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Current State

Completion with Termination Tools

I combining multi-completion with the use of termination tools (H,I)

I implemented in mkbTT (H,I)

I variants for ordered completion and AC-completion (I)

Maximal Completion (J)

I completion as satisfaction problem based on MaxSAT/MaxSMT

I implemented in Maxcomp

Multi-Context Rewriting Induction with Termination Tools (H)

I based upon rewriting induction with termination tools

I adapt multi-completion approach to use multiple contexts
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Goals (1)

Completion

I enhance understanding of differences between mkbTT/Maxcomp

I develop combined approach

Completion Modulo

I extend Maxcomp to deal with AC- and S-normalized completion

I efficient AC-matching and unification

I optimizations: AC-term indexing and critical pair criteria

E-Unification

I given s ≈ t, find all substitutions σ such that sσ ↔∗E tσ
I idea: tool can apply completion + basic/LSE narrowing
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Goals (2)

Rewriting Induction

I Maxcomp-like approach for rewriting induction

I lemma generation techniques, handle non-orientable equations

Completion Competition

I competition of different approaches for completion
(+ ordered completion, completion modulo, rewriting induction?)

I benchmark collection for different categories

I clarifications required:

I what is a correct answer? ... for ordered completion?
I is there a meaningful way to compare two answers?
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Motivation

Knuth-Bendix Completion

�
reduction ordering

+
E0

equations
−→KB

R
rewrite system

R is convergent, i.e., confluent and terminating, and ≈E0 = ↔∗R

Example (Group Theory)

y ←!
R (x− · x)− · (e · (y · e))

?
≈ y · e→!

R y
e · x ≈ x

E0 : x− · x ≈ e
(x · y) · z ≈ x · (y · z)

e · x → x x · e → x
x− · x → e x · x− → e

R : (x · y) · z → x · (y · z) x−− → x
e− → e (x · y)− → y− · x−

x− · (x · y) → y x · (x− · y) → y
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Motivation

Maximal Completion

maxsat

maxsmt

R
convergent

for E0?

E0 R yes

no
E = CP(R) ∪ E

R

+ fast, simple correctness proof, easy to implement

– no interreduction – limited scalability, restricted termination power

Aims

I adapt to ordered/AC/normalized completion, rewriting induction

I enhance efficiency by incorporating interreduction

Maximality Principle

orient as many equations as possible:
if R is convergent for E , both R,R′ ⊆ � and R′ ⊆ ↔∗E then also
R∪R′ is convergent for E
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Preliminaries

Definition (termination constraint)

C ::= `→ r | > | ⊥ | ¬C | C ∨ C | C ∧ C

for TRS R define R |= C inductively:

R |=`→ r iff `→ r ∈ R R |=>
R 6|=⊥ R |=C1 ∨ C2 iff R |= C1 or R |= C2

R |=¬C iff R 6|= C R |=C1 ∧ C2 iff R |= C1 and R |= C2

Definition (constrained equalities)

I constrained equality (s ≈ t,C ) is pair of equality s ≈ t and
termination constraint C

I constrained equation system (CES) C is set of constrained equalities
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Preliminaries

Let R be terminating.

Notation

E> = {(s ≈ t,>) | s ≈ t ∈ E}
CJRK = {s ≈ t | (s ≈ t,C ) ∈ C and R |= C} R-projection

C	R =
{(

s ≈ t,C ∧ ¬
∧
R | (s ≈ t,C ) ∈ C

}
C↓R =

{(
s↓R ≈ t↓R,C ∧

∧
R
)
| (s ≈ t,C ) ∈ C and s↓R 6= t↓R

}
Example

E : 1 : s(p(x)) ≈ x 2: p(s(x)) ≈ x 3: s(x) + y ≈ s(x + y)

R : s(p(x))→ x s(x + y)→ s(x) + y

E> ={(1,>), (2,>), (3,>)}

E>JRK ={1, 2, 3}

C ={(1, s(p(x))→ x), (2, s(x) + y → s(x + y)), (3, s(x + y)→ s(x) + y)}
CJRK ={1, 3}

E> 	R ={(1, s(p(x))→ x), (2, s(x) + y → s(x + y)), (3, s(x + y)→ s(x) + y)}TA, NH, DK & SW (FWF/JSPS Kickoff) Constrained Equations 14/27



Preliminaries

Definition

I E is R-joinable if s ↓R t for all s ≈ t ∈ E
I E is ground R-joinable if sσ ↓R tσ for all s ≈ t ∈ E and ground σ

Definition

mapping S from CESs to CESs is (ground) reduction if ∀ CES C, TRS R

S(C)JRK (ground) R-joinable =⇒ CJRK (ground) R-joinable

Definition

SR(C) = (C	R) ∪ C↓R ∪ F (R)>↓R

Lemma

S is a (ground) reduction.
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Completion Standard Completion

Definition

SKB(C) = (C	R) ∪ C↓R ∪ F (R)>↓R
F (R) = CP(R) and R is terminating with R ⊆↔∗E (for fixed E)

Theorem

If C = Sn
KB(E>) and CJRK=∅ then R is convergent for E .

