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Kruskal's Tree Theorem

Kruskal's Tree Theorem

If the set A is well-quasi-ordered then the set of finite
trees over A is well-quasi-ordered by homeomorphic
embedding.

Comments

o proof structure as Nash-Williams 1963

o which claims
A new and simple proof is given . ..
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Kruskal's Tree Theorem

Why?

e long-standing open problem in formalized mathematics

o Kruskal's Tree Theorem is main ingredient to prove
well-foundedness of simplification orders for first-order
rewriting

e ultimately, we want to strengthen termination library of IsaFoR
(Isabelle Formalization of Rewriting)

First, for constrained rewriting with forbidden patterns, we want to be able to certify the loop
detection algorithm of which encompasses the algorithms for loops under the innermost and

. To date no formal certification techniques for these highly interesting

outermost strategy
techniques are known. This is partly due to the fact that the correctness proof uses a very powerful

and complex theorem: Kruskal’s tree theorem [40], whose formal verification is open.
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Kruskal's Tree Theorem Preliminaries

Homeomorphic Embedding on Lists

e empty list, ||
e adding element x to finite list xs, x - xs
e append lists xs and ys, xs @ ys

e set of finite lists over A, A*:

XEA xseA*
[] € A x-xs € A*

e embedding relation w.r.t. <:

XS =emb Y5 X=Xy XS =embyS
[] jemb ys XS jemb y-ys X - XS jemb y-ys
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Example - List Embedding

L 1
1] 2]
1] . 3
% jemb %
6 6
El 7]
18] 8]
( XS Zemb ¥S )
e drop elements [ ————
XS Semb Y ' ¥S

e replace elements by smaller elements

XY XS =embYS
X XS Zemb ¥ * ¥S
e note that empty list is embedded in any list ([] <emb ¥5)
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Homeomorphic Embedding on Trees

e tree with node f and list of direct subtrees ts, f(ts)
e root of tree root(f(ts)) = f, direct subtrees args(f(ts)) = ts
e set of finite trees over A, 7 (A):

feA Vtets.teT(A)
f(ts) e T(A)

e homeomorphic embedding relation w.r.t. <:

tEts f<g s5(Zgmblemb ts
t <emb F(ts) f(ss) Zemb &g(ts)
S=embt t=empU S =Semb t
S <emb U f(ss1@s-552) <emp F(s51 @t s57)
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Homeomorphic Embedding on Trees (cont’d)

Embedding TRS
let Emb(=) be the infinite TRS

f(ts) =t if t €ts

f(ts) — g(ss) if g < f and ss =¢mp ts

Result

S <emb tiff t —>2“mb(j) s

C. Sternagel (JAIST) AJJP Kickoff 9/20



Kruskal's Tree Theorem Preliminaries

Well-Quasi-Orders - Definitions

e let A be a set and < a binary relation

e Alis wqo by < (=4 is a wqo, or wqo(=4)):
(1) transitive: Vx € AVy e AVzEA xS yANy<z—x=<z
(2) all infinite sequences over A are good:

V. (Vi f(i) € A) — (Fj k.j < k AF(j) = F(k))

O FE)| - [ O] - [F0]

e a sequence that is not good, is called bad
Property

e strictpartof K isx <y=x=<XyAy Ax
¢ let wqo(=4), then <4 is well-founded on A
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Kruskal’s Tree Theorem - A Proof Sketch
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Kruskal's Tree Theorem Kruskal's Tree Theorem - A Proof Sketch
Proof Structure of wqo(=r) = wqo(=7(x))

assume =7,==5T10Q =5

exists minimal bad sequence t, ty, t3, ... with t; € 7(F)

exists sequence fi, fp, f3, ... with root(t;) = f;, args(t;) = ts;
j{f;} and <7« are WQO%

j{f}}XT* is WqO—"""
exist j, k with j < k and (f;, ts;) <qryx 1+ (i, tsk)

ti 27(F) tk
t1, tp, t3, ...Is good

FEer el

contradiction!
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Formalization Challenges
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Kruskal's Tree Theorem Formalization Challenges

Existence of Minimal Bad Sequence - Nash-Williams 1963

Select an t; € T(F) such that t; is the first term of a
bad sequence of members of T (F) and t; is as small as
possible. Then select an t, such that ty, ty are the first
two terms of a bad sequence of members of T(F) and t»
is as small as possible [...]. Assuming the Axiom of
Choice, this process yields a bad sequence t1, to, t3, .. ..
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The Axiom of Choice in Isabelle
e Vx.dy.P xy = 3If.Vx.P x (f x)
Minimal in What Sense?

e subtree relation, t is (proper) subtree of s, written t J's
. tets st tets
(t<s), iff:
t < f(ts) s < f(ts)
e proper subtree relation is well-founded (allowing for induction)

Auxiliary Definitions

e infinite sequence f is minimal at position n (min,(f)), iff:
Vg. (Vi < n.g(i) = f(i)) ng(n) < f(n) A(Vi=n.3j > n g(i) <))

= good__ (g)
o replace elements of sequence f by those of sequence g,
starting at n: (f(n)g)(i) =if i > n then g(i) else f(i)
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Key Lemma

(1) minp(f)

(2) bad,.,(f)

— dg.Vi < n.g(i) = f(i)
A g(n+1)<df(n+1)
AYi>n+1.3j>n+1.g(i) <))
A bad,,, ((n+ 1)g)
A ming1(f(n+1)g)

Construct Minimal Bad Sequence

e from AC and key lemma obtain function v, s.t., given
sequence satisfying (1) and (2) and index n, returns sequence
satisfying conclusion

e auxiliary sequence (of sequences)

() = v(f,n) ifn=0
mn= m'(n—1){nyv(m'(n—1),n—1) otherwise

e minimal bad sequence m(i) = m’(i)(i)
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Conclusion
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Future Work

e investigate how Zorn's Lemma could be of help

e reformulate proof using open induction

7The énd
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