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Abstract In this article we use the decreasing diagrams technique to show that a left-linear
and locally confluent term rewrite system R is confluent if the critical pair steps are relatively
terminating with respect to R. We further show how to encode the rule-labeling heuristic for
decreasing diagrams as a satisfiability problem. Experimental data for both methods are
presented.
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1 Introduction

This article is concerned with automatically proving confluence of term rewrite systems.
Unlike termination, for which the interest in automation gave and continues to give rise
to new methods and tools, automated confluence analysis has received little attention. We
present a new confluence criterion which is easy to implement on top of existing termina-
tion tools that support relative termination. The criterion states that a left-linear and locally
confluent rewrite system is confluent if the rewrite steps that give rise to critical pairs are
relatively terminating with respect to the given rewrite rules. This result can be viewed as
a generalization of the two standard approaches for proving confluence of term rewrite sys-
tems: orthogonality and joinability of critical pairs for terminating systems. In the proof
we use the conversion version [27] of decreasing diagrams with the predecessor labeling
in which rewrite steps are labeled by a term that can be rewritten to the starting term of
the step. For countable abstract rewrite systems, the decreasing diagrams technique of van
Oostrom [25,27] subsumes all sufficient conditions for confluence. To use this technique for
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term rewrite systems, a well-founded order on the rewrite steps has to be supplied such that
rewrite peaks can be completed into so-called decreasing diagrams.

The second result of this article is the encoding of the rule-labeling heuristic of van
Oostrom [27] for linear rewrite systems as a satisfiability problem. In this heuristic rewrite
steps are labeled by the applied rewrite rule. By limiting the number of steps that may
be used to complete local diagrams, we obtain a finite search problem which is readily
transformed into a satisfiability problem. Any satisfying assignment returned by a modern
SAT or SMT solver is then translated back into a concrete rule-labeling.

The remainder of this article is organized as follows. In the next section we present a
few basic definitions pertaining to term rewriting and confluence. We introduce proof terms
to represent multi-steps in left-linear rewrite systems and recall the conversion version of
the decreasing diagrams technique. Section 3 is devoted to our main result. We explain how
the result is implemented and we present a small extension. In Section 4 we first show that it
is undecidable whether confluence of a locally confluent rewrite system can be established
by the rule-labeling heuristic for decreasing diagrams. By approximating conversions by
valleys in an extended rewrite system and putting a bound on the number of steps to check
joinability, we obtain a decidable sufficient condition. Experimental data is presented in
Section 5. We also comment upon the limitations of our results. In Section 6 we mention
related work before concluding in Section 7 with suggestions for future research.

A preliminary version of this article appeared in [14]. There are four major changes.
First, the proof of the main theorem [14, Theorem 16] is simplified by using proof terms to
represent multi-steps and adopting decreasing diagrams with respect to conversions in con-
nection with the predecessor labeling. Second, the extension of the main theorem mentioned
in [14, Section 4] was based on an incorrect claim. We use van Oostrom’s orthogonalization
technique to recover the result. Furthermore, the encoding for the rule labeling heuristic is
extended to the conversion version of decreasing diagrams. Finally, we include an analysis
of the limitations of our results to prove confluence.

2 Preliminaries
Term rewriting

We assume familiarity with the basics of term rewriting (e.g. [30]). Below we recall some
important definitions needed in the remainder of the article. We only deal with first-order
terms, which are built from variables and function applications. Let ¢ be a term. The root
symbol of ¢ is denoted by root(z). We write Var(z) for the set of variables occurring in 7.
The sets of all variable (function) positions in 7 is denoted by Posy,(¢) (Posz(f)). A rewrite
rule £ — r is a pair (¢,7) of terms with non-variable term ¢ and Var(r) C Var({). A term
rewrite system (TRS for short) is a collection of rewrite rules between terms over a fixed-
arity signature. A rewrite rule is left-linear (right-linear) if no variable occurs more than
once in £ (r). A left-linear and right-linear rewrite rule is called linear. A TRS is said to be
(left-/right-)linear if all rewrite rules have this property. A TRS R is confluent if
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Many sufficient conditions for confluence of TRSs are based on critical pairs. Critical pairs
are generated from overlaps. An overlap (¢; — r1,p,{> — r2)y of a TRS R consists of vari-
ants ¢; — ry and ¢, — 5 of rules of R without common variables, a position p € Posz(¢3),



and a most general unifier y of ¢; and ¢5|,. If p = € then we require that £; — ry and £, — 1,
are not variants of each other. The induced critical pair is (¢,pt[ript]p, 21t). Following Der-
showitz [7], we write s <— X — ¢ to indicate that (s,) is a critical pair. We drop the subscript
u from (¢ = ri,p, b — VZ)M when it is not relevant for the discussion. The well-known
critical pair lemma states that local confluence of R is equivalent to <—x — C =%, - 4.
Left-linear TRSs without critical pairs are called orthogonal. A critical pair s <= — 7 is
trivial if s = ¢. Left-linear TRSs without non-trivial critical pairs are called weakly orthog-
onal. Both orthogonal and weakly orthogonal TRSs are known to be confluent. Moreover,
Knuth and Bendix’ criterion [17] states that <—x — C —%, - 7« implies confluence of
terminating R.

Proof terms

We define proof terms that witness multi-steps [30, Chapter 8]. Let R be a TRS over a
signature F. For each rule ¢ — r € R we introduce a rule symbol { — r which is a fresh
(with respect to F) function symbol whose arity is given by the number of variables in £.
Proof terms are terms over functions in F and rule symbols. A proof term containing exactly
one rule symbol is called a redex. We write C for the smallest rewrite order on proof terms
such that £ C £ — r(x1,...,x,) for all rules £ — r € R with var(¢) = (x1,...,x,). Here var(¢)
denotes a sequence consisting of all variables in Var({) in some fixed order.

