
Certification of Constrained Rewriting

René Thiemann
joint work with Christian Sternagel

Computational Logic, University of Innsbruck

05 July 2012

http://cl-informatik.uibk.ac.at

Outline

Task 5: Certification

IsaFoR + CeTA

Progress in Task 5

2 / 22

Outline

Task 5: Certification

IsaFoR + CeTA

Progress in Task 5

3 / 22

Overview of Task 5

• abstract goal: certification of constrained rewriting

• 3 concrete goals:

1. formalization and certification of loops w.r.t. strategy
(does a loop t →+ C [tµ] respect strategy w.r.t. forbidden patterns?)

2. formalization and certification of soundness and completeness results of
unraveling transformation from conditional to unconditional rewriting

3. formalization and certification of constrained rewriting steps,
taking output of general rewrite tool of Task 1

• working plan: late start

1st year 2nd year 3rd year

Thiemann 1M 2M 1M
Zankl 1M 1M
PD2 6M 12M
Sternagel 2M

4 / 22

Overview of Task 5

• abstract goal: certification of constrained rewriting

• 3 concrete goals:

1. formalization and certification of loops w.r.t. strategy
(does a loop t →+ C [tµ] respect strategy w.r.t. forbidden patterns?)

2. formalization and certification of soundness and completeness results of
unraveling transformation from conditional to unconditional rewriting

3. formalization and certification of constrained rewriting steps,
taking output of general rewrite tool of Task 1

• working plan: late start

1st year 2nd year 3rd year

Thiemann 1M 2M 1M
Zankl 1M 1M
PD2 6M 12M
Sternagel 2M

4 / 22

Overview of Task 5

• abstract goal: certification of constrained rewriting

• 3 concrete goals:

1. formalization and certification of loops w.r.t. strategy
(does a loop t →+ C [tµ] respect strategy w.r.t. forbidden patterns?)

2. formalization and certification of soundness and completeness results of
unraveling transformation from conditional to unconditional rewriting

3. formalization and certification of constrained rewriting steps,
taking output of general rewrite tool of Task 1

• working plan: late start

1st year 2nd year 3rd year

Thiemann 1M 2M 1M
Zankl 1M 1M
PD2 6M 12M
Sternagel 2M

4 / 22

Overview of Task 5

• abstract goal: certification of constrained rewriting

• 3 concrete goals:

1. formalization and certification of loops w.r.t. strategy
(does a loop t →+ C [tµ] respect strategy w.r.t. forbidden patterns?)

2. formalization and certification of soundness and completeness results of
unraveling transformation from conditional to unconditional rewriting

3. formalization and certification of constrained rewriting steps,
taking output of general rewrite tool of Task 1

• working plan: late start

1st year 2nd year 3rd year

Thiemann 1M 2M 1M
Zankl 1M 1M
PD2 6M 12M
Sternagel 2M

4 / 22

Overview of Task 5

• abstract goal: certification of constrained rewriting

• 3 concrete goals:

1. formalization and certification of loops w.r.t. strategy
(does a loop t →+ C [tµ] respect strategy w.r.t. forbidden patterns?)

2. formalization and certification of soundness and completeness results of
unraveling transformation from conditional to unconditional rewriting

3. formalization and certification of constrained rewriting steps,
taking output of general rewrite tool of Task 1

• working plan: late start

1st year 2nd year 3rd year

Thiemann 1M 2M 1M
Zankl 1M 1M
PD2 6M 12M
Sternagel 2M

4 / 22

Goal 1: Loops w.r.t. strategy

Consider leftmost-outermost rewriting: lo→

x == y → eq(chk(x), chk(y))

eq(x , x)→ true

chk(x)→ false

eq(false, y)→ false

Above TRS can be used to check equality of arbitrary terms in
constant number of reductions

• t == t lo→ eq(chk(t), chk(t)) lo→ true

• s == t lo→ eq(chk(s), chk(t)) lo→ eq(false, chk(t)) lo→ false if s 6= t

If strategy is ignored, unwanted behaviour can occur

• t == t → eq(chk(t), chk(t))→ eq(false, chk(t))→ false

• s == t → eq(chk(s), chk(t))→ eq(chk(t), false)→ eq(false, false)→
true

⇒ (Non-)Termination analysis has to be strategy aware

5 / 22

Goal 1: Loops w.r.t. strategy

Consider leftmost-outermost rewriting: lo→

x == y → eq(chk(x), chk(y))

eq(x , x)→ true

chk(x)→ false

eq(false, y)→ false

Above TRS can be used to check equality of arbitrary terms in
constant number of reductions

• t == t lo→ eq(chk(t), chk(t)) lo→ true

• s == t lo→ eq(chk(s), chk(t)) lo→ eq(false, chk(t)) lo→ false if s 6= t

If strategy is ignored, unwanted behaviour can occur

• t == t → eq(chk(t), chk(t))→ eq(false, chk(t))→ false

• s == t → eq(chk(s), chk(t))→ eq(chk(t), false)→ eq(false, false)→
true

⇒ (Non-)Termination analysis has to be strategy aware

5 / 22

Goal 1: Loops w.r.t. strategy

Consider leftmost-outermost rewriting: lo→

x == y → eq(chk(x), chk(y))

eq(x , x)→ true

chk(x)→ false

eq(false, y)→ false

Above TRS can be used to check equality of arbitrary terms in
constant number of reductions

