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Abstract

We present a method for speeding up the
calculation of tree kernels during train-
ing. The calculation of tree kernels is still
heavy even with efficient dynamic pro-
gramming (DP) procedures. Our method
maps trees into a small feature space
where the inner product, which can be cal-
culated much faster, yields the same value
as the tree kernel fanosttree pairs. The
training is sped up by using the DP pro-
cedure only for the exceptional pairs. We
describe an algorithm that detects such ex-
ceptional pairs and converts trees into vec-
tors in a feature space. We propose tree
kernels onmarked labeled ordered trees
and show that the training of SVMs for
semantic role labeling using these kernels
can be sped up by a factor of several tens.

Introduction

}@jaist.ac.jp

Previous studies (Collins and Duffy, 2001;
Kashima and Koyanagi, 2002) showed that although
it is difficult to explicitly calculate the inner product
in Eg. (1) because we need to consider an exponen-
tial number of possible subtrees, the tree kernels can
be computed irO(|71||7%]) time by using dynamic
programming (DP) procedures. However, these DP
procedures are time-consuming in practice.

In this paper, we present a method for speeding
up the training with tree kernels. Our target ap-
plication isnode relation labelingwhich includes
NLP tasks such as semantic role labeling (SRL)
(Gildea and Jurafsky, 2002; Moschitti, 2004; Ha-
cioglu et al., 2004). For this purpose, we designed
kernels ormarked labeled ordered treesd derived
O(|T1]|T%|) procedures. However, the lengthy train-
ing due to the cost of kernel calculation prevented us
from assessing the performance of these kernels and
motivated us to make the training practically fast.

Our speed-up method is based on the observation
that very few pairs in the training set have a great
many common subtrees (we call such pamali-

Many NLP tasks such as parse selection and ta{jl_ouspalrs) and most pairs have a very small number

ging can be posed as the classification of label

e?f common subtrees. This leads to a drastic vari-

ordered trees. Several tree kernels have been pfJIC€ in kemel values, e.g., whéfi(S;) = 1. We

posed for building accurate kernel-based classifief

hus call this property of datanbalanced similarity

(Collins and Duffy, 2001; Kashima and Koyanagi Fast calculation based on the inner product is possi-
2002). They have the following form in common.

(T1,T2) = > _W(S:) #5,(T1) - #5,(T2), (1)

S;
wheresS; is a possible subtregtg, (T;) is the num-
ber of timess; is includedin Tj;, and W (S;) is

the weight ofS;. That is, tree kernels are inner

ble for non-malicious pairs since we can convert the
trees into vectors in a space of a small subset of all
subtrees. We can speed up the training by using the
DP procedure only for the rare malicious pairs.

We developed the FREQTM algorithm, a modifi-
cation of the FREQT algorithm (Asai et al., 2002),
to detect the malicious pairs and efficiently convert

products in a subtree feature space where a treeg g jnto vectors by enumerating only the subtrees
mapped to vecto¥/ (1) = (\/W(Si)#si(zﬂj))l.
With tree kernels we can take global structures intdemonstrated that our method makes the training of
account, while alleviating overfitting with kernel- SVMs for the SRL task faster by a factor of several

based learning methods such as support vector mans, and that it enables the performance of the ker-
chines (SVMs) (Vapnik, 1995).

actually needed (feature subtrees). The experiments

nels to be assessed in detail.



2 Kernels for Labeled Ordered Trees

The tree kernels proposed so far differ in how sub-
tree inclusion is defined. For instance, Kashima and
Koyanagi (2002) used the following definition.

DEFINITION 2.1 S is included inT iff there exists

a one-to-one functiog from a node ofS to a node [AILV I Al I AMLOC ]
of T such that (i)pa(y(n;)) = ¥(pa(n;)) (pa(n;) _ ] . :
returns the parent of node;), (ii) ¥/(1;) > ¥(n;) iff Figure 1: Node relation labeling.

n; = nj (n; = n; means that; is an elder sibling
of n;), and (iii) [(v(n;)) = l(n;) ({(n;) returns the
label ofn;).

