{~s}(i)) \llbracket i \leq y \rrbracket \\
\mathrm{U}_{2}(y, z, j, i) \rightarrow z \llbracket \neg(i \leq y) \rrbracket
\end{array}\right\}
\end{gathered}
$$

- sum1 of $\mathcal{R}_{\text {sum } 1}$ and sum1 of $\mathcal{R}_{\text {sum } 1}^{\prime}$ are equivalent.

Equivalence of sum1 and sum1

$$
\begin{gathered}
\mathcal{R}_{\text {sum } 1}=\mathcal{R}_{\text {plus }} \cup\left\{\begin{array}{c}
\operatorname{sum} 1(x) \rightarrow \mathrm{U}_{1}(x, 0,0) \\
\mathrm{U}_{1}(x, i, z) \rightarrow \mathrm{U}_{1}(x, \text { s(i), plus }(z, i)) \llbracket i \leq x \rrbracket \\
\mathrm{U}_{1}(x, i, z) \rightarrow z \llbracket \neg(i \leq x) \rrbracket
\end{array}\right\} \\
\mathcal{R}_{\text {sum } 1}^{\prime}=\mathcal{R}_{\text {plus }} \cup\left\{\begin{array}{c}
\operatorname{sum} 1(y) \rightarrow \mathrm{U}_{2}(y, 0,0,0) \\
\mathrm{U}_{2}(y, z, j, i) \rightarrow \mathrm{U}_{2}(y, \text { plus }(z, i), j, \mathrm{~s}(i)) \llbracket i \leq y \rrbracket \\
\mathrm{U}_{2}(y, z, j, i) \rightarrow z \llbracket \neg(i \leq y) \rrbracket
\end{array}\right\}
\end{gathered}
$$

- sum1 of $\mathcal{R}_{\text {sum } 1}$ and sum1 of $\mathcal{R}_{\text {sum } 1}^{\prime}$ are equivalent.
- $\mathcal{R}_{\text {sum } 1}$ is a tree homomorphic image of $\mathcal{R}_{\text {sum } 1}^{\prime}$:

Tree Homomorphism H from F to $\mathcal{T}\left(F^{\prime}, \mathcal{V}\right)$ [TATA, 07]

- A mapping such that $H(f) \in \mathcal{T}\left(\mathcal{F}^{\prime},\left\{x_{1}, \cdots, x_{n}\right\}\right)$ for any n-ary $f \in$ \mathcal{F}.
- Extended to $\mathcal{T}(\mathcal{F} \uplus \mathcal{G}, \mathcal{V})$ as follows:
- $H(x)=x$ for $x \in \mathcal{V}$,
- $H\left(f\left(t_{1}, \cdots, t_{n}\right)\right)=H(f)\left\{x_{i} \mapsto H\left(t_{i}\right) \mid 1 \leq i \leq n\right\}$ for $f \in \mathcal{F}$, and
- $H\left(g\left(t_{1}, \cdots, t_{n}\right)\right)=g\left(H\left(t_{1}\right), \cdots, H\left(t_{n}\right)\right)$ for $g \in \mathcal{G}$.
- Extended to constrained TRSs as follows:

$$
H(R)=\{H(I) \rightarrow H(r) \llbracket H(\phi) \rrbracket \mid I \rightarrow r \llbracket \phi \rrbracket \in R\}
$$

In this talk, we only consider H s.t. $H(\phi)=\phi$.

- Linear if $H(f)$ is linear for all $f \in F$.

Equivalence of sum1 and sum1

$$
\begin{gathered}
\mathcal{R}_{\text {sum } 1}=\mathcal{R}_{\text {plus }} \cup\left\{\begin{array}{c}
\operatorname{sum} 1(x) \rightarrow \mathrm{U}_{1}(x, 0,0) \\
\mathrm{U}_{1}(x, i, z) \rightarrow \mathrm{U}_{1}(x, \mathrm{~s}(i), \text { plus }(z, i)) \llbracket i \leq x \rrbracket \\
\mathrm{U}_{1}(x, i, z) \rightarrow z \llbracket \neg(i \leq x) \rrbracket
\end{array}\right\} \\
\mathcal{R}_{\text {sum } 1}^{\prime}=\mathcal{R}_{\text {plus }} \cup\left\{\begin{array}{c}
\operatorname{sum} 1(y) \rightarrow \mathrm{U}_{2}(y, 0,0,0) \\
\mathrm{U}_{2}(y, z, j, i) \rightarrow \mathrm{U}_{2}(y, \operatorname{plus}(z, i), j, \mathrm{~s}(i)) \llbracket i \leq y \rrbracket \\
\mathrm{U}_{2}(y, z, j, i) \rightarrow z \llbracket \neg(i \leq y) \rrbracket
\end{array}\right\}
\end{gathered}
$$