• t == t lo→ eq(chk(t), chk(t)) lo→ true

• s == t lo→ eq(chk(s), chk(t)) lo→ eq(false, chk(t)) lo→ false if s 6= t

If strategy is ignored, unwanted behaviour can occur

• t == t → eq(chk(t), chk(t))→ eq(false, chk(t))→ false

• s == t → eq(chk(s), chk(t))→ eq(chk(t), false)→ eq(false, false)→
true

⇒ (Non-)Termination analysis has to be strategy aware

5 / 22

Goal 1: Loops w.r.t. strategy

Consider leftmost-outermost rewriting: lo→

x == y → eq(chk(x), chk(y))

eq(x , x)→ true

chk(x)→ false

eq(false, y)→ false

Above TRS can be used to check equality of arbitrary terms in
constant number of reductions

• t == t lo→ eq(chk(t), chk(t)) lo→ true

• s == t lo→ eq(chk(s), chk(t)) lo→ eq(false, chk(t)) lo→ false if s 6= t

If strategy is ignored, unwanted behaviour can occur

• t == t → eq(chk(t), chk(t))→ eq(false, chk(t))→ false

• s == t → eq(chk(s), chk(t))→ eq(chk(t), false)→ eq(false, false)→
true

⇒ (Non-)Termination analysis has to be strategy aware
5 / 22

Goal 1: Loops w.r.t. strategy

Considered strategies for rewrite step s →p t

• innermost (no redex strictly below position p)
• outermost (no redex strictly above position p)
• forbidden patterns generalizes innermost and outermost strategies

(includes flexible combination of no redex below/at/above position p)

Loop under strategy

• loop t → . . . u →p v → . . .C [tµ]q respects strategy iff reduction

C [C [C [. . .C︸ ︷︷ ︸
n

[u µ] . . . µ]µ]µ︸ ︷︷ ︸
n

]→q...qp C [C [C [. . .C︸ ︷︷ ︸
n

[v µ] . . . µ]µ]µ︸ ︷︷ ︸
n

]

respects strategy for all n and all steps u →p v in the loop
• decidable for

• context-sensitive rewriting (trivial)
• innermost strategy (difficult)
• outermost strategy (even more difficult)
• forbidden patterns (most difficult)

6 / 22

Goal 1: Loops w.r.t. strategy

Considered strategies for rewrite step s →p t

• innermost (no redex strictly below position p)
• outermost (no redex strictly above position p)
• forbidden patterns generalizes innermost and outermost strategies

(includes flexible combination of no redex below/at/above position p)

Loop under strategy

• loop t → . . . u →p v → . . .C [tµ]q respects strategy iff reduction

C [C [C [. . .C︸ ︷︷ ︸
n

[u µ] . . . µ]µ]µ︸ ︷︷ ︸
n

]→q...qp C [C [C [. . .C︸ ︷︷ ︸
n

[v µ] . . . µ]µ]µ︸ ︷︷ ︸
n

]

respects strategy for all n and all steps u →p v in the loop

• decidable for

• context-sensitive rewriting (trivial)
• innermost strategy (difficult)
• outermost strategy (even more difficult)
• forbidden patterns (most difficult)

6 / 22

Goal 1: Loops w.r.t. strategy

Considered strategies for rewrite step s →p t

• innermost (no redex strictly below position p)
• outermost (no redex strictly above position p)
• forbidden patterns generalizes innermost and outermost strategies

(includes flexible combination of no redex below/at/above position p)

Loop under strategy

• loop t → . . . u →p v → . . .C [tµ]q respects strategy iff reduction

C [C [C [. . .C︸ ︷︷ ︸
n

[u µ] . . . µ]µ]µ︸ ︷︷ ︸
n

]→q...qp C [C [C [. . .C︸ ︷︷ ︸
n

[v µ] . . . µ]µ]µ︸ ︷︷ ︸
n

]

respects strategy for all n and all steps u →p v in the loop
• decidable for

• context-sensitive rewriting (trivial)
• innermost strategy (difficult)
• outermost strategy (even more difficult)
• forbidden patterns (most difficult)

6 / 22

Goal 2: Unraveling

• Unraveling is transformation U from conditional to standard rewriting

• Evaluation of conditions is encoded using U-symbols

• Variations in how many auxiliary variables are used as arguments of U

• Example:

div(x , s(y))→ 0 | x ≤ y →∗ true

div(x , s(y))→ s(div(x − s(y), s(y))) | x ≤ y →∗ false

becomes

div(x , s(y))→ U1(x ≤ y , x , y) U1(true, x , y)→ 0

div(x , s(y))→ U2(x ≤ y , x , y) U2(false, x , y)→ s(div(x − s(y), s(y)))

red variables are subject to optimizations

7 / 22

Goal 2: Unraveling

• Unraveling is transformation U from conditional to standard rewriting

• Evaluation of conditions is encoded using U-symbols

• Variations in how many auxiliary variables are used as arguments of U

• Example:

