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The need for statistical analysis

The need for statistical analysis

A QMC calculation produces millions of data values

We want a single number (with its error bar) as a result:

E±σE

Serial correlation needs to be removed

How to manipulate quantities with error bars
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Basic statistics

The configurations {Ri}i=M
i=1 distributed according to |Ψ(R)|2

The local energy Ei = EL(Ri) = Ψ−1(Ri)ĤΨ(Ri)

EL(R) forms a distribution with:

Mean

EV = 〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉 ≈ Ē = ∑

M
i=1 Ei
M

Variance

σ2
EL

= 〈Ψ|Ĥ2|Ψ〉
〈Ψ|Ψ〉 −

[
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉

]2
≈ σ̃2

EL
=

∑
M
i=1(Ei−Ē)

2

M−1
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Basic statistics

Ē can be determined to a given degree of certainty

Different calculations yield different Ē values

Ē is itself a random number distributed according to

Mean

Ē ≈ ∑
M
i=1 Ei

M

Variance

σ
2
Ē ≈ σ̃

2
Ē =

∑
M
i=1
(
Ei− Ē

)2

M(M−1)
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Local energy and mean energy
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The local energy distribution is what we sample.
The mean energy distribution is what we obtain.
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Sampling of configuration space

{Ri}i=M
i=1 must be distributed according to |Ψ(R)|2.

Sampling algorithm at i-th step

Start at config Ri

Propose a new config R′i

Compute the wave function ratio qi =
∣∣∣Ψ(R′i)

Ψ(Ri)

∣∣∣2
Generate uniform random number ξ ∈ [0,1)

Accept/reject step:

if ξ < qi → set Ri+1 = R′i (accept new config)
if ξ > qi → set Ri+1 = Ri (reject new config)
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Proposing Ri→ R′i

If R′i proposed at random:
→ Small chance of landing in a reasonable region of
configuration space
→ qi will be small
→ most moves are rejected
→ poor sampling

If R′i is Ri plus a small displacement:
→ R′i similar to Ri

→ EL(R′i) similar to EL(Ri)
→ Serial correlation
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Effect of serial correlation

Consider an uncorrelated set of energies {E1,E2,E3, . . . ,EM}
Generate a new set with artificial serial correlation:

{E1, . . . ,E1︸ ︷︷ ︸
τ

,E2, . . . ,E2︸ ︷︷ ︸
τ

,E3, . . . ,E3︸ ︷︷ ︸
τ

, . . . ,EM, . . . ,EM︸ ︷︷ ︸
τ

}

No new information → mean and error bar should be
unchanged

Computed mean of new set is Ē′ = Ē

Computed error bar of new set is σ̃ ′Ē = σ̃Ē/
√

τ

→ error bar underestimated
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Removing serial correlation

In this example we can remove serial correlation by ignoring
τ−1 of every τ consecutive energies

For real data the correlation time τ varies during the run
→ would need to ignore τmax−1 of each τmax data
→ lots of relevant data discarded
→ inefficiency

However the formula

σ̃Ē =
√

τσ̃ ′Ē

still holds, where τ is the average correlation time

This is an alternative approach to the reblocking algorithm
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The reblocking algorithm

Consider the following operation on data, where the item
under each brace is the average of the two numbers above:

E(0)
1 E(0)

2︸ ︷︷ ︸ E(0)
3 E(0)

4︸ ︷︷ ︸ E(0)
5 E(0)

6︸ ︷︷ ︸ E(0)
7 E(0)

8︸ ︷︷ ︸
E(1)

1 E(1)
2︸ ︷︷ ︸ E(1)

3 E(1)
4︸ ︷︷ ︸

. . . . . .

Succesively apply transformations until τmax original data are
averaged together → resulting data are uncorrelated

Cannot compute τmax directly — need another way to
determine how many reblocking transformations to apply
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Error estimator after reblocking

At the k-th iteration in this procedure:

σ̃
(k+1)2
Ē ≈ σ̃

(k)2
Ē +

2∑
M(k)/2
i=1

(
E(k)

2i−1− Ē
)(

E(k)
2i − Ē

)
M(k)(M(k)−2)

If there is no serial correlation, the last term tends to zero

If there is serial correlation, the last term is positive

Hence σ̃
(k)

Ē will increase until it reaches the true error bar at
k ≈ log2(τmax)

Plateau in σ̃
(k)

Ē signals convergence of reblocking algorithm
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Reblock plot
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How to run efficient VMC calculations

Reducing serial correlation, by

Choosing an appropriate timestep
Using electron-by-electron sampling
Skipping the right number of steps between every two
calculations of expectation values