Definition 1 Let R be a TRS and A be a proof term. The multi-step relation —e—4 is defined
by induction on A as follows:

— x —e—, x for all variables x,

- f(Sl,...,Sn) O£ (A,An) f(tl,...,tn) if s; —o4; Li for all i,

= Hxim si | 1<i<n} —e=ppa,, ., X = i | 1 <i<njifvar(f) = (xq,...,x,) and
§; —o—r4; ti for all i.

We write s —e—+ t (or simply s —e— t) if s —e—4 ¢ for some proof term A.

Note that every proof term A uniquely determines s and ¢ such that s —e—4 ¢. Proof terms
A and B are co-initial if s1 —e—4 t; and s, —e—p t, with 51 = 5. It is known that the inclusion
—Rr € —e»R C —} holds in general.

Example 1 Consider the left-linear TRS consisting of the rules
1: f(a,x,y) = g(x,x,y) 2:a—>b 3:a—h(a)

and the proof term A = 1(2,h(3)), assuming var(f(a,x,y)) = (x,y). We have the multi-step
f(a,a,h(a)) =>4 g(b,b,h(h(a))) and the inequalities

f(a,a,h(a)) C f(a,a,h(3)) C 1(a,h(3)) C A

Next we define orthogonality of proof terms (cf. [30, Definition 8.2.33]). Let R be a left-
linear TRS. We say that an overlap (¢; — r1, p, {2 — r2) is between co-initial redexes A; and
A, if root(A;]4p) = ¢1 — r1 and root(Aj|,) = ¢p — ry for some {i, j} = {1,2} and position ¢
in A;. Co-initial proof terms A and B are orthogonal if there is no overlap between any pair
of (distinct) redexes Ay C A and Ap C B. The next lemma states two known properties [30,
Lemma 8.8.4(v)], which can be shown by easy structural induction on proof terms.!

! In [30] the properties are stated for orthogonal TRSs.



Fig. 1 Local decreasingness

Lemma 1 Let R be a left-linear TRS and A, B co-initial proof terms.

(i) IFAC Bthen —e—3p C —o34 - —o—.
(ii) If A and B are orthogonal then p<eo— - —o—5p C —o—> - ¢o—. O

Decreasing diagrams

We conclude this preliminary section by recalling the decreasing diagrams technique for
abstract rewrite systems (ARSs) from [25,27]. We write (A, {—¢ }aer) to denote the ARS
(A, —) where — is the union of —, for all o € I.

Let A = (A,{—¢}acr) be an ARS and let > be a well-founded order on /. For every
a € I we write %, for the union of — g for all B < a.. Moreover, we write % for (%¢)*.
The union of % and o<~ is denoted by <%4. If o, 8 € I then % 5 denotes the union of
Y4 and l>ﬁ. We say that o and B are locally decreasing with respect to > and we write
LD (e, B) if

at— g C g =g hep et pE

See Figure 1 for a graphical depiction (dashed arrows are implicitly existentially quantified
and double-headed arrows denote reflexive and transitive closure).

The ARS A= (A, {—q}acr) is locally decreasing if there exists a well-founded order >
on I such that LD~ (e, 8) for all o, 8 € I. Van Oostrom [27] obtained the following result.

Theorem 1 Every locally decreasing ARS is confluent. O

3 Confluence via Relative Termination

According to Newman’s Lemma, an arbitrary non-confluent but locally confluent TRS ad-
mits an infinite rewrite sequence. The main result of this section (Theorem 2 below) states
that if the system is in addition left-linear, there is an infinite rewrite sequence that involves
infinitely many steps that were used in the generation of critical pairs. Let R be a TRS. We
denote the set

{bop — bulrin)p, bopt — rap | (€1 — r1,p, o — ra)y is an overlap of R}

of rewrite steps that give rise to critical pairs of R by CPS(R). We view CPS(R) as a TRS.
Its rules are called critical pair steps. We say that R is relatively terminating with respect
to S or that R/S is terminating if the relation =5 = =% - = - =% is well-founded.
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Fig. 2 The proof of Theorem 2.

Our main result can now be expressed as follows: A left-linear locally confluent TRS R is
confluent if CPS(R) is relatively terminating with respect to R. Since CPS(R) is empty
for every orthogonal TRS R, this yields a generalization of orthogonality. A key problem
when trying to prove confluence in the absence of termination is the handling of duplicating
rules. Parallel rewrite steps are typically used for this purpose [15,29]. To anticipate future
developments (cf. Section 7) we use multi-steps instead.

The following lemma relates —e—g to —cps(R)/R - It is the key in our proof of the main
result.

Lemma 2 Let R be a left-linear TRS. If t <o— s —o— u then

(a) t o> - <o u, or
(b) t e CPS(R)< S _>CPS(R) = U

Proof Let A and B be proof terms such that ¢ 4 <e— s —e—p u. We distinguish two cases.

— If A and B are orthogonal then ¢ —e— v <o— u follows from Lemma 1(ii).

— Otherwise, there are overlapping redexes A; C A and A, C B. Let v be the term that
s —e— 4, v. It is easy to see that since A| and A; are overlapping, their induced steps are
critical pair steps and hence s —cps(r) v. As Aj C A, Lemma 1(i) yields v —e— ¢. Using
the same reasoning for Ay, we obtain s —cps(R) - —o— u. O

We are ready to prove the main theorem. Figure 2 illustrates the two cases in the proof.
Theorem 2 A left-linear locally confluent TRS R is confluent if CPS(R)/R is terminating.