div(x , s(y))→ 0 | x ≤ y →∗ true

div(x , s(y))→ s(div(x − s(y), s(y))) | x ≤ y →∗ false

becomes

div(x , s(y))→ U1(x ≤ y , x , y) U1(true, x , y)→ 0

div(x , s(y))→ U2(x ≤ y , x , y) U2(false, x , y)→ s(div(x − s(y), s(y)))

red variables are subject to optimizations

7 / 22

Goal 2: Unraveling

• Completeness of unraveling is easy: s →R t implies s →+
U(R) t

• Soundness is much harder and does not always hold:
if s →∗U(R) t then s →∗R t for s and t not containing U-symbols

sufficient conditions like
• ultra left linearity (for optimized and non-optimized unraveling)
• ultra weak left linearity

8 / 22

Goal 3: Certifying constrained rewriting

• Completely depends on results of Task 1:

• what kinds of constraints?
• definition of rewrite relation?
• . . .

9 / 22

Outline

Task 5: Certification

IsaFoR + CeTA

Progress in Task 5

10 / 22

termination toolpapers theorems

(Let � be some order. If ` � r . . .)

TRS

papers

search algorithms

proof tree (> 500 MB)

certifier

accept / error

theorem prover

theorems
& proofs

certified
algorithms

code generator

IsaFoR

CeTA

11 / 22

termination toolpapers theorems

(Let � be some order. If ` � r . . .)

TRSpapers

search algorithms

proof tree (> 500 MB)

certifier

accept / error

theorem prover

theorems
& proofs

certified
algorithms

code generator

IsaFoR

CeTA

11 / 22

termination toolpapers theorems

(Let � be some order. If ` � r . . .)

TRSpapers

search algorithms

proof tree (> 500 MB)

certifier

accept / error

theorem prover

theorems
& proofs

certified
algorithms

code generator

IsaFoR

CeTA

11 / 22

termination toolpapers theorems

(Let � be some order. If ` � r . . .)

TRSpapers

search algorithms

proof tree (> 500 MB)

certifier

accept / error

theorem prover

theorems
& proofs

certified
algorithms

code generator

IsaFoR

CeTA

11 / 22

termination toolpapers theorems

(Let � be some order. If ` � r . . .)

TRSpapers

search algorithms

proof tree (> 500 MB)

certifier

accept / error

theorem prover

theorems
& proofs

certified
algorithms

code generator

IsaFoR

CeTA

11 / 22

termination toolpapers theorems

(Let � be some order. If ` � r . . .)

TRSpapers

search algorithms

proof tree (> 500 MB)

certifier

accept / error

theorem prover

theorems
& proofs

certified
algorithms

code generator

IsaFoR

CeTA

11 / 22

termination toolpapers theorems

(Let � be some order. If ` � r . . .)

TRSpapers

search algorithms

proof tree (> 500 MB)

certifier

accept / error

theorem prover

theorems
& proofs

certified
algorithms

code generator

IsaFoR

CeTA

11 / 22

Isabelle/HOL

• Isabelle/HOL: Interactive theorem proving for higher order logic
• HOL: functional programming + theorem proving

(∗ programming ∗)
datatype ′a list = Nil | Cons ′a (′a list)
fun insert where
insert x Nil = Cons x Nil
insert x (Cons y ys) = if x ≤ y then Cons x (Cons y ys) else . . .

(∗ specifying ∗)
fun sorted where
sorted Nil = True
sorted (Cons x Nil) = True
sorted (Cons x (Cons y ys)) = x ≤ y ∧ sorted (Cons y ys)

(∗ proving ∗)
lemma : sorted xs =⇒ sorted (insert x xs)
proof (induction xs . . .)

12 / 22

Isabelle/HOL

• Isabelle/HOL: Interactive theorem proving for higher order logic
• HOL: functional programming + theorem proving

(∗ programming ∗)
datatype ′a list = Nil | Cons ′a (′a list)
fun insert where
insert x Nil = Cons x Nil
insert x (Cons y ys) = if x ≤ y then Cons x (Cons y ys) else . . .

(∗ specifying ∗)
fun sorted where
sorted Nil = True
sorted (Cons x Nil) = True
sorted (Cons x (Cons y ys)) = x ≤ y ∧ sorted (Cons y ys)

(∗ proving ∗)
lemma : sorted xs =⇒ sorted (insert x xs)
proof (induction xs . . .)

12 / 22

Isabelle/HOL

• Isabelle/HOL: Interactive theorem proving for higher order logic
• HOL: functional programming + theorem proving

(∗ programming ∗)
datatype ′a list = Nil | Cons ′a (′a list)
fun insert where
insert x Nil = Cons x Nil
insert x (Cons y ys) = if x ≤ y then Cons x (Cons y ys) else . . .

(∗ specifying ∗)
fun sorted where
sorted Nil = True
sorted (Cons x Nil) = True
sorted (Cons x (Cons y ys)) = x ≤ y ∧ sorted (Cons y ys)

(∗ proving ∗)
lemma : sorted xs =⇒ sorted (insert x xs)
proof (induction xs . . .)