Proof. easy!

I n = 0: if CJRK=∅ then E = ∅, thus R = ∅
I n > 0:

I ↔∗R =↔∗E , since R ⊆ ↔∗E by assumption and
E ⊆ ↓R as Sn

KB is reduction (by induction on n)
I R is terminating by assumption
I R is confluent because for C′ = Sn−1

KB (E>) the set
SKB(C′)JRK = ∅, so CP(R) ⊆ ↓R

Example

E : 1 : s(p(x)) ≈ x 2: p(s(x)) ≈ x 3: s(x) + y ≈ s(x + y)

4 : x + y ≈ s(p(x) + y) 5 : p(s(x) + y) ≈ x + y 6: p(x + y) ≈ p(x) + y

C0 ={(1,>), (2,>), (3,>)} R1 = {1, 2, 3}
C1 =SKB(C0) = {(1,¬R1), (2,¬R1), (3,¬R1), (4,R1)} R2 = {1, 2, 3′, 4′}
C2 =SKB(C1) = {(1,¬R1 ∧ ¬R2), (2,¬R1 ∧ ¬R2),

(3,¬R1 ∧ ¬R2), (4,¬R2), (5,R2), (6,R2)} R3 = R1 ∪ {4′, 5, 6′}
C3 =SKB(C2) = {(1,¬R1 ∧ ¬R2), (2,¬R1 ∧ ¬R2),

(3,¬R1 ∧ ¬R2), (4,¬R2 ∧ ¬R3), (5,¬R3), (6,¬R3)}

R1 = 1 ∧ 2 ∧ 3

C3JR3K = ∅, so R3 convergent for E
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Completion Ordered Completion

Ordered Completion

�
ground-total

reduction ordering
+

E0

equations
−→OKB

E ,R
equations + rewrite system

E� ∪R is ground-confluent, terminating, and ≈E0 = ↔∗R∪E

Example (Entropic Groupoid)

(a · a) · b←!
R∪E� (a · b) · (a · b)

?
≈ (a · b) · (b · a)→!

R∪E� a

a ≺ b
E0 : (x · y) · x ≈ x

(x · y) · (z · w) ≈ (x · z) · (y · w)

E : (x · y) · z ≈ (x · w) · z
R : (x · y) · x → x

x · (y · z) → x · z
((x · y) · z) · w → x · w
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Completion Ordered Completion

Ordered Completion

Definition

I R is ground convergent if R is terminating and for all ground peaks
s ← · → t there is some u such that s →∗R u ←∗R t

I (E ,R) is ground convergent with respect to total reduction order �
if E� ∪R is ground convergent

set of �-oriented ground instances of E
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Completion Ordered Completion

Definition

SO(C) = (C	R) ∪ C↓R ∪ F (R,C)>↓R
I F (R,C) = CP�(R∪ CJRK)

I R is totally terminating with R ⊆↔∗E

extended critical pairs

Theorem

If C = Sn
O(E>) and SO(C)JRK=CJRK then (CJRK,R) is ground

convergent for E

Example

E : 1 : (−x + x) · 1 ≈ 0 2: (x +−x) · 1 ≈ x +−x 3: −x + x ≈ y +−y
4: (x +−x) · 1 ≈ 0 5: 0 ≈ x +−x 6: 0 · 1 ≈ 0

7: (−x + x) ≈ 0

C0 ={(1,>), (2,>), (3,>)} R1 = {1, 2}
C1 =SO(C0) = {(1,¬R1), (2,¬R1), (3,>), (4,R1), (5,R1)} R2 = {1, 2, 4, 5′}
C2 =SO(C1) = {(1,¬R1 ∧ ¬R2), (2,¬R1 ∧ ¬R2), (3,¬R2),

(4,R1 ∧ ¬R2), (5,R1 ∧ ¬R2), (6,R2), (7,R2)} R3 = {5′, 6, 7}
C3 =SO(C2) = {. . .}

C3JR3K = SO(C3)JR3K = ∅, so R3 ground convergent for E
TA, NH, DK & SW (FWF/JSPS Kickoff) Constrained Equations 20/27



Inductive Theorem Proving

Rewriting Induction

�
reduction ordering

+
R0

rewrite system
+

E
equations

−→RI yes

such that R0 is quasi reducible and if we obtain yes then R0 `i E
i.e. sσ ↔∗R0

tσ for all s ≈ t ∈ E and ground substitutions σ

Example (Addition)

R0

?