Reducing the intrinsic variance/expense, by

Using appropriate trial wave functions

Pablo López Ŕıos Probability and Statistics in Quantum Monte Carlo



Introduction
VMC statistics
DMC statistics

Normally-distributed numbers
Summary

Definitions
Sampling and serial correlation
Statistical efficiency

The VMC timestep

The “timestep” T is the variance of the distribution used to
generate the random displacements when proposing moves

It is actually a squared length, but can be regarded a time if
considering a diffusion process

T does not enter the VMC formalism
→ can be chosen so as to improve run statistics

T small → R′i very similar to Ri
→ serial correlation increased
T large → R′i very dissimilar from Ri
→ most moves are rejected
→ serial correlation increased
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The 50% rule

The 50% rule

Choose T such that the acceptance ratio a = 50%
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Electron-by-electron sampling

QMC sampling usually described using configuration moves
→ Configuration-by-configuration sampling (CBCS)

In practice, one-electron moves proposed and accepted or
rejected individually → Electron-by-electron sampling (EBES)

Two case comparisons:

Set T to the same value in CBCS and EBES
→ aC = aN

E (very small)
Set a to the same value in CBCS and EBES
→ the chance of Ri+1 = Ri in CBCS is 1−a
→ the chance of Ri+1 = Ri in EBES is (1−a)N (very small)

EBES is more efficient
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Choosing the right wave function

With a more sophisticated wave function (e.g., adding
backflow, 3-body Jastrow terms, etc):

Lower energy
Lower variance → fewer steps for target error bar
Higher cost of evaluation
Harder optimization
Diminishing returns
Similar energy differences (cancellation of errors)

Important!

The best trial wave function for a problem need not be the
most sophisticated
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Wave functions and the local energy distribution
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Local energy distributions for two different wave functions
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The DMC algorithm

Start from P walkers {R0,α}P
α=1 distributed according to

|Ψ(R)|2 (from VMC)

DMC evolution of the walkers:

Drift-diffusion: move Ri,α → R′i,α
Branching: define weight wi,α
→ configurations breed/die according to branching factor
w′i,α/wi,α
→ variable number of walkers Pi

Equilibrate the walkers until we reach infinite-time limit
→ look at Ei = ∑

Pi
α=1 wα,iEα,i/∑

Pi
α=1 wα,i
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The DMC algorithm

Accumulate data after equilibration to improve statistics of
result

DMC mixed estimator

〈A〉DMC = limt→∞〈Ψ|Â|Φ(t)〉/〈Ψ|Φ(t)〉

ED ≈ Ē =
∑

M
i=1 WiEi

∑
M
i=1 Wi

; σ
2
Ē ≈ σ̃

2
Ē =

∑
M
i=1 Wi

(
Ei− Ē

)2

M
(

∑
M
i=1 Wi− ∑

M
i=1 W2

i

∑
M
i=1 Wi

)
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Calculation of the energy in DMC
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Sources of error in DMC

Timestep: we have assumed that T is small
→ must extrapolate to zero timestep to obtain a reliable result
→ cannot use timestep to improve statistics

Population: Φ is represented by set of configurations
→ must use sufficient configurations to represent it accurately
→ possible to extrapolate to infinite population

Fixed-node error: only limitation of DMC
→ ED is still variational (very important!)
→ can be reduced by using Ψ with better nodes

Locality approximation: from pseudopotentials
→ ED non-variational
→ goes away with good Ψ
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Central Limit Theorem (CLT)

Derivation of the CLT:

Let P1(x) be a probabily distribution of Fourier Transform

F [P1(x)] = exp
[
ia1k−a2k2 +O(k3)

]
Let P2(x) be the probability that the sum of two numbers
drawn from P1(x) is x:

P2(x) =
∫ ∫

P1(x1)P1(x2)δ (x1 + x2− x)dx1dx2

=
∫

P1(x1)P1(x− x1)dx1

The Fourier transform of P2(x) is

F [P2(x)] = F [P1(x)]2 = exp
(
i2a1k−2a2k2 + . . .

)
Pablo López Ŕıos Probability and Statistics in Quantum Monte Carlo
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Central Limit Theorem (CLT)

Let PM(x) be the probability that the sum of M numbers
drawn from P1(x) is x:

F [PM(x)] = F [P1(x)]M = exp(iMa1k−Ma2k2 + . . .)