12 / 22

Isabelle/HOL

• Isabelle/HOL: Interactive theorem proving for higher order logic
• HOL: functional programming + theorem proving

(∗ programming ∗)
datatype ′a list = Nil | Cons ′a (′a list)
fun insert where
insert x Nil = Cons x Nil
insert x (Cons y ys) = if x ≤ y then Cons x (Cons y ys) else . . .

(∗ specifying ∗)
fun sorted where
sorted Nil = True
sorted (Cons x Nil) = True
sorted (Cons x (Cons y ys)) = x ≤ y ∧ sorted (Cons y ys)

(∗ proving ∗)
lemma : sorted xs =⇒ sorted (insert x xs)
proof (induction xs . . .) 12 / 22

IsaFoR: Isabelle/HOL Formalization of Rewriting

• library on rewriting, deep embedding (TRS is data object)

datatype (′f , ′v)term = Var ′v | Fun ′f ((′f , ′v)term list)
type synonym (′f , ′v)trs = ((′f , ′v)term × (′f , ′v)term) set

• supported constraints:

• innermost strategy (many results)
• substitution constraint nfs to allow free variables in right-hand sides:

C [`σ]
nfs→

Q
R C [rσ] for `→ r ∈ R if

• all arguments of `σ are in normal form w.r.t. →Q (innermost)
• if nfs then xσ is in normal form w.r.t. →Q for all x ∈ V(`) ∪ V(r)

• outermost strategy (few results)

• focus on termination criteria

• recently added results on confluence, complexity, completion, and
equational reasoning

13 / 22

IsaFoR: Isabelle/HOL Formalization of Rewriting

• library on rewriting, deep embedding (TRS is data object)

datatype (′f , ′v)term = Var ′v | Fun ′f ((′f , ′v)term list)
type synonym (′f , ′v)trs = ((′f , ′v)term × (′f , ′v)term) set

• supported constraints:

• innermost strategy (many results)
• substitution constraint nfs to allow free variables in right-hand sides:

C [`σ]
nfs→

Q
R C [rσ] for `→ r ∈ R if

• all arguments of `σ are in normal form w.r.t. →Q (innermost)
• if nfs then xσ is in normal form w.r.t. →Q for all x ∈ V(`) ∪ V(r)

• outermost strategy (few results)

• focus on termination criteria

• recently added results on confluence, complexity, completion, and
equational reasoning

13 / 22

IsaFoR: Isabelle/HOL Formalization of Rewriting

• library on rewriting, deep embedding (TRS is data object)

datatype (′f , ′v)term = Var ′v | Fun ′f ((′f , ′v)term list)
type synonym (′f , ′v)trs = ((′f , ′v)term × (′f , ′v)term) set

• supported constraints:
• innermost strategy (many results)

• substitution constraint nfs to allow free variables in right-hand sides:

C [`σ]
nfs→

Q
R C [rσ] for `→ r ∈ R if

• all arguments of `σ are in normal form w.r.t. →Q (innermost)
• if nfs then xσ is in normal form w.r.t. →Q for all x ∈ V(`) ∪ V(r)

• outermost strategy (few results)

• focus on termination criteria

• recently added results on confluence, complexity, completion, and
equational reasoning

13 / 22

IsaFoR: Isabelle/HOL Formalization of Rewriting

• library on rewriting, deep embedding (TRS is data object)

datatype (′f , ′v)term = Var ′v | Fun ′f ((′f , ′v)term list)
type synonym (′f , ′v)trs = ((′f , ′v)term × (′f , ′v)term) set

• supported constraints:
• innermost strategy (many results)
• substitution constraint nfs to allow free variables in right-hand sides:

C [`σ]
nfs→

Q
R C [rσ] for `→ r ∈ R if

• all arguments of `σ are in normal form w.r.t. →Q (innermost)
• if nfs then xσ is in normal form w.r.t. →Q for all x ∈ V(`) ∪ V(r)

• outermost strategy (few results)

• focus on termination criteria

• recently added results on confluence, complexity, completion, and
equational reasoning

13 / 22

IsaFoR: Isabelle/HOL Formalization of Rewriting

• library on rewriting, deep embedding (TRS is data object)

datatype (′f , ′v)term = Var ′v | Fun ′f ((′f , ′v)term list)
type synonym (′f , ′v)trs = ((′f , ′v)term × (′f , ′v)term) set

• supported constraints:
• innermost strategy (many results)
• substitution constraint nfs to allow free variables in right-hand sides:

C [`σ]
nfs→

Q
R C [rσ] for `→ r ∈ R if

• all arguments of `σ are in normal form w.r.t. →Q (innermost)
• if nfs then xσ is in normal form w.r.t. →Q for all x ∈ V(`) ∪ V(r)

• outermost strategy (few results)

• focus on termination criteria

• recently added results on confluence, complexity, completion, and
equational reasoning

13 / 22

IsaFoR: Isabelle/HOL Formalization of Rewriting

• library on rewriting, deep embedding (TRS is data object)

datatype (′f , ′v)term = Var ′v | Fun ′f ((′f , ′v)term list)
type synonym (′f , ′v)trs = ((′f , ′v)term × (′f , ′v)term) set

• supported constraints:
• innermost strategy (many results)
• substitution constraint nfs to allow free variables in right-hand sides:

C [`σ]
nfs→

Q
R C [rσ] for `→ r ∈ R if

• all arguments of `σ are in normal form w.r.t. →Q (innermost)
• if nfs then xσ is in normal form w.r.t. →Q for all x ∈ V(`) ∪ V(r)

• outermost strategy (few results)

• focus on termination criteria

• recently added results on confluence, complexity, completion, and
equational reasoning

13 / 22

IsaFoR: Isabelle/HOL Formalization of Rewriting

• library on rewriting, deep embedding (TRS is data object)

datatype (′f , ′v)term = Var ′v | Fun ′f ((′f , ′v)term list)
type synonym (′f , ′v)trs = ((′f , ′v)term × (′f , ′v)term) set

• supported constraints:
• innermost strategy (many results)
• substitution constraint nfs to allow free variables in right-hand sides:

C [`σ]
nfs→

Q
R C [rσ] for `→ r ∈ R if

• all arguments of `σ are in normal form w.r.t. →Q (innermost)
• if nfs then xσ is in normal form w.r.t. →Q for all x ∈ V(`) ∪ V(r)

• outermost strategy (few results)

• focus on termination criteria

• recently added results on confluence, complexity, completion, and
equational reasoning

13 / 22

Supported termination techniques

• Dependency Pairs
• Dependency Pair Framework
• (Innermost) Dependency Graph Processor
• (Innermost) DP Transformations Narrowing, Rewriting, and

(Forward)-Instantiation
• Flat Context Closure
• Innermost Switch
• Innermost- and Outermost-Loops
• Match- and roof-bounds
• Reduction Pair Processors (poly, matrix, LPO, RPO, KBO, . . .)
• Root-Labeling
• Semantic Labeling
• Size-Change Termination
• String Reversal
• Subterm Criterion
• Uncurrying
• (Innermost) Usable Rules

14 / 22

CeTA: Certified Termination Analysis

• CeTA is executable proof checker within IsaFoR

• load IsaFoR in Isabelle
• export-code

(check-proof :: string -> certification-result)

in Haskell
• write Haskell file Main.hs to load file and call check-proof
• invoke Haskell-compiler and obtain CeTA as binary (outside Isabelle)

• both IsaFoR and CeTA are easily available (repository or distribution)

http://cl-informatik.uibk.ac.at/software/ceta/

15 / 22

http://cl-informatik.uibk.ac.at/software/ceta/

CeTA: Certified Termination Analysis

• CeTA is executable proof checker within IsaFoR
• load IsaFoR in Isabelle

• export-code

(check-proof :: string -> certification-result)

in Haskell
• write Haskell file Main.hs to load file and call check-proof
• invoke Haskell-compiler and obtain CeTA as binary (outside Isabelle)

• both IsaFoR and CeTA are easily available (repository or distribution)

http://cl-informatik.uibk.ac.at/software/ceta/

15 / 22

http://cl-informatik.uibk.ac.at/software/ceta/

CeTA: Certified Termination Analysis

• CeTA is executable proof checker within IsaFoR
• load IsaFoR in Isabelle
• export-code

(check-proof :: string -> certification-result)

in Haskell

• write Haskell file Main.hs to load file and call check-proof
• invoke Haskell-compiler and obtain CeTA as binary (outside Isabelle)

• both IsaFoR and CeTA are easily available (repository or distribution)

http://cl-informatik.uibk.ac.at/software/ceta/

15 / 22

http://cl-informatik.uibk.ac.at/software/ceta/

CeTA: Certified Termination Analysis

• CeTA is executable proof checker within IsaFoR
• load IsaFoR in Isabelle
• export-code

(check-proof :: string -> certification-result)

in Haskell
• write Haskell file Main.hs to load file and call check-proof

• invoke Haskell-compiler and obtain CeTA as binary (outside Isabelle)

• both IsaFoR and CeTA are easily available (repository or distribution)

http://cl-informatik.uibk.ac.at/software/ceta/

15 / 22

http://cl-informatik.uibk.ac.at/software/ceta/

CeTA: Certified Termination Analysis

• CeTA is executable proof checker within IsaFoR
• load IsaFoR in Isabelle
• export-code

(check-proof :: string -> certification-result)

in Haskell
• write Haskell file Main.hs to load file and call check-proof
• invoke Haskell-compiler and obtain CeTA as binary (outside Isabelle)

• both IsaFoR and CeTA are easily available (repository or distribution)

http://cl-informatik.uibk.ac.at/software/ceta/

15 / 22

http://cl-informatik.uibk.ac.at/software/ceta/

CeTA: Certified Termination Analysis

• CeTA is executable proof checker within IsaFoR
• load IsaFoR in Isabelle
• export-code

(check-proof :: string -> certification-result)

in Haskell
• write Haskell file Main.hs to load file and call check-proof
• invoke Haskell-compiler and obtain CeTA as binary (outside Isabelle)

• both IsaFoR and CeTA are easily available (repository or distribution)

http://cl-informatik.uibk.ac.at/software/ceta/

15 / 22

http://cl-informatik.uibk.ac.at/software/ceta/

Outline

Task 5: Certification

IsaFoR + CeTA

Progress in Task 5

16 / 22

Goal 1: Loops under strategies for t →+ C [tµ]