`i (x + y) + z ≈ x + (y + z)

R0 : x + 0 ≈ x
x + s(y) ≈ s(x + y)

E : (x + y) + z ≈ x + (y + z)

yes
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Inductive Theorem Proving Rewriting Induction

Rewriting Induction

Definition
Given TRS R0,

I defined symbols D = {f | f is root symbol of ` for `→ r ∈ R0}
I constructor symbols C = F \ D
I term t = f (t1, . . . , tn) is basic if f ∈ D and all ti ∈ T (C,V)

I basic positions B(t) = {p ∈ Pos(t) | t|p is basic}

R0 is quasi-reducible if no basic term is in normal form

Definition
For R0 quasi-reducible,

I TRS R is R0-expandable if every ` for `→ r ∈ R has basic position

I Expd(R0,R) is set of CPs from overlaps (`1 → r1, p, `2 → r2)µ
where `1 → r1 ∈ R0, `2 → r2 ∈ R, and p is basic in `2
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Inductive Theorem Proving Rewriting Induction

Definition
for fixed R0 and E

SRI (C) = (C	R) ∪ C↓R ∪ F (R)>↓R
I F (R) = Expd(R0,R)

I R is terminating and R0-expandable such that R0 ⊆ R
and `σ ↔∗R0∪E rσ for all `→ r in R and ground substitutions σ

Theorem

If C = Sn
RI (E>) and CJRK = ∅ then R0 `i E

Example

R0 : 1 : x + 0→ x 2 : x + s(y)→ s(x + y)

E : 3 : (x + y) + z ≈ x + (y + z)

4 : x + z ≈ x + (0 + z) 5 : s(x + y) + z ≈ x + (s(y) + z)

C0 ={(3,>)} R1 = {1, 2, 3}
C1 =SRI (C0) = {(3,¬R1), (4,R1), (5,R1)} R2 = {1, 2, 3′}
C2 =SRI (C1) = {(3,¬R1 ∧ ¬R2), (4,¬R2), (5,¬R2)}

C2JR2K = ∅, so R0 `i (x + y) + z ≈ x + (y + z)

maximality principle not satisfied:
C2JR2 ∪ {6}K 6= ∅ despite R0 `i 6 : s(x) + x ≈ s(x + x)
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Automation

Completion

Definition

SR(C) = (C	R) ∪ C↓R ∪ F (R)>↓R

Theorem

If C = Sn
KB(E>) and CJRK=∅ for R ∈ R(C) then R is convergent for E .

Theorem

If C = Sn
RI (E>) and CJRK = ∅ for R ∈ R(C) then R0 `i E

Procedure

C0 = E> C1 = SR1 (C0) C2 = SR2 (C1) C3 = SR3 (C2) . . .

how to find R1,R2,R3, . . .?

Maximal Completion Approach

to obtain assignment α SAT/SMT encoding of >kbo, >lpo or >mpo

maximize
∨

(s≈t,C)∈Ck

C ⇒, (ps > tq∨ pt > sq) subject to
k∧

i=1

¬
∧
Ri

and let Rk = {s → t | (s ' t,C ) ∈ Ck and α |= ps > tq}
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Automation

Preliminary Results

Completion
115 systems in Maxcomp distribution

Maxcomp mkbTT cKB
LPO KBO LPO KBO LPO KBO

completed 86 69 70 67 84 56
failure 6 3 6 3 0 0
timeout 23 43 39 45 31 59

Rewriting Induction
103 systems from Dream Corpus of Inductive Conjectures

cRI MRIt
LPO ?

success 30 35
timeout 73 98
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Conclusion

Summary

maxsat

maxsmt

CJRK
= ∅

E>0 R yes

no
C = S(C)

I generalize maximal completion to constrained equality framework:
ordered & AC-completion, inductionless & rewriting induction

I simple correctness proofs, easy to implement

I restricted maximization, allows for interreduction

Further Work

I cover S-normalized completion, tools for ordered & AC-completion

I improve termination power: DPs + ?

I . . .
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