Proof Since —%, and —e—}; coincide, it is sufficient to prove confluence of —s—+%. To this
end, we use Theorem 1 with the predecessor labeling [27, Example 18] in which steps
t —o— u are labeled by any term s such that s —* ¢. Labels are compared with respect to
the well-founded order > = —>JCrPS(R) IR Let t 5 ¢ 5 —o+, u. Following Lemma 2, we
distinguish two cases.

- Ift -s= v <e—uthent —e=;, v, <o— u follows from s, —* s —* t and 51 =" s =" u.

— Suppose 7 <e— v cps(r)$ § —cps(r) W —e— u. From the inclusion —cpsr) C —r
and local confluence of R we obtain ¢ <e— v —* - *<— w —e— u. Because s > v, 5o > w,
and — C —e—>, we obtain ¢ <—g—>;‘l . <—g—>}‘2 u.

In both cases local decreasingness is established. Hence, the relation —e— is confluent. O

We present two examples showing the use of Theorem 2 to obtain confluence.



Example 2 Consider the TRS R from [12, p. 28] consisting of the rewrite rules

f(g(x)) = f(h(x,x)) g(a) — g(g(a)) h(a,a) — g(g(a))

The only critical pair f(g(g(a))) <—x — f(h(a,a)) is clearly joinable. The TRS CPS(R)
consists of the rewrite rules

f(g(a)) = f(h(a,2)) f(g(a)) — f(e(e(a)))
By taking the matrix interpretation (cf. [8])
101 100 0
fux)=1011]x gm(x)=1100|x+{0 apm= |1
000 110 1
100 100 0
ham(x,y)=[{000 | x4+ (000 Jy+ (1
000 010 0
we obtain R C > and CPS(R) C > g
2 1
2] >12] =I[f(h(a,a))]m
0 0
2 1
[fle@)lm=(2]> | 1] =If(alg(a))]rm
0 0

Therefore CPS(R)/R is terminating and confluence of R is concluded by Theorem 2.
Example 3 Consider the left-linear TRS R
nats — 0 : inc(nats) inc(x:y) — s(x) tinc(y) hd(x:y) —x
d(x:y) —x: (x:d(y)) inc(tl(nats)) — tl(inc(nats)) thx:y) —y

which is Example 2 from [13] extended with the rule d(x : y) — x: (x : d(y)). Since the only
critical pair inc(tl(0 : inc(nats))) < x — tl(inc(nats)) is joinable (cf. Example 7 below), R
is locally confluent. The TRS CPS(R) consists of

inc(tl(nats)) — tl(inc(nats)) inc(tl(nats)) — inc(tl(0 : inc(nats)))

By taking the matrix interpretation

incM(x):G g)x hdpc(x) = x oM:(8>
nats (= (‘f) (%) = G é)x spu(x) = ((1) (l))x
an=(11)x = (1)) xy

we obtain R C > ¢ and CPS(R) C > aq:

[inc(tl(nats))|pm = <i) > <8) = [tl(inc(nats))] a4 = [inc(t1(0 : inc(nats)))] pm

Hence CPS(R)/R is terminating and Theorem 2 yields confluence of R.



The following example? shows that left-linearity is essential in Theorem 2.
Example 4 Consider the non-left-linear TRS R
f(x,x) — a f(x,g(x)) —b c— glc)

from [15]. Since CPS(R) is empty, termination of CPS(R)/R is trivial. However, R is
not confluent because the term f(c, c) has two distinct normal forms. Moreover, considering
a<o—f(c,c) —e—f(c,g(c)), one can see that left-linearity is essential for Lemma 2. Note that
adding the non-left-linear rules to CPS(R) would not help to recover the result of Theorem 2
because {f(x,x) — a,f(x,g(x)) — b} is relatively terminating with respect to {c — g(c)}.

We remark that left-linearity can be dispensed with in Theorem 2 when CPS(R) is
replaced by R. However, the resulting condition is identical to Knuth and Bendix’ crite-
rion [17] since termination of R /R is equivalent to termination of R.

Replacing CPS(R) in Theorem 2 by

CPSb(R) ={lip = rip,bop — rp | (€ —ri,p,ly — ry)y is an overlap of R}

yields a correct but strictly weaker confluence criterion as termination of CPS’(R)/R im-
plies termination of CPS(R)/R but not vice versa; CPS’(R)/R in Examples 2 and 3 is not
terminating.

The next example explains why one cannot replace CPS(R) by one of its subsets

CPS1(R) = {topu = Louu[r1u]p | (61 — r1,p,€r — r2)y is an overlap of R}
and

CPSy(R) = {lopu = rop | (€1 — r1,p, €2 — r2)y is an overlap of R}.

Example 5 Consider the left-linear TRSs R = {a — ¢,b —d,f(a) — f(b),f(b) —f(a)} and
R, ={f(a) = c,f(b) = d,a— b,b — a}. Both TRSs are locally confluent but not confluent.
We have CPS; (R ) = {f(a) = f(c),f(b) — f(d)} and CPS,(R») = {f(a) — ¢,f(b) — d}. It
is easy to see that CPS;(R1)/R and CPS,(R,)/R; are terminating.

An extension of our main result is obtained by excluding critical pair steps from CPS(R)
that originate from trivial overlaps. Let us denote the set {{opt — lopu[ript]p, lopt — rop |
(€1 = r1,p,0p — r2)y is an overlap of R such that lou[riu], # rop} by CPS'(R). The
proof is based on the observation that Lemma 2 still holds when CPS(R) is replaced by
CPS/(R). For this we use the following result [30, Proposition 8.8.23]* which is known as
the orthogonalization of weakly orthogonal proof terms. Here co-initial proof terms A and B
are weakly orthogonal if there is no non-trivial overlap between any pair of redexes A} C A
and A C B.

