Formalizing Kruskal’s Tree Theorem in Isabelle/HOL

Christian Sternagel

JAIST

July 5, 2012

Kickoff Meeting of Austria-Japan Joint Project
Gamagori, Japan
Kruskal’s Tree Theorem

If the set A is well-quasi-ordered then the set of finite trees over A is well-quasi-ordered by homeomorphic embedding.

Comments

• proof structure as Nash-Williams 1963
• which claims

 A new and simple proof is given . . .
Overview

• Motivation

• Preliminaries

• Kruskal’s Tree Theorem - A Proof Sketch

• Formalization Challenges

• Conclusion
Bibliography

G. Higman.

J. B. Kruskal.

C. S. J. A. Nash-Williams.
doi:10.1017/S0305004100003844.

C. Sternagel.
Why?

- long-standing open problem in formalized mathematics
- Kruskal’s Tree Theorem is main ingredient to prove well-foundedness of simplification orders for first-order rewriting
- ultimately, we want to strengthen termination library of IsaFoR (Isabelle Formalization of Rewriting)

First, for constrained rewriting with forbidden patterns, we want to be able to certify the loop detection algorithm of \cite{78} which encompasses the algorithms for loops under the innermost and outermost strategy \cite{77,76}. To date no formal certification techniques for these highly interesting techniques are known. This is partly due to the fact that the correctness proof uses a very powerful and complex theorem: Kruskal’s tree theorem \cite{40}, whose formal verification is open.
Homeomorphically Embedding on Lists

- **empty list**, \([\text{]} \)
- **adding element** \(x\) to finite list \(xs\), \(x \cdot xs\)
- **append lists** \(xs\) and \(ys\), \(xs @ ys\)
- **set of finite lists** over \(A\), \(A^*\):

 \[
 \begin{align*}
 [\text{]} & \in A^* \\
 x \in A & \quad xs \in A^* \\
 x \cdot xs & \in A^*
 \end{align*}
 \]

- **embedding relation** w.r.t. \(\leq\):

 \[
 \begin{align*}
 [\text{]} & \leq_{\text{emb}} ys \\
 xs & \leq_{\text{emb}} ys \\
 x & \leq y & xs & \leq_{\text{emb}} ys \\
 & x \cdot xs & \leq_{\text{emb}} y \cdot ys
 \end{align*}
 \]
Example - List Embedding

We can . . .

- drop elements \(\left(\frac{xs \preceq_{emb} ys}{xs \preceq_{emb} y \cdot ys} \right) \)
- replace elements by smaller elements \(\left(\frac{x \preceq y \quad xs \preceq_{emb} ys}{x \cdot xs \preceq_{emb} y \cdot ys} \right) \)
- note that empty list is embedded in any list \((\) \preceq_{emb} ys) \)
Homeomorphically Embedding on Trees

- tree with node f and list of direct subtrees ts, $f(ts)$
- root of tree $\text{root}(f(ts)) = f$, direct subtrees $\text{args}(f(ts)) = ts$
- set of finite trees over A, $\mathcal{T}(A)$:

$$f \in A \quad \forall t \in ts. \ t \in \mathcal{T}(A)$$
$$f(ts) \in \mathcal{T}(A)$$

- homeomorphically embedding relation w.r.t. \preceq:

$$t \in ts \quad t \preceq_{\text{emb}} f(ts)$$
$$f \preceq g \quad ss \ (\preceq_{\text{emb}})^{\text{emb}} ts$$
$$f(ss) \preceq_{\text{emb}} g(ts)$$

$$s \preceq_{\text{emb}} t \quad t \preceq_{\text{emb}} u$$
$$s \preceq_{\text{emb}} u$$

$$s \preceq_{\text{emb}} t$$
$$f(ss_1 @ s \cdot ss_2) \preceq_{\text{emb}} f(ss_1 @ t \cdot ss_2)$$
Homeomorphic Embedding on Trees (cont’d)

Embedding TRS

let $\text{Emb}(\preceq)$ be the infinite TRS

\[
\begin{align*}
 f(ts) & \rightarrow t & \text{if } t \in ts \\
 f(ts) & \rightarrow g(ss) & \text{if } g \preceq f \text{ and } ss =_{\text{emb}} ts
\end{align*}
\]

Result

$s \preceq_{\text{emb}} t$ iff $t \rightarrow^{+} \text{Emb}(\preceq) s$
Well-Quasi-Orders - Definitions

- let A be a set and \leq a binary relation
- A is **wqo** by \leq (\preceq_A is a wqo, or wqo(\preceq_A)):
 1. **transitive**: $\forall x \in A. \forall y \in A. \forall z \in A. x \preceq y \land y \preceq z \rightarrow x \preceq z$
 2. **all infinite sequences over A are good**:

$$\forall f. (\forall i. f(i) \in A) \rightarrow (\exists j \; k. j < k \land f(j) \preceq f(k))$$

\[
\begin{array}{ccccccc}
 | & f(1) & | & f(2) & | & f(3) & \ldots & | & f(j) & \ldots & | & f(k) & \ldots \\
\end{array}
\]