• Innermost Loops: original proof works in three phases

1. setting up matching problems:

sµn never matches lhs for any n

2. simplified to identity problems using matching algorithm:

sµn 6= tµn for all n

3. complex algorithm to decide identity problems

• Example: lhs eq(z , z), redex f(eq(x , y)), µ = {x/f(y), y/f(x)}

1. for s = eq(x , y) or s = f (x) or s = f (y), sµn does not match eq(z , z)
2. xµn 6= yµn for all n
3. True (the variable in both terms is toggling)

• everything formalized, deviation from original proof in 3. step:
improved complex algorithm, Kruskal no longer required

17 / 22

Goal 1: Loops under strategies for t →+ C [tµ]

• Innermost Loops: original proof works in three phases

1. setting up matching problems:

sµn never matches lhs for any n

2. simplified to identity problems using matching algorithm:

sµn 6= tµn for all n

3. complex algorithm to decide identity problems

• Example: lhs eq(z , z), redex f(eq(x , y)), µ = {x/f(y), y/f(x)}
1. for s = eq(x , y) or s = f (x) or s = f (y), sµn does not match eq(z , z)

2. xµn 6= yµn for all n
3. True (the variable in both terms is toggling)

• everything formalized, deviation from original proof in 3. step:
improved complex algorithm, Kruskal no longer required

17 / 22

Goal 1: Loops under strategies for t →+ C [tµ]

• Innermost Loops: original proof works in three phases

1. setting up matching problems:

sµn never matches lhs for any n

2. simplified to identity problems using matching algorithm:

sµn 6= tµn for all n

3. complex algorithm to decide identity problems

• Example: lhs eq(z , z), redex f(eq(x , y)), µ = {x/f(y), y/f(x)}
1. for s = eq(x , y) or s = f (x) or s = f (y), sµn does not match eq(z , z)
2. xµn 6= yµn for all n

3. True (the variable in both terms is toggling)

• everything formalized, deviation from original proof in 3. step:
improved complex algorithm, Kruskal no longer required

17 / 22

Goal 1: Loops under strategies for t →+ C [tµ]

• Innermost Loops: original proof works in three phases

1. setting up matching problems:

sµn never matches lhs for any n

2. simplified to identity problems using matching algorithm:

sµn 6= tµn for all n

3. complex algorithm to decide identity problems

• Example: lhs eq(z , z), redex f(eq(x , y)), µ = {x/f(y), y/f(x)}
1. for s = eq(x , y) or s = f (x) or s = f (y), sµn does not match eq(z , z)
2. xµn 6= yµn for all n
3. True (the variable in both terms is toggling)

• everything formalized, deviation from original proof in 3. step:
improved complex algorithm, Kruskal no longer required

17 / 22

Goal 1: Loops under strategies for t →+ C [tµ]

• Innermost Loops: original proof works in three phases

1. setting up matching problems:

sµn never matches lhs for any n

2. simplified to identity problems using matching algorithm:

sµn 6= tµn for all n

3. complex algorithm to decide identity problems

• Example: lhs eq(z , z), redex f(eq(x , y)), µ = {x/f(y), y/f(x)}
1. for s = eq(x , y) or s = f (x) or s = f (y), sµn does not match eq(z , z)
2. xµn 6= yµn for all n
3. True (the variable in both terms is toggling)

• everything formalized, deviation from original proof in 3. step:
improved complex algorithm, Kruskal no longer required

17 / 22

Goal 1: Loops under strategies for t →+ C [tµ]

• Outermost Loops: original proof works in three phases

1. setting up matching and extended matching problems:

D[s(C , µ)k]µn never matches lhs for any n, k

(C , µ)k : k-times application of u 7→ C [uµ]

2. simplified to identity and extended identity problems:

D[s(C , µ)k]µn 6= tµn for all n, k (?)

3. complex algorithm to decide extended identity problems

• main result formalized without any formalization of 3. step:
for extended identity problems from outermost loops
k in (?) can be fixed to 0
=⇒ get non-extended identity problem

18 / 22

Goal 1: Loops under strategies for t →+ C [tµ]

• Outermost Loops: original proof works in three phases

1. setting up matching and extended matching problems:

D[s(C , µ)k]µn never matches lhs for any n, k

(C , µ)k : k-times application of u 7→ C [uµ]

2. simplified to identity and extended identity problems:

D[s(C , µ)k]µn 6= tµn for all n, k (?)

3. complex algorithm to decide extended identity problems

• main result formalized without any formalization of 3. step:
for extended identity problems from outermost loops
k in (?) can be fixed to 0
=⇒ get non-extended identity problem

18 / 22

Goal 1: Loops under strategies for t →+ C [tµ]

• Outermost Loops: original proof works in three phases

1. setting up matching and extended matching problems:

D[s(C , µ)k]µn never matches lhs for any n, k

(C , µ)k : k-times application of u 7→ C [uµ]

2. simplified to identity and extended identity problems:

D[s(C , µ)k]µn 6= tµn for all n, k (?)