PM(Mx) is the probability that the mean of M numbers drawn
from P1(x) is x, and at large M:

F [PM(Mx)]≈ exp(ia1k− a2

M
k2)

Invert F , redefine in terms of µ = Mean[P1], σ2 = Var[P1]/M:

CLT

lim
M→∞

PM(x) =
1√
2π

1
σ

exp
(
−(x−µ)2

2σ2

)
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CLT: example with peculiar-looking distribution

x

P
1
(x
)

3210-1-2-3

Average of 1 random variable

P1(x) is PDF of x = x1
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CLT: example with peculiar-looking distribution

x

P
2
(x
)

3210-1-2-3

Average of 2 random variables

P2(x) is PDF of x = 1
2 (x1 + x2)
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CLT: example with peculiar-looking distribution

x

P
3
(x
)

3210-1-2-3

Average of 3 random variables

P3(x) is PDF of x = 1
3 (x1 + x2 + x3)
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CLT: example with peculiar-looking distribution

x

P
4
(x
)

3210-1-2-3

Average of 4 random variables

P4(x) is PDF of x = 1
4 (x1 + x2 + x3 + x4)
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CLT: example with peculiar-looking distribution

x

P
5
(x
)

3210-1-2-3

Average of 5 random variables

P5(x) is PDF of x = 1
5 (x1 + x2 + x3 + x4 + x5)
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Central Limit Theorem

x

P
1
0
(x
)

3210-1-2-3

Average of 10 random variables

P10(x) is PDF of x = 1
10 ∑

10
n=1 xn
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Central Limit Theorem

x

P
1
0
0
0
(x
)

3210-1-2-3

Average of 1000 random variables

P1000(x) is PDF of x = 1
1000 ∑

1000
n=1 xn
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Central Limit Theorem

x

P
1
0
0
0
(x
)

10.80.60.40.20

Average of M random variables → Normal distribution

Defined by 2 numbers, the mean and standard deviation

Centred at mean, width of σ ∝ 1/
√

N

Probability is all close to the mean
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Is the CLT always true?

Usually CLT is true iff the mean and variance of P1 are finite

Counterexample: P1(x) with x−2 tails

F [P1(x)] = exp(ia1k−a2|k|+ . . .):

F [PM(Mx)]≈ exp(ia1k−a2|k|)

Limit theorem for x−2 tails

lim
M→∞

PM(Mx) =
β

π

1
β 2 + (x−α)2 (1)

α 6= mean, and β 6= standard error

For total energy in QMC we can prove that the CLT is true
(Not so for certain other expectation values)

Pablo López Ŕıos Probability and Statistics in Quantum Monte Carlo



Introduction
VMC statistics
DMC statistics

Normally-distributed numbers
Summary

The Central Limit Theorem
The normal distribution
Comparing numbers with errors

The normal distribution

The normal distribution is D(E; Ē,σ) = 1√
2πσ

exp
[
− (E−Ē)2

2σ2

]
The probability of the E being in an interval (A,B) is

P(A < E < B) = f
(

B−Ē
σ

)
− f
(

A−Ē
σ

)
f (x) = 1√

2π

∫ x
−∞

exp
(
−y2/2

)
dy

One-sigma interval (Ē−σ , Ē + σ) → 68.3% → unreliable

Two-sigma interval (Ē−2σ , Ē + 2σ) → 95.4% → reliable

Three-sigma interval (Ē−3σ , Ē + 3σ) → 99.7% → very
reliable
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The normal distribution

Comparison of a Gaussian and the local energy distribution
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From Central Limit Theorem:

The mean energy is exactly normal
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How to compare quantities with errorbars

Want to find distribution of difference, denoted(
Ē−±σ−

)
=
(
Ē1±σ1

)
−
(
Ē2±σ2

)
Results in

Ē− = Ē1− Ē2
σ2
− = σ2

1 + σ2
2

Example:

Ψ1 gives E1 =−14.66728(2) a.u.
Ψ2 gives E2 =−14.66733(7) a.u.
Comparison: E− = 0.00005(7) a.u. → 76% chance of E2 < E1
→ unreliable!
If E2 =−14.66733(2) a.u. instead → E− = 0.00005(3) a.u.
→ 95% chance of E2 < E1 → reliable
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What are error bars?

“x% of error bars will include exact mean” is the definition of a
confidence inteval
E.g., “68.3% of error bars will include exact mean”

Pablo López Ŕıos Probability and Statistics in Quantum Monte Carlo
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Is random error an “extra” error?

The presence of an error bar often creates the first impression
that QMC has an “extra” error that other methods do not

However, computers cannot do integration exactly:

Finite basis sets → basis set error (unkown, controlled)
Quadrature on grid → quadrature error (unkown, controlled)
Monte Carlo → random error (known, controlled)

QMC has a different type of integration error

Pablo López Ŕıos Probability and Statistics in Quantum Monte Carlo
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Reblocking algorithm applied using the reblock utility

Average correlation time τ given in VMC runs and
reblock utility

VMC timestep automatically optimized to give a = 50% (do
not apply on HEG)

EBEA is the default in both VMC and DMC

DMC statistics monitored using graphit utility

Timestep extrapolation carried out using the
extrapolate tau utility
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