Lemma 3 Let R be a left-linear TRS. If A and B are weakly orthogonal proof terms and
t A+e— 5 —o—>p u then there are orthogonal proof terms A’ and B' witht yi<e— s —o—>g u. O

Lemma 4 Let R be a left-linear TRS. If t <e— s —e— u then

2 This example contradicts [16, Theorem 4].

3 In [30] the result is stated for weakly orthogonal TRSs but its simple proof goes through for arbitrary
left-linear TRSs.



(a) t —o—> - <o—u, or
(b) t <o cps/(R)¢ S —cps/(R) - O U

Proof The proof is similar to the proof of Lemma 2. Let A and B be the proof terms such
that t 4<e— s —e—>p u. If A and B are weakly orthogonal then there exist orthogonal proof
terms A’ and B’ such that ¢ 4/<e— 5 —o—p u by Lemma 3. Hence we can complete this case
as in the proof of Lemma 2. Otherwise, there is a non-trivial overlap between some redexes
Ay £ A and A, C B, and thus the second case in the proof of Lemma 2 goes through. O

Theorem 3 A left-linear locally confluent TRS R is confluent if CPS'(R) /R is terminating.

Proof Simply replace CPS(R) by CPS'(R) and Lemma 2 by Lemma 4 in the proof of
Theorem 2. O

Theorem 3 is a proper extension of Theorem 2 and the result stating that weakly or-
thogonal TRSs are confluent. (A left-linear TRS R is weakly orthogonal precisely when
CPS'(R)=2.)

Remark 1 In [14] we claimed that Theorem 3 follows from the following property: Let R
be a left-linear TRS and ¢ — r € R. If {6 —e— t then

1. t € {¢t,r7} for some T with 6 —— T, or
2. lo —>CPS/(R) -——~tand fo %CPSI(R) ro.

Here 0 —e— 7 is defined as xo —e— x7 for all variables x. This, however, is incorrect. Con-
sider the TRS R consisting of the rules f(x) — x and f(f(x)) — f(x). Note that CPS'(R) is
empty. Let £ — r be the second rule, r = x, and let o be the empty substitution. We have
{o —e— t but none of the above conditions holds.

Concerning the automation of Theorems 2 and 3, for checking relative termination we
use the following criteria of Geser [9]:

Lemma 5 For TRSs R and S, R/S is terminating if

1. R=@, or

2. RUS is terminating, or

3. there exist a well-founded order > and a quasi-order > such that > and > are closed
under contexts and substitutions, >->-> C >, RUS C >, and (R\>)/(S\>) is
terminating. O

Based on this result, termination of CPS'(R)/R is shown by repeatedly using the last
condition to simplify CPS’(R) and R. As soon as the first condition applies, termination
is concluded. If the first condition does not apply and the third condition does not make
progress, we try to establish termination of R (which implies termination of CPS'(R)UTR).
For checking the third condition matrix interpretations and match-bound techniques [34] are
used.

The final example in this section illustrates Theorem 3.

Example 6 Consider the left-linear TRS R

f(a,b) —d a—c d — f(a,c) f(x,c) — f(c,c)
b—c d — f(c,b) f(c,x) = f(c,c)



from [24]. One easily checks that all critical pairs are joinable. Hence R is locally confluent.
Note that CPS/(R) consists of the rules
f(a,b) —d f(a,b) — f(a,c) d —f(a,c)
f(a,b) — f(c,b) d—f(c,b)

Termination of CPS’(R)/R can be shown by a simple linear polynomial interpretation:
fn(x,y) =x+y ay=bny=2 cy=0 dy=3

Hence, confluence of R is concluded from Theorem 3. Note that Theorem 2 is not applicable
because CPS(R) contains the non-terminating rule f(c,c) — f(c,c).

4 Rule-Labeling

In this section we are concerned with the automation of Theorem 1 for proving confluence
of TRSs. In [27] van Oostrom proposed the rule-labeling heuristic in which rewrite steps
are partitioned according to the employed rewrite rules. If one can find an order on the rules
of a linear TRS such that every critical pair is locally decreasing, confluence is guaranteed.
A formalization of this heuristic is given below where ¢ % —g denotes the set of critical
pairs obtained from overlaps (c, p, B). Let > be a quasi-order. The relation Y%, denotes the
union of —4 forall § < a.

Lemma 6 A linear TRS R is confluent if there exists a well-founded quasi-order 2, on the
rules of R such that

at=x—p C by Yop bl g . fh
for all rewrite rules a, B € R. Here > denotes the strict part of 2. a
The heuristic readily applies to the following example from [13].

Example 7 Consider the linear TRS R consisting of the following five of the rewrite rules
in Example 3:

1: nats — 0 : inc(nats) 2: inc(x:y) — s(x) :inc(y) 4:hd(x:y) —>x
3: inc(tl(nats)) — tl(inc(nats)) 5: tl(x:y)—y

There is one critical pair: s = inc(tl(0 : inc(nats))) < inc(tl(nats)) Py tl(inc(nats)) =¢. We
have

s 2 inc(inc(nats)) < tl(s(0) : inc(inc(nats))) by tl(inc(0 : inc(nats))) o

Hence the critical pair is locally decreasing with respect to the rule-labeling heuristic to-
gether with the order 3 > 2,5.

The following example (Vincent van Oostrom, personal communication) shows that lin-
earity in Lemma 6 cannot be weakened to left-linearity.
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Example 8 Consider the TRS R consisting of the rewrite rules

1:f(a,a) > c 2: f(b,x) — f(x,x) 3: f(x,b) — f(x,x) 4:a—b
There are three critical pairs:

f(a,b)(:f(a,a)?c f(b@)(:f(a,a)?c f(b7b)<;f(b7b)?>f(b,b)

Since f(a,b) 7 f(a,a) Nk and f(b,a) > f(a,a) - it follows that the critical pairs are

locally decreasing by taking the order 4 > 2,3. Nevertheless, the conversion f(b,b) +
f(b,a) < f(a,a) — c reveals that R is not confluent.