- sum1 of $\mathcal{R}_{\text {sum } 1}$ and sum1 of $\mathcal{R}_{\text {sum } 1}^{\prime}$ are equivalent.
- $\mathcal{R}_{\text {sum } 1}$ is a tree homomorphic image of $\mathcal{R}_{\text {sum } 1}^{\prime}$:
- Let H be a linear tree homomorphism H s.t.
$\star H(\operatorname{sum} 1)=\operatorname{sum} 1\left(x_{1}\right)$
$\star H\left(U_{2}\right)=U_{1}\left(x_{1}, x_{4}, x_{2}\right)$
$\star \quad H(f)=f\left(x_{1}, \cdots, x_{n}\right)$ for other n-ary symbols f.
- Then $\mathcal{R}_{\text {sum } 1}=H\left(\mathcal{R}_{\text {sum } 1}^{\prime}\right)$.

Sufficient Condition for Equivalence between Functions

Theorem

Let

- R_{0} and R_{1} be constrained TRS sover $\left(\mathcal{F}_{0}, \mathcal{G}, \mathcal{P}, \mathcal{S}\right)$ and $\left(\mathcal{F}_{1}, \mathcal{G}, \mathcal{P}, \mathcal{S}\right)$, resp., obtained from C functions,
- H be a tree homomorphism from $\mathcal{D}_{R_{1}}$ to $\mathcal{T}\left(\mathcal{F}_{0} \cup \mathcal{G}, \mathcal{V}\right)$.

Then, $f_{0} \in \mathcal{D}_{R_{0}}$ and $f_{1} \in \mathcal{D}_{R_{1}}$ are equivalent if all of the following hold:

- $R_{0}=H\left(R_{1}\right)$,
- $\operatorname{arity}\left(f_{0}\right)=\operatorname{arity}\left(f_{1}\right)$,
- $H\left(f_{1}\right)=f_{0}\left(x_{1}, \cdots, x_{\text {arity }\left(f_{0}\right)}\right)$,
- H is linear, and
- H is injective w.r.t. root symbols.

The number of H is finite, and thus, this sufficient condition is decidable.

Experiments

- Two exercises of C Programming Exercise Class in 2006
- Write functions sum (fib, resp.) to, given n, compute $\sum_{i=0}^{n} i$ (the n-th Fibonacci number, reps.), without recursive calls.
- We succeeded in transforming 59 and 21 programs into constrained TRSs.

Experiments

- Two exercises of C Programming Exercise Class in 2006
- Write functions sum (fib, resp.) to, given n, compute $\sum_{i=0}^{n} i$ (the n-th Fibonacci number, reps.), without recursive calls.
- We succeeded in transforming 59 and 21 programs into constrained TRSs.
- After simplifying them $\left(P_{1}, \cdots, P_{k}\right)$, we grouped them as follows:
- if P_{i} belongs to Group j, then the index i is minimum or $\exists k<i$. P_{k} belongs to Group j and P_{k} is a tree homomorphic image of P_{i}.

Experiments

- Two exercises of C Programming Exercise Class in 2006
- Write functions sum (fib, resp.) to, given n, compute $\sum_{i=0}^{n} i$ (the n-th Fibonacci number, reps.), without recursive calls.
- We succeeded in transforming 59 and 21 programs into constrained TRSs.
- After simplifying them $\left(P_{1}, \cdots, P_{k}\right)$, we grouped them as follows:
- if P_{i} belongs to Group j, then the index i is minimum or $\exists k<i . \quad P_{k}$ belongs to Group j and P_{k} is a tree homomorphic image of P_{i}.

	$\#$	groups	total time	ave. time
sum	59	25	16.7 sec $(2412$ checks $)$	$6.9 \mathrm{msec} /$ check
fib	21	21	$3.0 \mathrm{sec}(420$ checks $)$	$7.1 \mathrm{msec} /$ check

machine spec.: Athlon $64 \times 24800+(2.4 \mathrm{GHz} / \mathrm{L} 2$ cache 2 * 1 MB), 4GB memory

Conclusion

- The C programming exercise class is not so boring.
- The framework is applicable to 1 exercise only.
- Future work:
- apply the framework to programs with arrays, pointers, etc.