K;,. Collins and Duffy (2001) used a more restric-
tive definition where the preservation of CFG pro-
ductions, i.e.nc(¢(n;)) = ne(n;) if ne(n;) > 0
(nc(n;) is the number of children of;), is required Figure 2: Semantic roles encoded by marked labeled
in addition to the requirements in Definition 2.1. Weordered trees.

refer to the tree kernel based on this definitiorkas

Itis pointed that extremely unbalanced kernel val©f the arguments of the verb “see (saw)". We repre-
ues cause overfitting. Therefore, Collins and Duffpent an argument by the node that is the highest in
(2001) usedW'(S;) = (# of productions ins*z-)’ the parse 'Free among the nodes that exactly cover
and Kashima and Koyanagi (2002) uséd(S;) — _the words_ in the_z grgument. The node for the verb
AISil, where (0 < A < 1) is a factor to alleviate is dete“rmlTed similarly. For example, the nodeul_a—
the unbalance by penalizing large subtrees. beled ”PP represents the AI\{!-LOC,E argument “in

To calculate the tree kernels efficiently, Collinsthe sky”, and the node labeled "VBD” represents the

and Duffy (2001) presented (/T ||T>|) DP pro- verb “see (saw)”. We assume that there is a two-

cedure forK,. Kashima and Koyanagi (2002) pre_node relation labeled with the semantic role (repre-
c* . .
sented one fok,. The point of these procedures iSsented by the arrow in the figure) between the verb

that Eq. (1) can be transformed: node and the argument node.

K(T1,Ty) = Z Z C(ny, na), 3.2 Kernels on Marked Labeled Ordered Trees

n1€T1 no€To We define a marked labeled ordered tree as a labeled
C(n1,m2)= 35, W(Si) - #s,(T1 om) - #s,(T2 An2),  ordered tree in which each node has a mark in ad-
' : . .. dition to a label. We usen(n;) to denote the mark
wheress, (T; & ny) IS the number of imes; is of noden,;. If n; has no markn(n;) returns the

included inT; with ¥ (root(S;)) = ni. C(n1,n . .
J Wl ( >). k- C(n1,no) special markno-mark. We also use the function
can then be calculated recursively from those of th . . .

: marked(n;), which returnstrue iff m(n;) is not
children ofny andns.

no-mark. We can encode /&node relation by using

3 Kernels for Marked Labeled Ordered k distinct marks. Figure 2 shows how the semantic
Trees for Node Relation Labeling roles illustrated in Figure 1 can be encoded using
marked labeled ordered trees. We used the mark *1

3.1 Node Relation Labeling to represent the verb node and *2 to represent the

The node relation labeling finds relations among@rgument node.

nodes in a tree. Figure 1 illustrates the concept of The node relation labeling task can be posed as
node relation labeling with the SRL task as an exthe classification of marked trees that returns
ample. A0, Al, and AM-LOC are the semantic rolesvhen the marks encode the correct relation arid



Algorithm 3.1: KERNELLOMARK(T?, T) Table 1: Malicious and non-_malicious pairs in the
(nod dered by th corder t ) 1k data (3,136 trees) used in Sec. 5.2. We used
noaes are oraere Yy the post-order traversa . 4 . i
for ny — 1to |T}| do K(Ti,_Tj) = 10* with )\ = 1 as the threshold for

for nz < 1to 72| do (A) | maliciousness. (A): pair&i,i). (B): pairs from the
i lg%(”l) 7’5)1“”‘(0”227}2‘9” Yoo same sentence excepti). (C): pairs from different
ni,ng) «— ni,na) < L. . .
else mlh aQnd?12 are leaf nodethen sentences. Some malicious pairs are from different
C(n1,n2) «— A but similar sentences, which are difficult to detect.
if marked(ni) and marked(nz) then K] KT
eIseC (n1,m2) — A elseC™(ny,n2) «— 0 7 pairdavg. K (T, T3) | # ol pard avg. K (7o, )
S(0,5) « 1 S(i,0) «— 1 ) 3,121/1.17 x 10*? 3,052/2.49 x 1032
if marked(n1) and marked(n2) then 4(B) 7,5487.24 x 10*® 876/1.26 x 10**
S7(0,4) — 1 S7(i,0) — 1 107y [ 6,5106.80 x 10° 28[1.82 x 10"
elses"(0,j) <0 5(:,0) <0 - ™ 15[4.19 x 10° 843.06 x 10°
for i —1tonc(n.) do +(B) 4,8642.90 x 10° 11,5361.27 x 10?
fOlrSJ( ff)l to nc(ng) do 107 [9,812,4381.82 x 10° _ |9,818,9201.84 x 10~
i,J) —
S(Gi—1,7)+8(,j—1)—S(i—1,5—1 . :
+(§(i - 1]7)j _ 1(1.]0(6;1).( )(Zch_( ) ) | 4 Fast Training with Tree Kernels
S"(i, §) — (B) i
S (1, )+ (i, j — 1) S'“(z 1) 4.1 Basic ldea
+§T(i —11,‘1' —11) CT(CZZ( 1), ¢hj(ns2)) As mentioned, we define two types of tree pairs: ma-
J_FSQ(Z__ ’ljj__ %) cﬁfd’é( )) E(HB) licious and non-malicious pairs. Table 1 shows how
C(n1,mn2) — X - S(ne(ni),nc(ne)) these two types of pairs are distributed in an actual
¢ () <= A~ §7(ne(m), ne(nz)) training set. There is a clear distinction between ma-
return (3on 21 2uny1 €7 (1, 2)) licious and non-malicious pairs, and we can exploit

is pr r he trainin
otherwise. To enable such classification, we neeld| s property to speed up the training.

