

Completion-like Procedures Based on Constrained Equations

(and an overview of task 3)

T. Aoto

N. Hirokawa

D. Klein

S. Winkler

FWF/JSPS Kickoff Meeting

July 5, 2012

Outline

Task 3: Completion

Current State

Goals

Completion-like Procedures Based on Constrained Equations

Preliminaries

Completion

Standard Completion

Ordered Completion

Inductive Theorem Proving

Rewriting Induction

Automation

Overview

Task 3: Completion

Who is Involved?

Haruhiko Sato Masahito Kurihara

Nao Hirokawa

Aart Middeldorp Sarah Winkler

Current State

Completion with Termination Tools

- combining multi-completion with the use of termination tools (H,I)
- ▶ implemented in mkb_{TT} (H,I)
- variants for ordered completion and AC-completion (I)

Maximal Completion (J)

- completion as satisfaction problem based on MaxSAT/MaxSMT
- ▶ implemented in Maxcomp

Multi-Context Rewriting Induction with Termination Tools (H)

- based upon rewriting induction with termination tools
- ▶ adapt multi-completion approach to use multiple contexts

Goals (1)

Completion

- ▶ enhance understanding of differences between mkb_{TT}/Maxcomp
- develop combined approach

Completion Modulo

- extend Maxcomp to deal with AC- and S-normalized completion
- efficient AC-matching and unification
- optimizations: AC-term indexing and critical pair criteria

\mathcal{E} -Unification

- given $s \approx t$, find all substitutions σ such that $s\sigma \leftrightarrow_{\mathcal{E}}^* t\sigma$
- ▶ idea: tool can apply completion + basic/LSE narrowing

Goals (2)

Rewriting Induction

- ► Maxcomp-like approach for rewriting induction
- lemma generation techniques, handle non-orientable equations

Completion Competition

- competition of different approaches for completion
 (+ ordered completion, completion modulo, rewriting induction?)
- benchmark collection for different categories
- clarifications required:
 - what is a correct answer? ... for ordered completion?
 - is there a meaningful way to compare two answers?

Progress Report Constrained Equations for Completion-Like Procedures

Outline

Preliminaries

Completion Standard Completion Ordered Completion

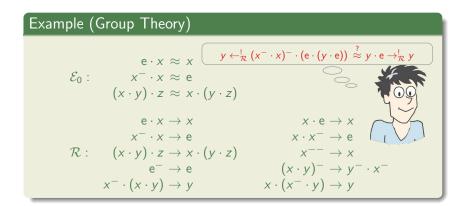
Inductive Theorem Proving Rewriting Induction

Automation

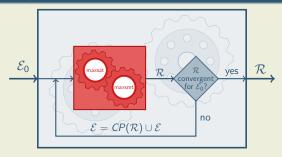
Knuth-Bendix Completion

$$\succ$$
 reduction ordering + $\dfrac{\mathcal{E}_0}{\text{equations}}$ $\longrightarrow_{\textit{KB}}$ $\dfrac{\mathcal{R}}{\text{rewrite system}}$

 $\mathcal R$ is convergent, i.e., confluent and terminating, and $\approx_{\mathcal E_0} \ + \leftrightarrow_{\mathcal R}^*$



Maximal Completion



- + fast, simple correctness proof, easy to implement
- no interreduction limited scalability, restricted termination power

Aims

- ▶ adapt to ordered/AC/normalized completion, rewriting induction
- enhance efficiency by incorporating interreduction

Outline

Preliminaries

Completion
Standard Completion
Ordered Completion

Inductive Theorem Proving Rewriting Induction

Automation

Definition (termination constraint)

$$C ::= \ell \to r \mid \top \mid \bot \mid \neg C \mid C \lor C \mid C \land C$$

for TRS \mathcal{R} define $\mathcal{R} \models \mathcal{C}$ inductively:

Definition (constrained equalities)

- ▶ constrained equality $(s \approx t, C)$ is pair of equality $s \approx t$ and termination constraint C
- ightharpoonup constrained equalities $\mathbb C$ is set of constrained equalities

Let \mathcal{R} be terminating.