- a sequence that is not good, is called **bad**

Property

- strict part of \preceq is $x \prec y = x \preceq y \land y \npreceq x$
- let wqo(\preceq_A), then \prec_A is well-founded on A
Kruskal’s Tree Theorem - A Proof Sketch
Proof Structure of \(\text{wqo}(\preceq_F) \implies \text{wqo}(\preceq_T(F)) \)

1. **Assume** \(\preceq_F \) is wqo.
2. **Assume** \(\preceq_T(F) \) is not wqo.
3. \(\implies \) exists **minimal** bad sequence \(t_1, t_2, t_3, \ldots \) with \(t_i \in T(F) \).
4. \(\implies \) exists sequence \(f_1, f_2, f_3, \ldots \) with \(\text{root}(t_i) = f_i, \text{args}(t_i) = ts_i \).
5. \(\implies \) let \(T = \bigcup_i (\bigcup \text{args}(t_i)) \).
6. \(\implies \) \(\preceq \{f_i\} \) and \(\preceq_T^* \) are wqo.
7. \(\implies \) \(\preceq \{f_i\} \times T^* \) is wqo.
8. \(\implies \) exist \(j, k \) with \(j < k \) and \((f_j, ts_j) \preceq \{f_i\} \times T^* (f_k, ts_k) \).
9. \(\implies \) \(t_j \preceq_T(F) t_k \).
10. \(\implies \) \(t_1, t_2, t_3, \ldots \) is good.
11. **Contradiction!**

In what sense?

Prove it!
Formalization Challenges
Existence of Minimal Bad Sequence - Nash-Williams 1963

Select an $t_1 \in \mathcal{T}(\mathcal{F})$ such that t_1 is the first term of a bad sequence of members of $\mathcal{T}(\mathcal{F})$ and t_1 is as small as possible. Then select an t_2 such that t_1, t_2 are the first two terms of a bad sequence of members of $\mathcal{T}(\mathcal{F})$ and t_2 is as small as possible [...]. Assuming the Axiom of Choice, this process yields a bad sequence t_1, t_2, t_3, \ldots.
The Axiom of Choice in Isabelle

- \(\forall x. \exists y. P \times y \implies \exists f. \forall x. P \times (f \times) \)

Minimal in What Sense?

- subtree relation, \(t \) is (proper) subtree of \(s \), written \(t \triangleleft s \)

\[
(t \triangleleft s), \text{ iff: } \begin{cases} t \in ts & s \triangleleft t \\ t \triangleleft f(ts) & t \triangleleft f(ts) \end{cases}
\]

- proper subtree relation is well-founded (allowing for induction)

Auxiliary Definitions

- infinite sequence \(f \) is minimal at position \(n \) (min\(_n\)\(f \)), iff:

\[
\forall g. (\forall i < n. g(i) = f(i)) \land g(n) \triangleleft f(n) \land (\forall i \geq n. \exists j \geq n. g(i) \triangleleft f(j))
\]

\[\implies \text{good}_{\triangleleft\text{emb}}(g)\]

- replace elements of sequence \(f \) by those of sequence \(g \), starting at \(n \):

\[
(f\langle n \rangle g)(i) = \text{if } i \geq n \text{ then } g(i) \text{ else } f(i)
\]
Key Lemma

\[\text{(1) } \min_n(f) \]
\[\text{(2) } \text{bad}_{\preceq_{\text{emb}}}(f) \]

\[\implies \exists g. \forall i \leq n. g(i) = f(i) \]
\[\land g(n + 1) \preceq f(n + 1) \]
\[\land \forall i \geq n + 1. \exists j \geq n + 1. g(i) \preceq f(j) \]
\[\land \text{bad}_{\preceq_{\text{emb}}}(f \langle n + 1 \rangle g) \]
\[\land \min_{n+1}(f \langle n + 1 \rangle g) \]

Construct Minimal Bad Sequence

- from AC and key lemma obtain function \(\nu \), s.t., given sequence satisfying (1) and (2) and index \(n \), returns sequence satisfying conclusion
- auxiliary sequence (of sequences)

\[m'(n) = \begin{cases}
 \nu(f, n) & \text{if } n = 0 \\
 m'(n - 1) \langle n \rangle \nu(m'(n - 1), n - 1) & \text{otherwise}
\end{cases} \]

- minimal bad sequence \(m(i) = m'(i)(i) \)
Conclusion
Related Work

- Murthy, Extracting Constructive Content from Classical Proofs, PhD, 1990 (Nuprl)
- Fridlender, Ramsey’s Theorem in Type Theory, Tech. Report, 1993 (ALF)
- Herbelin, A Program from an A-Translated Impredicative Proof of Higman’s Lemma, 1994 (2-letter alphabet, Coq)
- Fridlender, Higman’s Lemma in Type Theory, PhD, 1997 (ALF)
- Seisenberger, On the Constructive Content of Proofs, PhD, 2003 (Minlog)
- Berghofer, A Constructive Proof of Higman’s Lemma in Isabelle, TYPES 2003 (2-letter alphabet, Isabelle)
- Martín-Mateos et al., A Formal Proof of Higman’s Lemma in ACL2, JAR 2011 (ACL2)
Future Work

- investigate how Zorn’s Lemma could be of help
- reformulate proof using open induction

The End