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The Slater determinant

@ Basic antisymmetric wave function: a Slater determinant
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e Orbitals {¢°} can be obtained from HF, DFT, etc.
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The Slater-Jastrow wave function

@ Electronic correlation introduced using a multiplicative
Jastrow factor,

Vgi(R) =exp[/(R)]Ws(R)

@ Advantages of using a Jastrow factor:
o Compact form
e Fulfills cusp conditions — much improved statistics
e Good description of electronic correlation — ability to retrieve
80-90% of the correlation energy in VMC
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Need for better wave functions

Why do we need wave functions other than Slater-Jastrow?

@ DMC energies depend on the nodes of ¥, but Jastrow factors
do not modify the nodes of Wg

@ Better wave functions may help us achieve chemical accuracy
(error in energy differences < 1 kcal mol™!)

@ Other expectation values are far more sensitive to the quality
of W than the energy

e Improving W and its nodes involves interesting Physics/Maths

@ A better description of certain “exotic” systems may be
achieved with wave functions other than Wg
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How complex are nodal surfaces?

Basic wave functions
Going beyond Slater-Jastrow
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How complex are nodal surfaces?

The nodes of Wg:
Are the 3N — 1 dimensional region {R | Vg(R) =0}

@ Have no connection with the nodes of the orbitals

Are rarely sampled — are hard to optimize within standard
schemes — but are the source of error anyway

Tend to divide config space into too many regions (nodal
pockets) — tend to have the wrong topology

Do satisfy the tiling theorem: all nodal pockets are equivalent

Are not too far off the true answer
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QMC-optimized orbitals
Backflow transformations
Orbital-dependent Jastrow factor

Possible wave function modifications

@ Optimize the orbitals in Vg

o Explicitly include inter-particle distances in Wg via coordinate
transformations — backflow

@ Explicitly include inter-particle distances in Wg via orbital
prefactor — orbital-dependent Jastrow factor
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Orbital parametrization

QMC-optimized orbitals
Backflow transformations
Orbital-dependent Jastrow factor

@ In atomic systems, modify the radial function,

Ouim(1) = [pai" (r) + Apu(r)] Y1 (8, 9)
with N
p i _Anlr2
aoutr)= e oo (115
N. D. Drummond et. al., J. Chem. Phys. 124, 224104 (2006)

@ In small molecules one can expand the orbitals in a Slater basis

C. Filippi and C. J. Umrigar, J. Chem. Phys. 105, 213 (1996)

@ For orbitals expanded in Gaussians, one could optimize
expansion coefficients and exponents directly
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How well does orbital optimization work?

@ Varying degree of success in different studies

@ In general the improvements are rather modest, e.g.,
o All-electron Ne and Ne™:
® VMC: Eunopt — Eopt = 12% (Eunopt — Eo)
e DMC: Eynopt — Eopt = 3% (Eunopt — Eo)
— little nodal improvement
o Pseudo-Ne and pseudo-Ne™:
® VMC: Eunopt — Eopt = 2% (Eunopt — Eo)
e DMC: Eunopt — Eopt ~ 2% (Eunopl _EO)
— little overall improvement
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The Slater-Jastrow-backflow wave function

The backflow transformation applied to Vg is
VT (R) = Ws[X(R)]
where X is a vector of quasi-particle coordinates,

x;(R) =r;+§,(R)

f[xi(R)]  ¢i[x2(R)] ... ¢1[xn(R)]
WBF(R) = ¢2[X1: (R)] ¢ [Xz:(R)] ¢2[X1\:/(R)]
onv[xi(R)] ¢n[x2(R)] ... ¢n[xn(R)]
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QMC-optimized orbitals
Backflow transformations
Orbital-dependent Jastrow factor

Interpreting backflow

o Backflow originally derived to account for the momentum
dependence of correlations between Hes impurity and Hey
gas

R.P. Feynman and M. Cohen, Phys.Rev. 102, 1189 (1956)