Notation

$$\mathcal{E}^{\top} = \{ (s \approx t, \top) \mid s \approx t \in \mathcal{E} \}$$

$$\mathbb{C}[\![\mathcal{R}]\!] = \{ s \approx t \mid (s \approx t, C) \in \mathbb{C} \text{ and } \mathcal{R} \models C \}$$

$$\mathbb{C} \ominus \mathcal{R} = \left\{ (s \approx t, C \land \neg \bigwedge \mathcal{R} \mid (s \approx t, C) \in \mathbb{C} \right\}$$

$$\mathbb{C} \downarrow_{\mathcal{R}} = \left\{ (s \downarrow_{\mathcal{R}} \approx t \downarrow_{\mathcal{R}}, C \land \bigwedge \mathcal{R}) \mid (s \approx t, C) \in \mathbb{C} \text{ and } s \downarrow_{\mathcal{R}} \neq t \downarrow_{\mathcal{R}} \right\}$$

Example

$$\mathcal{E}: \quad 1: \mathsf{s}(\mathsf{p}(x)) \approx x \quad 2: \mathsf{p}(\mathsf{s}(x)) \approx x \quad 3: \mathsf{s}(x) + y \approx \mathsf{s}(x+y)$$

$$\mathcal{R}: \quad \mathsf{s}(\mathsf{p}(x)) \to x \quad \mathsf{s}(x+y) \to \mathsf{s}(x) + y$$

$$\mathcal{E}^{\top} = \{(1, \top), (2, \top), (3, \top)\}$$

$$\mathcal{E}^{\top} \llbracket \mathcal{R} \rrbracket = \{1, 2, 3\}$$

$$\mathbb{C} = \{(1, \mathsf{s}(\mathsf{p}(x)) \to x), (2, \mathsf{s}(x) + y \to \mathsf{s}(x+y)), (3, \mathsf{s}(x+y) \to \mathsf{s}(x) + y)\}$$

$$\mathbb{C} \llbracket \mathcal{R} \rrbracket = \{1, 3\}$$

Definition

- ▶ \mathcal{E} is \mathcal{R} -joinable if $s \downarrow_{\mathcal{R}} t$ for all $s \approx t \in \mathcal{E}$
- \blacktriangleright \mathcal{E} is ground \mathcal{R} -joinable if $s\sigma\downarrow_{\mathcal{R}} t\sigma$ for all $s\approx t\in\mathcal{E}$ and ground σ

Definition

mapping S from CESs to CESs is (ground) reduction if \forall CES $\mathbb C$, TRS $\mathcal R$

 $S(\mathbb{C})[\![\mathcal{R}]\!]$ (ground) \mathcal{R} -joinable $\Longrightarrow \mathbb{C}[\![\mathcal{R}]\!]$ (ground) \mathcal{R} -joinable

Definition

$$S_{\mathcal{R}}(\mathbb{C}) = (\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}$$

Lemma

S is a (ground) reduction.

Outline

Preliminaries

Completion Standard Completion Ordered Completion

Inductive Theorem Proving Rewriting Induction

Automation

Definition

$$S_{KB}(\mathbb{C}) = (\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}$$

 $F(\mathcal{R}) = \mathsf{CP}(\mathcal{R})$ and \mathcal{R} is terminating with $\mathcal{R} \subseteq \leftrightarrow_{\mathcal{E}}^*$ (for fixed \mathcal{E})

Theorem

If $\mathbb{C} = S^n_{KB}(\mathcal{E}^\top)$ and $\mathbb{C}[\![\mathcal{R}]\!] = \varnothing$ then \mathcal{R} is convergent for \mathcal{E} .

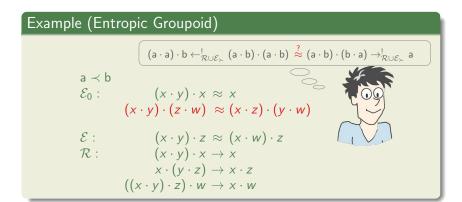
Proof.

asy!

- ▶ n = 0: if $\mathbb{C}[[\mathcal{R}]] = \emptyset$ then $\mathcal{E} = \emptyset$, thus $\mathcal{R} = \emptyset$
- ▶ n > 0:
 - ▶ $\leftrightarrow_{\mathcal{R}}^* = \leftrightarrow_{\mathcal{E}}^*$, since $\mathcal{R} \subseteq \leftrightarrow_{\mathcal{E}}^*$ by assumption and $\mathcal{E} \subseteq \downarrow_{\mathcal{R}}$ as S_{KB}^n is reduction (by induction on n)
 - $ightharpoonup \mathcal{R}$ is terminating by assumption
 - ▶ \mathcal{R} is confluent because for $\mathbb{C}' = S_{KB}^{n-1}(\mathcal{E}^{\top})$ the set $S_{KB}(\mathbb{C}')[\![\mathcal{R}]\!] = \emptyset$, so $\mathsf{CP}(\mathcal{R}) \subseteq \downarrow_{\mathcal{R}}$

