Formalizing Kruskal's Tree Theorem in Isabelle/HOL

Christian Sternagel

JAIST

July 5, 2012

Kickoff Meeting of Austria-Japan Joint Project Gamagori, Japan

If the set A is well-quasi-ordered then the set of finite trees over A is well-quasi-ordered by homeomorphic embedding.

Comments

- proof structure as Nash-Williams 1963
- which claims

A new and simple proof is given ...

Overview

- Motivation
- Preliminaries
- Kruskal's Tree Theorem A Proof Sketch
- Formalization Challenges
- Conclusion

Bibliography

G. Higman.

Ordering by divisibility in abstract algebras. Proc. London Math. Soc., 1952.

doi:10.1112/plms/s3-2.1.326.

J. B. Kruskal.

Well-quasi-ordering, the tree theorem, and vazsonyi's conjecture. Trans. Amer. Math. Soc., 1960. doi:10.2307/1993287.

C. S. J. A. Nash-Williams.

On well-quasi-ordering finite trees. Math. Proc. Cambridge, 1963.

doi:10.1017/S0305004100003844.

C. Sternagel.

Well-Quasi-Orders. In The Archive of Formal Proofs. 2012.

http://afp.sf.net/devel-entries/Well_Quasi_Orders.shtml. C. Sternagel (JAIST) ALIP Kickoff

Why?

- long-standing open problem in formalized mathematics
- Kruskal's Tree Theorem is main ingredient to prove well-foundedness of simplification orders for first-order rewriting
- ultimately, we want to strengthen termination library of IsaFoR (Isabelle Formalization of Rewriting)

First, for constrained rewriting with forbidden patterns, we want to be able to certify the loop detection algorithm of [78] which encompasses the algorithms for loops under the innermost and outermost strategy [77] [76]. To date no formal certification techniques for these highly interesting techniques are known. This is partly due to the fact that the correctness proof uses a very powerful and complex theorem: Kruskal's tree theorem [40], whose formal verification is open.

Homeomorphic Embedding on Lists

- empty list, []
- adding element x to finite list xs, $x \cdot xs$
- append lists xs and ys, xs @ ys
- set of finite lists over A, A*:

$$\underline{] \in A^*} \quad \frac{x \in A \quad xs \in A^*}{x \cdot xs \in A^*}$$

embedding relation w.r.t. <u>≺</u>:

$$\frac{xs \leq_{\mathsf{emb}} ys}{[] \leq_{\mathsf{emb}} ys} \quad \frac{xs \leq_{\mathsf{emb}} ys}{xs \leq_{\mathsf{emb}} y \cdot ys} \quad \frac{x \leq y \quad xs \leq_{\mathsf{emb}} ys}{x \cdot xs \leq_{\mathsf{emb}} y \cdot ys}$$

Example - List Embedding

Homeomorphic Embedding on Trees

- tree with node f and list of direct subtrees ts, f(ts)
- root of tree root(f(ts)) = f, direct subtrees args(f(ts)) = ts
- set of finite trees over A, T(A):

$$\frac{f \in A \quad \forall t \in ts. t \in \mathcal{T}(A)}{f(ts) \in \mathcal{T}(A)}$$

• homeomorphic embedding relation w.r.t. \preceq :

$$\frac{t \in ts}{t \preceq_{emb} f(ts)} \quad \frac{f \preceq g \quad ss \ (\preceq_{emb}^{=})_{emb} \ ts}{f(ss) \preceq_{emb} g(ts)}$$

$$\frac{s \preceq_{emb} t \quad t \preceq_{emb} u}{s \preceq_{emb} u} \quad \frac{s \preceq_{emb} t}{f(ss_1 @ s \cdot ss_2) \preceq_{emb} f(ss_1 @ t \cdot ss_2)}$$

Homeomorphic Embedding on Trees (cont'd)

Embedding TRS let $\mathcal{E}mb(\preceq)$ be the infinite TRS

 $egin{array}{lll} f(ts) &
ightarrow t & ext{if } t \in ts \ f(ts) &
ightarrow g(ss) & ext{if } g \preceq f ext{ and } ss =_{ ext{emb}} ts \end{array}$