@ Backflow can also be derived as a second order correction
to Ws within “many-body perturbation theory”, based on the
Feynman-Kacs formula

Holzmann et al, Phys.Rev. E 68, 046707 (2003)

@ The Jastrow factor and the backflow transformation can be
seen as complementary tools to improve Vg:

o Jastrow factor modulates Vg in the “vertical” direction
o Backflow deforms Wg in the “horizontal” direction
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Parametrization of backflow

QMC-optimized orbitals
Backflow transformations
Orbital-dependent Jastrow factor

We construct &;(R) as a sum of e-e, e-n and e-e-n functions:

N,
& =Y nyry . my=n(ry)

JFi
Nn
e—n
E" =Y mary , pa=p(ra)
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QMC-optimized orbitals
Backflow transformations
Orbital-dependent Jastrow factor

Backflow results
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Backflow results
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Backflow results

Practicalities of backflow:

@ Variance of the local energy reduced — need fewer data for
fixed target uncertainty

@ Wave function update algorithms are a factor of N more
costly (CBCS simpler but EBES still favourable)
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QMC-optimized orbitals
Backflow transformations
Orbital-dependent Jastrow factor

The orbital-dependent Jastrow factor

@ Functional form:

' ®oifr] ' ®oifry] ... ' ®g[ry]
w(S)DJ(R) _ ol (R):¢)2 [r] o2 (R):¢2 [r] . ¢2(R) :d)z [ry]
N Rgyr] V®gylry] ... N Rgy[ry]

@ Modulates the individual orbitals instead of
modulating/deforming the entire wave function (normal
Jastrow factor/backflow)

@ Has the ability to modify the nodes of Vg

@ In practice results in a very small improvement

T. Bouabga et al, J.Chem.Phys. 133, 044111 (2010).
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Alternative wave functions

@ Multi-determinant expansions

o (Multi-)geminal/(multi-) Pfaffian (pairing) wave functions

@ Tailor-made wave functions for specific problems
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Multi-determinant expansions
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Multi-determinant expansions

Eigenstates y,(r) of a single-particle Hamiltonian
= basis for functions of r

@ Hence, determinants of N orbitals for N particles
= basis for antisymmetric functions of R

Hence, the exact wave function is

o(R) = Y D] (RT)DLRY)
k=0

Truncated expansion is an approximation to ¢

First term of expansion = Hartree-Fock wave function

Relatively small expansions in QMC thanks to exact cusps
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Applicability

@ Small atoms and molecules — excellent results
@ Medium-sized systems — expensive and/or mediocre results

o Large/crystalline systems — infeasible

Multi-determinant expansions are not size-consistent J
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Multi-determinant expansions
(Multi-)geminal and (multi-)Pfaffian wave functions
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Multi-determinants vs. backflow
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* M.D. Brown et al, J.Chem.Phys. 126, 224110 (2007); see also: P. Seth et al, J.Chem.Phys. 134, 084105 (2011)
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Multi-determinant expansions
(Multi-)geminal and (multi-)Pfaffian wave functions
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Antisymmetrized Geminal Power (AGP) wave function

The geminal or AGP wave function is

Norb

Zg,,qx (rh)g;(r")

CD(li,rl)
&(r,,ry)
Vacp(R) 2
¢<rﬁv7rb
where
0] rT ri
with g;; =
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optimizable parameters, and Ny, > N.
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Antisymmetrized Geminal Power (AGP) wave function

Multi-determinant expansions
(Multi-)geminal and (multi-)Pfaffian wave functions
Wave functions for specific problems

@ Wgp introduces correlations between opposite-spin electrons
@ When g;j = 9; and Now, = N, Wagp reduces to Wy
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= )
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@ Wagp is equivalent to a multi-determinant expansion — but
not a particularly good one

* figure from P. Bugnion, PhD Thesis, University of Cambridge (2014)
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Multi-AGP (MAGP) wave function

