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QMC school at S.N.Bose Centre

23 March 2015
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Ab initio methods

Quantum Monte Carlo belongs to category of ab initio
methods.

Ab initio electronic structure methods use theory, and no
experimental data, to determine the properties of an
electronic system.

Basic theory:

Schrödinger equation for electronic system, static nuclei(
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Φ(R) = EΦ(R)
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Hartree-Fock (HF)

Use Ψ = det(φi(rj))

Solve for {φi} that minimize EHF = 〈Ψ|Ĥ|Ψ〉/〈Ψ|Ψ〉

EHF is upper bound to ground-state energy

Describes electronic exchange, but no electronic correlations
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Density Functional Theory (DFT)

Ground-state energy obtained by minimizing energy with
respect to electronic density n(r)

E[n] = T[n] + VH[n] + Vext[n] + Exc[n]

Exc[n] is unknown, must make (uncontrolled) approximation

Very successful, scales as N3
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Post Hartree-Fock methods

For example configuration interaction (CI), coupled cluster
(CC)

Expand Ψ = ∑
Ndet
k ck det

(
φ

(k)
i (rj)

)
Minimize E as function of {ck}

Converges to ground state since Slater determinants are basis
for antisymmetric functions in R3N

Standard in Quantum Chemistry, scales as N7
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Quantum Monte Carlo

Wave-function based family of methods

Solves Schrödinger equation by Monte Carlo integration

Allows use of arbitrarily complex wave functions

Intrinsically parallelizable at the random walker level

No uncontrolled approximations

Energy is variational

Scales as N3
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Monte Carlo integration vs grid method

Grid method:∫ b
a f (x)dx≈ b−a

M ∑
M
i=1 f (a + 2i−1

2
b−a
M )

Error proportional to M−2/d

Monte Carlo method:∫ b
a f (x)dx≈ 1

M ∑
M
i=1 f (xi)

xi are random numbers uniformly distributed in [a,b]

Error proportional to M−1/2

Monte Carlo integration scales better for d > 4
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Monte Carlo integration

In general:

Monte Carlo integral with importance sampling

〈f (x)〉p(x) =
∫

p(x)f (x)dx≈ 1
M

M

∑
i

f (xi)

where:
p(x) is a probability distribution:

p(x)≥ 0∫
p(x)dx = 1

xi are vectors of random numbers distributed according to p(x)
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Variational Monte Carlo

Given a trial wave function Ψ,

Variational principle

E[Ψ] =
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉

=

∫
Ψ(R)ĤΨ(R)dR∫
|Ψ(R)|2 dR

≥ E0

E[Ψ] = E0 ⇐⇒ Ψ = Φ0

Combined with Monte Carlo integration:

EVMC =
1
M

M

∑
i

Ĥ(R)Ψ(R)

Ψ(R)

R distributed according to |Ψ(R)|2 /
∫
|Ψ(R)|2 dR (Metropolis)

Local energy : EL(R) = Ĥ(R)Ψ(R)
Ψ(R)
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Wave function optimization

VMC provides framework for wave function optimization:
Can minimize E [Ψ(ααα;R)] with respect to parameters ααα

Can minimize variance of EL(R)

Typical wave function forms:

Slater

Ψ(R) = det [φi(rj)]

Slater-Jastrow

Ψ(R) = exp [J(R)]det [φi(rj)]

Slater-Jastrow-backflow

Ψ(R) = exp [J(R)]det
[
φi
(
rj + ξξξ j(R)

)]
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Wave function optimization
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Both mean energy and variance of local energies are good
target functions to minimize
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VMC in practice

The quality of VMC results depend on the quality of the trial
wave function

VMC typically recovers 80–95% of the correlation energy

VMC is usually used as a starting point for DMC
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Diffusion Monte Carlo

Time-dependent Schrödinger equation

Ĥ(R)Φ(R,x) = i ∂Φ(R,x)
∂x

Imaginary time (ix = t) and energy shift(
Ĥ(R)−ET

)
Φ(R, t) =− ∂Φ(R,t)

∂ t

Eigenstate expansion

Φ(R, t) = ∑
∞
n=0 cnΦn(R)e−(En−ET )t

If we adjust ET ∼ E0, excited eigenstates decay exponentially
as t→ ∞ and only ground state remains
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Projection using discrete walkers

Let us consider the following generic equation

Â(R)f (R, t) =−∂ f (R, t)
∂ t

which we want to solve to obtain the evolution of f with t.