Result $s \leq_{emb} t \text{ iff } t \rightarrow_{\mathcal{E}mb(\preceq)}^+ s$

Well-Quasi-Orders - Definitions

- let A be a set and \leq a binary relation
- A is work by $\leq (\leq_A \text{ is a work or work}(\leq_A))$:
 - (1) transitive: $\forall x \in A. \forall y \in A. \forall z \in A. x \leq y \land y \leq z \longrightarrow x \leq z$
 - (2) all infinite sequences over A are good:

$$\forall f. (\forall i. f(i) \in A) \longrightarrow (\exists j \ k. j < k \land f(j) \preceq f(k))$$

• a sequence that is not good, is called bad

Property

- strict part of \leq is $x \prec y = x \leq y \land y \not\leq x$
- let wqo(\leq_A), then \prec_A is well-founded on A

Kruskal's Tree Theorem - A Proof Sketch

Formalization Challenges

Existence of Minimal Bad Sequence - Nash-Williams 1963

Select an $t_1 \in \mathcal{T}(\mathcal{F})$ such that t_1 is the first term of a bad sequence of members of $\mathcal{T}(\mathcal{F})$ and t_1 is as small as possible. Then select an t_2 such that t_1 , t_2 are the first two terms of a bad sequence of members of $\mathcal{T}(\mathcal{F})$ and t_2 is as small as possible [...]. Assuming the Axiom of Choice, this process yields a bad sequence t_1 , t_2 , t_3 , The Axiom of Choice in Isabelle

•
$$\forall x. \exists y. P x y \implies \exists f. \forall x. P x (f x)$$

Minimal in What Sense?

- subtree relation, t is (proper) subtree of s, written $t \leq s$ $(t \leq s)$, iff: $\frac{t \in ts}{t \leq f(ts)} = \frac{s \leq t \quad t \in ts}{s \leq f(ts)}$
- proper subtree relation is well-founded (allowing for induction)

Auxiliary Definitions

• infinite sequence f is minimal at position $n (\min_n(f))$, iff: $\forall g. (\forall i < n. g(i) = f(i)) \land g(n) \lhd f(n) \land (\forall i \ge n. \exists j \ge n. g(i) \trianglelefteq f(j))$

 $\implies \mathsf{good}_{\preceq_{\mathsf{emb}}}(g)$

replace elements of sequence f by those of sequence g, starting at n: (f ⟨n⟩g)(i) = if i ≥ n then g(i) else f(i)

Key Lemma

(1)
$$\min_{n}(f)$$

(2) $\operatorname{bad}_{\leq_{\operatorname{emb}}}(f)$
 $\Rightarrow \exists g. \forall i \leq n. g(i) = f(i)$
 $\land g(n+1) \leq f(n+1)$
 $\land \forall i \geq n+1. \exists j \geq n+1. g(i) \leq f(j)$
 $\land \operatorname{bad}_{\leq_{\operatorname{emb}}}(f\langle n+1 \rangle g)$
 $\land \min_{n+1}(f\langle n+1 \rangle g)$

Construct Minimal Bad Sequence

- from AC and key lemma obtain function ν, s.t., given sequence satisfying (1) and (2) and index n, returns sequence satisfying conclusion
- auxiliary sequence (of sequences)

$$m'(n) = egin{cases}
u(f,n) & ext{if } n = 0 \ m'(n-1)\langle n
angle
u(m'(n-1),n-1) & ext{otherwise} \end{cases}$$

• minimal bad sequence m(i) = m'(i)(i)

C. Sternagel (JAIST)

Idea

Conclusion

Related Work

- Murthy, Extracting Constructive Content from Classical Proofs, PhD, 1990 (Nuprl)
- Fridlender, Ramsey's Theorem in Type Theory, Tech. Report, 1993 (ALF)
- Herbelin, A Program from an A-Translated Impredicative Proof of Higman's Lemma, 1994 (2-letter alphabet, Coq)
- Fridlender, Higman's Lemma in Type Theory, PhD, 1997 (ALF)
- Seisenberger, On the Constructive Content of Proofs, PhD, 2003 (Minlog)
- Berghofer, A Constructive Proof of Higman's Lemma in Isabelle, TYPES 2003 (2-letter alphabet, Isabelle)
- Martín-Mateos et al., A Formal Proof of Higman's Lemma in ACL2, JAR 2011 (ACL2)

Future Work

- investigate how Zorn's Lemma could be of help
- reformulate proof using open induction

$The \mathcal{E}nd$