We show how to implement Lemma 6. From now on we assume that TRSs are finite. We
start by observing that the condition of Lemma 6 is undecidable even for locally confluent
TRSs.

Lemma 7 The following decision problem is undecidable:

instance: a locally confluent linear TRS R,
question: are all critical pairs locally decreasing with respect to the rule-
labeling heuristic?

Proof We provide a reduction from the problem whether two (arbitrary) combinators in
combinatory logic are convertible. The undecidability of the latter is well-known [6]. So let
s and ¢ be arbitrary ground terms in combinatory logic. We extend the TRS CL with fresh
constants a, b and the rewrite rules {a — s,b — #,a — b,b — a} to obtain the TRS R. If s
and ¢ are convertible (in C£) then all critical pairs of R are locally decreasing by ordering
the rules of CL below the above four rules. If s and ¢ are not convertible, then no order
on the rules will make the critical pairs locally decreasing with respect to the rule-labeling
heuristic. So confluence of R can be established by the rule-labeling heuristic if and only if
the terms s and ¢ are convertible in CL. a

We explain how to obtain a decidable approximation of Lemma 6. The basic idea is to
put a bound on the length of the conversions between the terms of each critical pair that
are computed. Subsequently we test whether there exists an ordering of the rules such that
at least one of the computed conversions satisfies the constraints. As we see later, a semi-
decision procedure is obtained by simply repeating the test with a larger bound.

A sequence (1,..., %) is called a k-conversion instance of (s,t) with respect to R if
n<k,V,...,% €R,and

Sy e oyt

n

Still, we face the following obstacle: variable erasing rules like hd(x : y) — x may yield
infinitely many such instances, even when s, ¢, and k are fixed. To obtain a computable
approximation, we use only variable preserving rules in both directions. To cut down the
search space further, we do not allow collapsing rules to be used from right to left. So we
approximate <> by —x+«, where R*” is the union of R and {r - ¢|{ —r € R, risnota
variable, and Var(¢) = Var(r)}. Now a 2k-conversion instance in R is estimated by a k-join
instance in R*":
S%,y] e %Ym 8n<_ “ee 61<_t

with m,n < k. Below we reduce the ensuing constraints on the rule-labeling to precedence
constraints of the form

p:=T|L|oVo|dprd|la>a|la~a
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where o stands for variables corresponding to the rules in R, and ~ corresponds to the
equivalence part of the quasi-order (of which > is the strict part). From the encodings of
termination methods for term rewriting, we know that the satisfiability of such precedence
constraints is easily determined by SAT or SMT solvers (cf. [5, 33]).

Definition 2 For terms s, ¢ and k > 0, a pair ((¥1,...,%n),(01,...,0,)) is called a k-join
instance of (s,t) with respect to a TRS S if m,n <k, %1,...,¥m,01,...,0, €S, and

N d = snﬁ'51<—t

n - Yn

The subsequence order 1 is defined as (ay,...,a,) 32 (aij, . ..,a;,) Whenever 1 <ij <--- <
im < n. The set of all minimal (with respect to 2 x 1) k-join instances of (s,) is denoted by
Jz‘g(&t).Letyl,..,,yn €8,0<i<nand 1 < j < n. We define
o>y if j<i
(Vs t) = (B~ if j=i
a>yVvB>y ifj>i

Moreover, the disjunction of

Fj (Vs )

~.

1

J

for all 0 < i < n is denoted by @g((717...,%1)).

Note that &% encodes the constraints imposed on the left part of the conclusion of a
locally decreasing diagram for peaks of the form ;- — B The next lemma explains why

non-minimal pairs can be excluded from J%H (s,7) and Example 9 shows the benefit of doing
sO.

Lemma 8 If@g(S) is satisfiable and 6 3 7y then cPE‘(y) is satisfiable.
Proof Straightforward. O
Definition 3 Let R be a TRS. We define RL;(R) as the conjunction of
VALLTI AP (8) | (1,6) € TR (Gal]phts i) }
for all overlaps (¢1 — ri,p,¢2 — r2)y of R and
(L—=r)~(r—10
for all { — r € R with Var(¢) = Var(r).
We illustrate the encoding on a concrete example.
Example 9 Consider again the TRS R of Example 7. We already computed the critical pair
s =inc(tl(0 : inc(nats))) < x — tl(inc(nats)) = ¢ arising from the single overlap (1,1-1,3).

We show how RL4(R) is computed. The TRS R is the union of R and the three rules

6: 0:inc(nats) — nats 7: s(x):inc(y) = inc(x:y) 8: tl(inc(nats)) — inc(tl(nats))
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There are 426 4-join instances of (s,¢) with respect to R":

(0,(8,1)) ((6),(3)) ((5),(1,2,5)) ((6,3).0)
((1),(8,1,1)) ((1,5),(1,1,2,5))  ((5,1),(1,1,2,5))  ((6,3,1),(1))
(LD),(8,1,1,1))  ((1,5),(1,2,1,5))  ((5,1),(1,2,1,5))  ((6,3,1,1),(1,1))

Only the four underlined instances belong to J%., (s,7). For example, because (1,5) I (5)
and (1,2,1,5) 3 (1,2,5), the instance ((1,5),(1,2,1,5)) does not belong to J%.. (s,7). It
follows that RL4(R) is the conjunction of 1 ~ 6,2 ~ 7,3 ~ 8, and

VA@s (@) AP (B) | (e, B) € {(0). (8:1)),((6),(8)).((5).(1,2,5)).((6,3),0)} }

Here, for example, @1 ((5)) = (3>5V 1>5)V3~5and &3((1,2,5)) is the disjunction
of the following four formulas:

(I>1Vv3>)A(1>2V3>2)A(1>5V3>5)

I~1 A(1>2V3>2)A(1>5V3>5)
3>1 A 1~2 A(1>5V3>5)
3>1 A 3>2 AN 1~5

This formula is satisfied by taking (e.g.)3>1,3>2,1~5,1~6,2~ 7, and 3 ~ 8. Hence,
confluence of R is concluded by local decreasingness with respect to the rule-labeling
heuristic using at most 3 steps to close critical pairs.