Ordered Completion

 $\mathcal{E}_\succ \cup \mathcal{R} \text{ is ground-confluent, terminating, and } \approx_{\mathcal{E}_0} = \leftrightarrow_{\mathcal{R} \cup \mathcal{E}}^*$



mpletion Ordered Completion

Ordered Completion

Definition

- ▶ \mathcal{R} is ground convergent if \mathcal{R} is terminating and for all ground peaks set of \succ -oriented ground instances of \mathcal{E} h that $s \to_{\mathcal{R}}^* u \leftarrow_{\mathcal{R}}^* t$
- $(\mathcal{E}, \mathcal{R})$ is ground convergent with respect to total reduction order \succ if $\mathcal{E}_{\succ} \cup \mathcal{R}$ is ground convergent

Definition

$$S_O(\stackrel{\text{extended critical pairs}}{\cdot} \mathbb{C}\downarrow_{\mathcal{R}} \cup F(\mathcal{R},\mathbb{C})^{\top}\downarrow_{\mathcal{R}}$$

- $F(\mathcal{R}, \mathbb{C}) = \mathsf{CP}_{\triangleright}(\mathcal{R} \cup \mathbb{C}[\![\mathcal{R}]\!])$
- $lackbox{}{\cal R}$ is totally terminating with ${\cal R}\subseteq\leftrightarrow^*_{\cal E}$

Theorem

If $\mathbb{C} = S_O^n(\mathcal{E}^\top)$ and $S_O(\mathbb{C})[\![\mathcal{R}]\!] = \mathbb{C}[\![\mathcal{R}]\!]$ then $(\mathbb{C}[\![\mathcal{R}]\!], \mathcal{R})$ is ground convergent for \mathcal{E}

Example

$$\mathcal{E}$$
: 1: $(-x+x) \cdot 1 \approx 0$ 2: $(x+-x) \cdot 1 \approx x+-x$ 3: $-x+x \approx y+-y$

4:
$$(x + -x) \cdot 1 \approx 0$$
 5: $0 \approx x + -x$ 6: $0 \cdot 1 \approx 0$

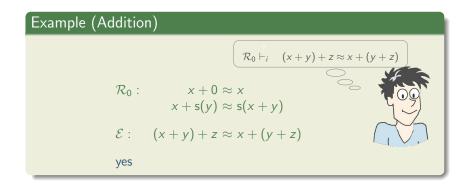
7:
$$(-x + x) \approx 0$$

$$\mathbb{C}_0 = \{(1, \top), (2, \top), (3, \top)\}
\mathbb{C}_1 = S_O(\mathbb{C}_0) = \{(1, \neg R_1), (2, \neg R_1), (3, \top), (4, R_1), (5, R_1)\}
\mathcal{R}_2 = \{1, 2, 4, 5'\}$$

Rewriting Induction

$$\succ$$
 reduction ordering + \mathcal{R}_0 + \mathcal{E} equations $\longrightarrow_{\mathcal{R}I}$ yes

such that \mathcal{R}_0 is quasi reducible and if we obtain yes then $\mathcal{R}_0 \vdash_i \mathcal{E}$ i.e. $s\sigma \leftrightarrow_{\mathcal{R}_0}^* t\sigma$ for all $s\approx t\in \mathcal{E}$ and ground substitutions σ



Rewriting Induction

Definition

Given TRS \mathcal{R}_0 ,

- ▶ defined symbols $\mathcal{D} = \{f \mid f \text{ is root symbol of } \ell \text{ for } \ell \to r \in \mathcal{R}_0\}$
- ▶ constructor symbols $C = F \setminus D$
- ▶ term $t = f(t_1, ..., t_n)$ is basic if $f \in \mathcal{D}$ and all $t_i \in \mathcal{T}(\mathcal{C}, \mathcal{V})$
- ▶ basic positions $\mathcal{B}(t) = \{p \in \mathcal{P} \text{os}(t) \mid t|_p \text{ is basic}\}$

 \mathcal{R}_0 is quasi-reducible if no basic term is in normal form

Definition

For \mathcal{R}_0 quasi-reducible,

- ▶ TRS \mathcal{R} is \mathcal{R}_0 -expandable if every ℓ for $\ell \to r \in \mathcal{R}$ has basic position
- ▶ Expd($\mathcal{R}_0, \mathcal{R}$) is set of CPs from overlaps $(\ell_1 \to r_1, p, \ell_2 \to r_2)_{\mu}$ where $\ell_1 \to r_1 \in \mathcal{R}_0$, $\ell_2 \to r_2 \in \mathcal{R}$, and p is basic in ℓ_2