Multi-determinant expansions
(Multi-)geminal and (multi-)Pfaffian wave functions
Wave functions for specific problems

@ However, the multi-geminal expansion Wysgp is very
successful for the HEG, although expensive
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@ The MAGP wave function is the subject of current research

* figure from P. Bugnion, PhD Thesis, University of Cambridge (2014)
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Multi-determinant expansions
(Multi-)geminal and (multi-)Pfaffian wave functions
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Pfaffian and multi-Pfaffian wave functions

o Pfaffians are similar to geminals, but allow correlations
between same-spin electrons

e (Multi-)Pfaffians have been tested on small systems with
good results

M. Bajdich et al, Phys.Rev. B 77, 115112 (2008)

o (Multi-)Pfaffians suffer from similar size-consistency problems
as multi-determinants and (multi-)geminals
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Pairing determinants

@ Simple wave function suitable for electron-hole systems

@ Functional form:

¢(el—h1) ¢(e1—h2) (P(el—hN)
Vo(R) = ¢(62:—h1) ¢(62:—h2) ¢(e2:—hN)
¢)(CN—h1) ¢(eN—h2) q)(eN—hN)

with ¢(r) an appropriate pairing function
@ These wave functions have been widely used to study
electron-hole systems.
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Pairing determinants

Phase diagram of the 2D equal-mass electron-hole bilayer using
flexible ¢ designed to describe both fluid and excitonic phases.
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R. Maezono et al, Phys.Rev.Lett. 110, 216407 (2013)
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The “EXMOL" wave function

Multi-determinant expansions
(Multi-)geminal and (multi-)Pfaffian wave functions
Wave functions for specific problems

e Wave function designed for “excitonic molecules” (small
assemblies of positive and negative particles in general)

@ Inspired by a very accurate wave function for Ps; (2 electrons
+ 2 positrons) based on:

Vps, = ¢i(er—hy)pi(e,—h))¢x(er —h )g(e, —hy)
+ ¢2(er —hy)do(e) —hy)oi(er —h))¢i (e, —hy)

which favours “indirect” pairing between Ps “atoms”
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The “EXMOL" wave function

Multi-determinant expansions
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@ Functional form:

n Ne Ny

VexmoL (R) = Y e [T T 0n, (e — )
A

where

e n=n. of terms, N, =n. of electrons, N;, =n. of holes

e¢; and h; are electron and hole coordinates

9, is the Ath pairing function (e.g., “cuspless exponential”)
Aiji is a function chooser

¢ is the coefficient of the kth term

{ck} and {Ajx} must obey certain rules to ensure the relevant
symmetries and antisymmetries
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The “EXMOL" wave function

Multi-determinant expansions
(Multi-)geminal and (multi-)Pfaffian wave functions
Wave functions for specific problems

@ This is an example of the flexibility offered by QMC in
choosing a wave function form — tailor-made wave function
form for a specific problem

@ The EXMOL wave function was implemented in CASINO to
study stability of Pss3, Psy, etc

@ These turned out to be unstable, so EXMOL remains an
undocumented feature awaiting use in publication (we will
soon publish results for e-e-h “ions”)

@ The implementation is reliable and well tested, with automatic
symmetry, backflow support, etc — sample input available on
request
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What should be combined with what?

o Orbital optimization + backflow:
orbital optimization largely overlaps with backflow

@ Orbital optimization + multi-determinants:
orbital optimization largely overlaps with multi-determinants
multi-determinants

e Multi-determinants/MAGP/. .. and backflow:
excellent results where multi-determinants/MAGP/. .. are
feasible to use
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Summary

@ There are many alternatives to Wg, but have restricted
applicability and/or greater cost

@ There are several modifications to a given base wave function,
the most successful and widely applicable of which is
backflow, which provide better accuracy but come at an
increased cost

@ The system you study and the available computational
resources will determine which wave function you can use
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