Typically, there are a large number of k-join instances (|S|?* in the worst case) and
hence it is expensive to compute Jg (s,t) after computing all k-join instances. Instead, we
compute JZ‘S (s,t) iteratively, minimizing the intermediate ingredients. This is achieved by

the recursive definition of X*) in the following characterisation of Jg (s,2).

Lemma 9 For all k > 0 the following identity holds:

J&(s,1) = min {(7,8) | (7.5) € {(0,)} ¥, (8.1) € {((),)} ¥, and s’ =1"}

where
min (XU{(yet,1) | (v,5) €X, @ €S, and s —¢ t}(k_l)) otherwise
Proof Straightforward. a

In the definition of X(¥), yo denotes the result of appending « to the sequence of rewrite
rules 7, and min X computes the set of all minimal elements in X with respect to 1 x =.

Theorem 4 A linear TRS R is confluent if RLi(R) is satisfiable for some k > 0. a

The following example shows that the equivalence constraints (¢ — r) ~ (r — £), which
express that the orientation of rewrite rules has no influence on the label, are essential for
the soundness of RL(R).
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Example 10 Consider the non-confluent linear TRS R consisting of the rules a — b and a —
c. If one would drop the equivalence constraints (a — b) ~ (b —a) and (a = c) ~ (c — a)
from RL;(R), the resulting formula would be satisfied by the order (a — b) > (b — a) >
(c—a).

A natural idea to reduce the size of the encoding further is to restrict the search space
to valleys in R rather than its extension R (which model conversions). In this way we get
an approximation of the original version of decreasing diagrams [25]: A linear TRS R is
confluent if there exists a well-founded quasi-order 2 on the rules of R such that

at= X =g C g Hhp - Bl g gt pet
for all rewrite rules @, € R. According to [27, Proof of Theorem 3], this version and
Lemma 6 are equally powerful for obtaining confluence, complexity considerations left
aside.

Definition 4 Let R be a TRS. We define RLV,(R) as the conjunction of

\VADS () D2 (8) | (1.8) € Ty (bl pp, o) }

for all overlaps ({1 = ri,p, 0o = r2)y of R.
Theorem 5 A linear TRS R is confluent if RLV(R) is satisfiable for some k > 0. ad

We conclude the section by commenting upon the relative completeness of our encod-
ings. Since the conversion version and the valley version are equally powerful, if Lemma 6
applies then Theorems 4 and 5 apply as well, despite the approximations of <>z by =g+
and —x. So if Theorem 4 is applicable then also Theorem 5 can be used to establish con-
fluence. Of course, the minimal & to satisfy RLV;(R) may be larger than the one to satisfy
RL;(R). This is nicely illustrated in Example 13 in Section 6.

5 Assessment

All described techniques have been implemented in Saigawa, an open source confluence
tool.* We used the tool to test our methods on a collection of 212 TRSs, consisting of the
106 TRSs in the ACP? (see Section 6) distribution, the TRSs of Examples 3, 5, 8, and 11,
the TRSs Rs and R of Example 13, as well as those TRSs in version 8.0 of the Termina-
tion Problems Data Base® that are either non-terminating or not known to be terminating.
(Rewrite systems with extra variables in right-hand sides of rewrite rules are excluded.) For
reference, ACP proves that 68 of the 212 TRSs are not confluent. Of the remaining 144
TRSs, local confluence can be shown for 134 TRSs by means of

“x—C |2 ()
i,j<5
and in addition it is known that the TRS R is locally confluent. Moreover, of these 135
locally confluent TRSs, 101 are left-linear and 56 are linear.
Table 1 summarizes the results.” The following techniques are used to produce the
columns:

http://www.jaist.ac.jp/project/saigawa/
http://www.nue.riec.tohoku.ac.jp/tools/acp/
http://termcomp.uibk.ac.at/status/downloads/tpdb-8.0.tar.gz

The detailed results are available from http://www. jaist.ac.jp/project/saigawa/.

N o v A


http://www.jaist.ac.jp/project/saigawa/
http://www.nue.riec.tohoku.ac.jp/tools/acp/
http://termcomp.uibk.ac.at/status/downloads/tpdb-8.0.tar.gz
http://www.jaist.ac.jp/project/saigawa/
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Table 1 Summary of experimental results (212 TRSs).

@ ® @© @ @ O (deh (adef
YES 25 41 62 66 50 49 86 91
timeout (120 s) 0 1 1 1 4 0 - -

Table 2 Summary of experimental results for the rule-labeling heuristic (75 TRSs).

Theorem 4 Theorem 5
k 1 2 3 4 5 1 2 3 4
YES 38 48 49 50 46 34 46 47 48 49
timeout (120 s) 0 0 2 4 8 0 0 0 0 0

Table 3 Data on examples from this article.

(@ () (© @ © ()

Example 2 0.73 0.08 1048 1554 0.08 0.08
Example 3 0.74 007 1614 2229 008 0.08
Example 6 0.73  0.08 0.08 418 1.64 0.14
Example 7 0.80 0.08 545 829 015 0.20
Example 11 0.74  0.08 0.09 0.07 0.08 0.08

Example 13 (R5) 0.80 0.08 999 13.60 098 0.14
Example 13 (R19) 146 0.08 0.08 0.07 387 0.3

(a) Knuth and Bendix’ criterion [17],
(b) orthogonality,

(¢) Theorem 2,

(d) Theorem 3,

(e¢) Theorem 4 with k =4,

(f) Theorem 5 with k = 5.