Given f (R, t) at time t and Green’s function for operator Â at
timestep T, G(R,T), we can compute f at time t + T as

f (R, t + T) =
∫

G(R′← R,T)f (R, t)dR
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Projection using discrete walkers

If f (R, t) is a probability distribution we can represent it discretely
by a sufficiently large number of configurations P

f (R, t)≈ ∑
P
p=1 wp(t)δ [R−Rp(t)]

where wp(t) is the weight of configuration p at time t. Therefore

f (R, t + T)≈ ∑
P
p=1 wp(t)G[R′← Rp(t),T]

which we can re-represent as P′ configurations

f (R, t + T)≈ ∑
P′
p=1 wp(t + T)δ [R−Rp(t + T)]
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Diffusion Monte Carlo

The DMC algorithm is derived by choosing
f (R, t) = Φ(R, t)Ψ(R), where Ψ is the trial wave function and
Φ is the DMC wave function

Φ is forced to have the same sign as Ψ everywhere in
configuration space so that f (R, t) is a probability distribution

This is the fixed-node approximation

Substituting Φ = f/Ψ into the imaginary time Schrödinger
equation introduced earlier gives

Importance-sampled imaginary time Schrödinger equation
N

∑
i=1

1
2

[
−∇

2
i f + 2∇∇∇i ·

(
∇∇∇iΨ

Ψ
f
)]

+ (EL−ET)f =−∂ f
∂ t
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Diffusion Monte Carlo

Green’s function for this equation at small T can be written
as G = GDGB, where

Drift-diffusion Green’s function

GD(R←R′,T) =
1

(2πT)3N/2 exp

[
− 1

2T

(
R−R′−T

∇∇∇R′Ψ(R′)
Ψ(R′)

)2
]

Branching Green’s function

GB(R← R′,T) = exp
(
−T

2
[EL(R) + EL(R′)−2ET ]

)
The drift-diffusion term proposes configuration moves
The branching factor causes configurations to be killed or
multiplied; ET is manipulated to control population
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Diffusion Monte Carlo

Schematic diagram of the DMC algorithm for a 1D harmonic
oscillator starting from uniform distribution of walkers
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Diffusion Monte Carlo

Finite T approximation → need to extrapolate to T→ 0

Finite population of walkers → usually no need to extrapolate,
just use several hundred configurations

The resulting Φ is the lowest energy wave function among
those with the same nodal structure as Ψ

Equivalently, the DMC wave function can be thought of as
the VMC wave function with a perfect Jastrow factor

Therefore DMC always gives a better answer than VMC

The quality of DMC depends only on the nodes of the trial
wave function
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Where do we get orbitals from?

We need one-particle orbitals to populate our Slater
determinants

Where do we obtain them from?

HF - a natural choice
DFT - some correlation effects in the orbitals (which may be a
good thing or a bad thing!)

How do we represent the orbitals?

Plane waves - natural choice for periodic systems
Blips - much better performance than plane waves, localizable
Gaussians - as used by quantum chemists for molecules
Numerical orbitals - feasible for small systems
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Can excited states be handled by QMC?

DMC converges to lowest-energy state of same symmetry as
the wave function

Can study excited states by using a wave function of the
correct symmetry

Excited state calculations are somewhat harder than ground
state calculations, usually incur greater errors
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Things we will cover during this week

Sampling, Metropolis algorithm and statistics

Periodic calculations, k-point sampling

Expectation values other than the energy

Pseudopotentials
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