3. complex algorithm to decide extended identity problems

• main result formalized without any formalization of 3. step:
for extended identity problems from outermost loops
k in (?) can be fixed to 0
=⇒ get non-extended identity problem

18 / 22

Goal 1: Loops under strategies for t →+ C [tµ]

• Outermost Loops: original proof works in three phases

1. setting up matching and extended matching problems:

D[s(C , µ)k]µn never matches lhs for any n, k

(C , µ)k : k-times application of u 7→ C [uµ]

2. simplified to identity and extended identity problems:

D[s(C , µ)k]µn 6= tµn for all n, k (?)

3. complex algorithm to decide extended identity problems

• main result formalized without any formalization of 3. step:
for extended identity problems from outermost loops
k in (?) can be fixed to 0
=⇒ get non-extended identity problem

18 / 22

Goal 1: Loops under strategies for t →+ C [tµ]

• Outermost Loops: original proof works in three phases

1. setting up matching and extended matching problems:

D[s(C , µ)k]µn never matches lhs for any n, k

(C , µ)k : k-times application of u 7→ C [uµ]

2. simplified to identity and extended identity problems:

D[s(C , µ)k]µn 6= tµn for all n, k (?)

3. complex algorithm to decide extended identity problems

• main result formalized without any formalization of 3. step:
for extended identity problems from outermost loops
k in (?) can be fixed to 0
=⇒ get non-extended identity problem

18 / 22

Goal 1: Loops under strategies for t →+ C [tµ]

• forbidden patterns: original proof works in two phases

1. setting up matching and extended matching problems (much more
involved than in innermost and outermost case)

2. solve (extended) matching problems

• several open tasks

• formalization of rewrite relation with forbidden patterns
• complete formalization of 1. step
• figure out whether trick for outermost loops (fix k = 0) is also possible

for extended identity problems from forbidden patterns;
if not, formalize complex algorithm for extended identity problems

19 / 22

Goal 1: Loops under strategies for t →+ C [tµ]

• forbidden patterns: original proof works in two phases

1. setting up matching and extended matching problems (much more
involved than in innermost and outermost case)

2. solve (extended) matching problems

• several open tasks

• formalization of rewrite relation with forbidden patterns
• complete formalization of 1. step
• figure out whether trick for outermost loops (fix k = 0) is also possible

for extended identity problems from forbidden patterns;
if not, formalize complex algorithm for extended identity problems

19 / 22

Goal 1: Loops under strategies for t →+ C [tµ]

• forbidden patterns: original proof works in two phases

1. setting up matching and extended matching problems (much more
involved than in innermost and outermost case)

2. solve (extended) matching problems

• several open tasks

• formalization of rewrite relation with forbidden patterns
• complete formalization of 1. step
• figure out whether trick for outermost loops (fix k = 0) is also possible

for extended identity problems from forbidden patterns;
if not, formalize complex algorithm for extended identity problems

19 / 22

Goal 1: Loops under strategies for t →+ C [tµ]

• forbidden patterns: original proof works in two phases

1. setting up matching and extended matching problems (much more
involved than in innermost and outermost case)

2. solve (extended) matching problems

• several open tasks
• formalization of rewrite relation with forbidden patterns

• complete formalization of 1. step
• figure out whether trick for outermost loops (fix k = 0) is also possible

for extended identity problems from forbidden patterns;
if not, formalize complex algorithm for extended identity problems

19 / 22

Goal 1: Loops under strategies for t →+ C [tµ]

• forbidden patterns: original proof works in two phases

1. setting up matching and extended matching problems (much more
involved than in innermost and outermost case)

2. solve (extended) matching problems

• several open tasks
• formalization of rewrite relation with forbidden patterns
• complete formalization of 1. step

• figure out whether trick for outermost loops (fix k = 0) is also possible
for extended identity problems from forbidden patterns;
if not, formalize complex algorithm for extended identity problems

19 / 22

Goal 1: Loops under strategies for t →+ C [tµ]

• forbidden patterns: original proof works in two phases

1. setting up matching and extended matching problems (much more
involved than in innermost and outermost case)

2. solve (extended) matching problems

• several open tasks
• formalization of rewrite relation with forbidden patterns
• complete formalization of 1. step
• figure out whether trick for outermost loops (fix k = 0) is also possible

for extended identity problems from forbidden patterns;
if not, formalize complex algorithm for extended identity problems

19 / 22

Goal 2: Unraveling

• last week: nothing formalized in IsaFoR

• this week: formalization of easy results

• conditional rewrite relation, quasi-decreasingness
• generic unraveling-transformation:

for `→ r ⇐ s1 = t1, . . . sn = tn unraveled rules are

`→ C1[s1]

C1[t1]→ C2[s2]

. . .→ . . .

Cn[tn]→ r

Ci are arbitrary, standard unraveling by choosing C1 = U1(· ,V(`)), . . .
• completeness result:

SN(UCi (R)) =⇒ quasi-decreasing(R) =⇒ SN(→R)

• several open tasks

• certification algorithm for unraveling and suitable format
• algorithm to compute →R (for quasi-decreasing R)
• soundness results for unravelings

20 / 22

Goal 2: Unraveling

• last week: nothing formalized in IsaFoR
• this week: formalization of easy results

• conditional rewrite relation, quasi-decreasingness

• generic unraveling-transformation:
for `→ r ⇐ s1 = t1, . . . sn = tn unraveled rules are

`→ C1[s1]

C1[t1]→ C2[s2]

. . .→ . . .