To obtain the data in columns (a), (c), and (d) we used the open source termination tool
T1To [18] to check the (relative) termination requirements. Since local confluence is unde-
cidable for non-terminating TRSs, it is approximated by (x). For the data in columns (e)
and (f) the SMT solver MiniSmt [35] is used. Columns (d,e,f) and (a,d,e,f) indicate the total
number of different TRSs that can be handled by the respective techniques. We remark that
the TRSs handled by (d) include those handled by (c). On our collection, the TRSs handled
by (f) are also covered by (e).

Table 2 provides experimental data for Theorems 4 and 5 with 1 < k < 5. We used the
subset of 75 linear TRSs of the collection used for Table 1. Due to the larger number of
conversion instances, Theorem 4 produces several timeouts for k£ > 3.

Individual data on the confluent TRSs from this article are presented in Table 3. The
numbers in the table indicate runtime. Times in boldface denote that confluence was shown,
while italics denote failure.

From Table 1 we observe that numerous confluent TRSs cannot be handled by Theo-
rems 2 and 3. Among the 101 left-linear locally confluent TRSs, Theorem 3 failed to show
confluence of 35 TRSs. The reason is the relative termination requirement. We indicate two
different patterns.
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Example 11 Consider the left-linear TRS R’ obtained from the TRS R of Example 3 by
replacing the rule nats — 0 : inc(nats) with the two rules

nats — from(0) from(x) — x : inc(from(x))
The TRS R’ is locally confluent but CPS(R') /R’ = CPS'(R’)/R’ is non-terminating:

from(inc(tl(nats)))

— R inc(tl(nats)) : inc(from(inc(tl(nats))))

—rcps(r/) tl(inc(nats)) : inc(from(inc(tl(nats))))

— R tl(inc(nats)) : inc(inc(tl(nats)) : inc(from(inc(tl(nats)))))
CPS(R!) "°°

Nevertheless, R’ is easily seen to be confluent by observing that the two sides of the rule
inc(tl(nats)) — tl(inc(nats)) are convertible with respect to the other rules, which do not
admit critical pairs.

The culprit in the above example is the recursive rule from(x) — x : inc(from(x)). The
substitution of the left-hand side ¢ of an arbitrary rule £ — r € CPS'(R’) for the variable x
enables an infinite rewrite sequence in CPS'(R’) /R’ in which after each application of the
rule instance from(¢) — £ : inc(from(¥)), the first occurrence of ¢ is rewritten to r.

Out of the 56 locally confluent linear TRS, Theorem 4 only misses 7 TRSs. Four of these
contain so-called AC rules that specify the associativity and commutativity of a function f:

foy) = f(nx) O fn2)) = f(f(x),2)

TRSs that contain AC rules are beyond the results presented in this paper.® As a matter of
fact, none of the Theorems 3, 4, and 5 is applicable when the TRS R under consideration
contains AC rewrite rules. The reason is that AC rules make CPS’(R)/R non-terminating
and the critical pair f(f(y,z),x) < f(x,f(»,2)) = f(x,f(z,y)) is not locally decreasing
(using the AC rules for f).

It is not difficult to generalize the above observations as relative non-termination criteria.

Lemma 10 For TRSs R and S # &, S/R is non-terminating if

1. S is non-terminating, or
2. t =% 5 Clto] and x € Var(xc) N Var(C) for some termt, context C, substitution &, and
variable x.

Proof The claim is trivial when the first condition holds. Assume the second condition.
Since rewriting does not introduce variables, we have x € Var(r). Because S # @, it contains
arule ¢ — r. Consider the substitutions t = {x+ ¢} and v = {x — r}. For every substitution
T with x € Var(xT) we have 11t —% s Ctpfrotu] —35 Ctv[rotu] because x € Var(CT).
Thus 1T — % R Ctv[totu], and moreover, x € Var(xoT). Hence by repeating the above

reasoning it follows that S/R is non-terminating. O

As a consequence of Lemma 10, CPS'(R)/R is non-terminating if CPS’(R) contains
a rule of the form ¢ — C[¢o] or if R contains such a rule with x € Var(xc) N Var(C) (and
CPS/(R) is non-empty). This condition holds for 21 out of the 35 TRSs that Theorem 3
misses, and hence it provides an effective criterion to avoid spending resources searching
for a relative termination proof of CPS'(R)/R, which is bound to fail.

8 In[3] a new technique for confluence of TRSs with AC rules is presented.



Lemma 10(2) makes the limitation of Theorem 3 manifest. Let R be a left-linear and
locally confluent TRS. If CPS/(R)/R is terminating and 1 —}, C[rc] with x € Var(xc) N
Var(C) for some term 7, context C, substitution o, and variable x, then R is weakly orthog-
onal.

6 Related Work

In his PhD thesis [9, Chapter 4], Geser presents a number of results connecting relative
termination to confluence. Besides a couple of abstract results, he presents two conditions
for the confluence of the union of two TRSs R and S such that R /S is terminating.

The first one states that the union of a left-linear TRS R and a confluent TRS S is
confluent provided R /S is terminating and both

* * *

*
—x— C —- —- . (D)
S R S§ RUS R TRUS RuUS
and
—x— C —— )
R R RUS RUS

Like Theorem 2 this result generalizes joinability of critical pairs for terminating left-linear
TRSs (take S = ). To use this condition to establish confluence of a given TRS, the chal-
lenge is to partition the rules into R and S; placing all rules in S deflates the point of using
the condition. Assuming local confluence, the partitioning must satisfy three properties:
R /S is terminating, S can be shown to be confluent by other means, and condition (1) holds
for critical pairs between R and S. Geser [9, p. 68] presents a non-left-linear combination
which can be handled by his result.