Definition

for fixed \mathcal{R}_0 and \mathcal{E}

$$S_{RI}(\mathbb{C}) = (\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}$$

- $F(\mathcal{R}) = \operatorname{Expd}(\mathcal{R}_0, \mathcal{R})$
- ▶ \mathcal{R} is terminating and \mathcal{R}_0 -expandable such that $\mathcal{R}_0 \subseteq \mathcal{R}$ and $\ell \sigma \leftrightarrow_{\mathcal{R}_0 \cup \mathcal{E}}^* r \sigma$ for all $\ell \to r$ in \mathcal{R} and ground substitutions σ

Theorem

If
$$\mathbb{C} = S^n_{RI}(\mathcal{E}^\top)$$
 and $\mathbb{C}[\![\mathcal{R}]\!] = \varnothing$ then $\mathcal{R}_0 \vdash_i \mathcal{E}$

Example

$$\mathcal{R}_{0}: \quad 1: x+0 \to x \qquad \qquad 2: x+s(y) \to s(x+y)$$

$$\mathcal{E}: \quad 3: (x+y)+z \approx x+(y+z)$$

$$4: x+z \approx x+(0+z) \qquad \qquad 5: s(x+y)+z \approx x+(s(y)+z)$$

$$\mathbb{C}_{0}=\{(3,\top)\} \qquad \qquad \mathbb{C}_{2}[\mathbb{R}_{2}]=\varnothing, \text{ so } \mathcal{R}_{0}\vdash_{i}(x+y)+z \approx x+(y+z)$$

$$\mathcal{R}_{1}=S_{R}(\mathbb{C}_{0})=\{(3,\neg R_{1}),(4,R_{1}),(5,R_{1})\} \qquad \qquad \mathcal{R}_{2}=\{1,2,3'\}$$

Outline

Preliminaries

Completion
Standard Completion
Ordered Completion

Inductive Theorem Proving Rewriting Induction

Automation

Completion

Definition

$$S_{\mathcal{R}}(\mathbb{C}) = (\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}$$

Theorem

If $\mathbb{C} = S_{KB}^n(\mathcal{E}^\top)$ and $\mathbb{C}[\![\mathcal{R}]\!] = \emptyset$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then \mathcal{R} is convergent for \mathcal{E} .

Procedure

how to find $\mathcal{R}_1, \mathcal{R}_2, \mathcal{R}_3, \ldots$?

$$\mathbb{C}_0 = \mathcal{E}^{\top}$$
 $\mathbb{C}_1 = S_{\mathcal{R}_1}(\mathbb{C}_0)$ $\mathbb{C}_2 = S_{\mathcal{R}_2}(\mathbb{C}_1)$ $\mathbb{C}_3 = S_{\mathcal{R}_3}(\mathbb{C}_2)$...

Maximal Completion Approach

to obtain assignment α

SAT/SMT encoding of
$$>_{\mathsf{kbo}}$$
, $>_{\mathsf{lpo}}$ or $>_{\mathsf{mpo}}$

maximize
$$\bigvee_{(s\approx t,C)\in\mathbb{C}_k} C \Rightarrow , (\lceil s>t\rceil \lor \lceil t>s\rceil)$$
 subject to $\bigwedge_{i=1}^{\kappa} \neg \bigwedge \mathcal{R}_i$

and let
$$\mathcal{R}_k = \{s \to t \mid (s \simeq t, C) \in \mathbb{C}_k \text{ and } \alpha \models \lceil s > t \rceil \}$$

Preliminary Results

Completion

115 systems in Maxcomp distribution

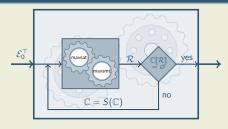
	Maxcomp		mkb_{TT}		cKB	
	LPO	KBO	LPO	KBO	LPO	KBO
completed	86	69	70	67	84	56
failure	6	3	6	3	0	0
timeout	23	43	39	45	31	59

Rewriting Induction

103 systems from *Dream Corpus of Inductive Conjectures*

	cRI	MRIt
	LPO	?
success	30	35
timeout	73	98

Summary



- generalize maximal completion to constrained equality framework: ordered & AC-completion, inductionless & rewriting induction
- simple correctness proofs, easy to implement
- restricted maximization, allows for interreduction

Further Work

- ▶ cover *S*-normalized completion, tools for ordered & AC-completion
- ▶ improve termination power: DPs + ?
 - **.** . .