Cn[tn]→ r

Ci are arbitrary, standard unraveling by choosing C1 = U1(· ,V(`)), . . .
• completeness result:

SN(UCi (R)) =⇒ quasi-decreasing(R) =⇒ SN(→R)

• several open tasks

• certification algorithm for unraveling and suitable format
• algorithm to compute →R (for quasi-decreasing R)
• soundness results for unravelings

20 / 22

Goal 2: Unraveling

• last week: nothing formalized in IsaFoR
• this week: formalization of easy results

• conditional rewrite relation, quasi-decreasingness
• generic unraveling-transformation:

for `→ r ⇐ s1 = t1, . . . sn = tn unraveled rules are

`→ C1[s1]

C1[t1]→ C2[s2]

. . .→ . . .

Cn[tn]→ r

Ci are arbitrary, standard unraveling by choosing C1 = U1(· ,V(`)), . . .

• completeness result:

SN(UCi (R)) =⇒ quasi-decreasing(R) =⇒ SN(→R)

• several open tasks

• certification algorithm for unraveling and suitable format
• algorithm to compute →R (for quasi-decreasing R)
• soundness results for unravelings

20 / 22

Goal 2: Unraveling

• last week: nothing formalized in IsaFoR
• this week: formalization of easy results

• conditional rewrite relation, quasi-decreasingness
• generic unraveling-transformation:

for `→ r ⇐ s1 = t1, . . . sn = tn unraveled rules are

`→ C1[s1]

C1[t1]→ C2[s2]

. . .→ . . .

Cn[tn]→ r

Ci are arbitrary, standard unraveling by choosing C1 = U1(· ,V(`)), . . .
• completeness result:

SN(UCi (R)) =⇒ quasi-decreasing(R) =⇒ SN(→R)

• several open tasks

• certification algorithm for unraveling and suitable format
• algorithm to compute →R (for quasi-decreasing R)
• soundness results for unravelings

20 / 22

Goal 2: Unraveling

• last week: nothing formalized in IsaFoR
• this week: formalization of easy results

• conditional rewrite relation, quasi-decreasingness
• generic unraveling-transformation:

for `→ r ⇐ s1 = t1, . . . sn = tn unraveled rules are

`→ C1[s1]

C1[t1]→ C2[s2]

. . .→ . . .

Cn[tn]→ r

Ci are arbitrary, standard unraveling by choosing C1 = U1(· ,V(`)), . . .
• completeness result:

SN(UCi (R)) =⇒ quasi-decreasing(R) =⇒ SN(→R)

• several open tasks
• certification algorithm for unraveling and suitable format

• algorithm to compute →R (for quasi-decreasing R)
• soundness results for unravelings

20 / 22

Goal 2: Unraveling

• last week: nothing formalized in IsaFoR
• this week: formalization of easy results

• conditional rewrite relation, quasi-decreasingness
• generic unraveling-transformation:

for `→ r ⇐ s1 = t1, . . . sn = tn unraveled rules are

`→ C1[s1]

C1[t1]→ C2[s2]

. . .→ . . .

Cn[tn]→ r

Ci are arbitrary, standard unraveling by choosing C1 = U1(· ,V(`)), . . .
• completeness result:

SN(UCi (R)) =⇒ quasi-decreasing(R) =⇒ SN(→R)

• several open tasks
• certification algorithm for unraveling and suitable format
• algorithm to compute →R (for quasi-decreasing R)

• soundness results for unravelings

20 / 22

Goal 2: Unraveling

• last week: nothing formalized in IsaFoR
• this week: formalization of easy results

• conditional rewrite relation, quasi-decreasingness
• generic unraveling-transformation:

for `→ r ⇐ s1 = t1, . . . sn = tn unraveled rules are

`→ C1[s1]

C1[t1]→ C2[s2]

. . .→ . . .

Cn[tn]→ r

Ci are arbitrary, standard unraveling by choosing C1 = U1(· ,V(`)), . . .
• completeness result:

SN(UCi (R)) =⇒ quasi-decreasing(R) =⇒ SN(→R)

• several open tasks
• certification algorithm for unraveling and suitable format
• algorithm to compute →R (for quasi-decreasing R)
• soundness results for unravelings 20 / 22

Goal 3: Constraint rewriting

• wait for outcome of Task 1

• then there will be several open tasks

21 / 22

Task 5: Certification, Summary

• 1. goal: certifying loops
• large parts already done (innermost, outermost)
• generalization to forbidden patters currently open

• 2. goal: unraveling
• only completeness results in IsaFoR at the moment

• 3. goal: constrained rewriting
• not clear what to do at the moment

• open questions
• which tools provide proofs to certify (TTT2?, VMTL?, Nagoya?)
• which soundness result for unraveling (Nagoya?, Vienna?, combined?)

22 / 22

	Task 5: Certification
	IsaFoR + CeTA
	Progress in Task 5