Geser’s second result states that the union of a left-linear TRS R and a linear TRS S is
confluent provided R /S is terminating and both

and

—x— C ——

R R RUS  RUS
Due to the finite number of ways to partition a TRS, this result can be used as a stand-alone
criterion for finite TRSs. Unlike Theorem 2 the result does not generalize orthogonality (if
S = @ then R must be terminating), but it is not subsumed by Theorem 2, as shown in the
following example.

Example 12 Consider the TRS R consisting of the single rewrite rule a — f(b) and the TRS
S consisting of the rules a — f(a) and f(x) — x. One easily checks that the conditions of
Geser’s second result are fulfilled. Note that his first result is also applicable if one shows
confluence of S by e.g. orthogonality. Because CPS(R U S) contains the non-terminating
rule a — f(a), Theorem 2 is not applicable.

In 2009 the first confluence tool made its appearance: ACP [4] implements Knuth and
Bendix’ criterion as well as a variation for overlay systems based on innermost termination
due to Ohlebusch [23, p. 126], several critical pair criteria for left-linear TRSs (e.g. [15,24,
26,31]), and divide and conquer techniques based on persistence [2], layer-preservation [22],
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and commutativity [29]. The latest version of ACP [1] also supports the rule-labeling heuris-
tic for the original version of decreasing diagrams (cf. Theorem 5). We use an example
from [27] to illustrate that there are situations where the conversion version (cf. Theorem 4)
is to be preferred.

Example 13 Consider the confluent TRSs R,, consisting of the rewrite rules

a — bi b,’ — b,’+1

a; — G Ci —Cit1

for all 1 < i< nand with b, = c,q1. Since b; — bjy < aj41 = ciy1 ¢ foralli<n
and b; — b;1 = ¢4 < ¢ for i = n, RLy(R,) is satisfiable for all n. On the other hand,
RLV¢(R,) is satisfiable only when k > n.

A major strength of ACP lies in an extended version of the rule-labeling heuristic for
possibly non-right-linear TRSs. In this version the label information is extended by counting
certain function symbols along the path from the root of the starting term to the root of the
contracted redex, following a suggestion in [271.° ACP solves these problems by using an
SMT solver. While our approach checks satisfiability after computing (and minimizing) all
k-join instances, ACP adopts a generate and test approach to avoid the computation of all
join instances.

ACP can show confluence of 109 TRSs of the collection in Section 5. Of these 109
TRSs, 93 are left-linear and 52 are linear. This includes all TRSs that are covered by (a,d,f),
but it is easy to find examples that can be handled by our techniques but not by ACP. For
instance, if we add the rules b7 — bg and b7 — ¢ to the TRS R¢ of Example 13 to make
it non-terminating, ACP fails (after more than 20 minutes of CPU time and producing more
than 56 million lines of output)!? whereas Theorem 4 succeeds for k = 2 in a fraction of a
second. ACP’s failure is due to the fact that it does not test RLV for large k, while its divide
and conquer techniques cause a combinatorial explosion of non-confluent subproblems.

7 Conclusion

In this article we presented a new confluence result for TRSs based on the decreasing di-
agrams technique: A left-linear locally confluent TRS is confluent if its critical pair steps
are relatively terminating with respect to its rewrite rules. Moreover, for linear TRSs we
showed how the rule-labeling heuristic can be implemented by means of an encoding as a
satisfiability problem.

As future work we plan to investigate whether the former result can be strengthened by
decreasing the set CPS(R) of critical pair steps that need to be relatively terminating with
respect to R. We anticipate that some of the many critical pair criteria for confluence that
have been proposed in the literature (e.g. [15,24,26]) can be used for this purpose. The idea
here is to exclude the critical pair steps that give rise to critical pairs whose joinability can
be shown by the conditions of the considered criterion. It would be of particular interest to
extend Okui’s criterion based on simultaneous critical pairs [24], because it can handle AC
rules.

Another direction for future work is the extension of Theorems 2 and 3 to higher-
order pattern rewrite systems (PRSs) as defined by Mayr and Nipkow [19]. For higher-order

® Very recently, a stronger semantic approach was announced in [32].
10 ACP version 0.20.
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rewrite systems several confluence criteria are known (e.g. [19, 20, 26]), including orthog-
onality and joinability of critical pairs for terminating systems. We expect that Theorem 2
can be extended from first-order TRSs to PRSs without much effort. When it comes to au-
tomation, however, much research remains to be done.

The results presented in this paper are restricted to left-linear TRSs. We are aware of
two approaches to tackle non-left-linear TRSs. By relaxing overlaps to so-called E-overlaps
one can formulate direct sufficient conditions for confluence (e.g. [10, 11,28]). Another ap-
proach is based on decomposition techniques (e.g. [2,22]). In particular it is worthwhile to
investigate whether our methods can be used to establish commutativity instead of conflu-
ence. Commutative versions of orthogonality [29] and decreasing diagrams [27] are known.
Moreover, the results of Geser mentioned in Section 6 illustrate how relative termination
can be used in this setting.

Last but not least, in order to certify the output of confluence tools, we plan to formalize
the confluence results presented in this paper in the Isabelle proof assistant [21].

Acknowledgements We thank Vincent van Oostrom and Harald Zankl for commenting on an earlier version
of this article. In particular, Vincent van Oostrom suggested to formulate Lemma 2 in its present form and
to adopt the conversion version of decreasing diagrams in connection with the predecessor labeling, in order
to simplify the proof of the main theorem. A question by Harald Zankl led to the discovery that the proof
of Theorem 3 was incorrect in [14]. The detailed comments of the anonymous referees greatly improved the
paper.
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