tree kernels that take into account the node marks We define subsef = {7} (feature subtregs

which includes only the subtrees that appear as
We thus propose mark-aware tree kernels formu—
a common included subtree in the non-malicious
lated as follows.

pairs. We convert a tree to feature vecto(7);) =

KT = . W(S)-#s(T)#s,(T), (VWE)#r(T3)). using onlyF. Then we use a
S;:marked(S;) procedure that chooses the DP procedure or the in-

_ ner product procedure depending on maliciousness:
wheremarked(S;) returnstrue iff marked(n;) =

true for at least one node in tre€;. In these ker- K(T;,T;) (DP) if (i,4) is malicious.
nels, we requiren(y(n;)) = m(n;) in addition to i 1) = (V(T3),V(T};)) otherwise
l(¥(n;)) = l(n;) for subtreeS; to be regarded as in- e !
cluded in tre€l’;. In other words, these kernels treafThis procedure returns the same value as the origi-
Im(n;) = (I(n;), m(n;)) as the new label of node nal calculation. Naively, ifV(T;)| (the number of
n; and sum only over subtrees that have at least offieature subtrees such th#y, (7;) # 0) is small
marked node. We refer to the marked versiok@f enough, we can expect a speed-up because the cost
asKj, and the marked version . asK. of calculating the inner product i®(|V(T;)| +

We can derive)(|T||T>|) DP procedures for the |V (Tj)|). However, sinceV (7;)| might increase as
above kernels as well. Algorithm 3.1 shows the DRhe tralnlng set becomes larger, we need a way to
procedure fork; , which is derived by extending scale the speed-up to large data. In most kernel-
the DP procedure fof;, (Kashima and Koyanagi, based methods, such as SVMs, we actually need
2002). The key is the use d@f"(nq,n2), which to calculate the kernel values with all the train-
stores the sum over only marked subtrees, and its rieég examples for a given example: KS(T;) =
cursive calculation using'(n1,n2) andC”(ny,ne) {K(T;,T1),...,K(T;,TL)}, whereL is the num-
(B). An O(|T1||T%|) procedure forK can also be ber of training examples. Usingccurrence pat-
derived by extending (Collins and Duffy, 2001).  tern OP(F;) = {(k,#r,(Tk))|#r,(T}) # 0} pre-



Algorithm 4.1: CALCULATEKS(T;)

for each F' such that#r(7;) # 0 do
for each (j, #r (7)) € OP(F) do
KS(j) — KS() + W(F) - #r(T) - #r(T3)  (A)
for j=1to Ldo
if (¢,7) is malicious then KS(j) «— K(T;,T;) (DP)

pared beforehand, we can calculates(7;) effi-

ciently (Algorithm 4.1). A similar technique wag

used in (Kudo and Matsumoto, 2003a) to speed
the calculation of inner products.

We can show that the per-pair cost of Algorithr]

4.1isO0(c1Q + rmea|Ti||T}), where@ is the av-
erage number of common feature subtrees in a t
pair, r,,, is the rate of malicious pairg; andc, are

the constant factors for vector operations and DP @

erations. This cost is independent of the number
training examples. We expect from our observatio
that both@ andr,, are very small and tha < c».

4.2 Feature Subtree Enumeration with
Malicious Pair Detection

To detect malicious pairs and enumerate feature s
treesF (and to convert each tree to a feature vecto
we developed an algorithm based on the FREQT

gorithm (Asai et al., 2002). The FREQT algorithm
can efficiently enumerate subtrees that are include
(Definition 2.1) in more than a pre-specified numbe
of trees in the training examples by generating car

didate subtrees usirrgght most expansionikRMES.

FREQT-based algorithms have recently been use
in methods that treat subtrees as features (Kudo al

Matsumoto, 2004; Kudo and Matsumoto, 2003b).
To develop the algorithm, we made the defin

tion of maliciousness more search-oriented since
is costly to check for maliciousness based on the e
act number of common subtrees or the kernel valug

(i.e., by using the DP procedure for dlf pairs).

Algorithm 4.2: FREQTM(D, R)

procedure GENERATECANDIDATE (F;)
for each (j,n) € occ(F;) do
for each (Fy,n,) € RME(F;,Tj,n) do
S — SU{Fi}; oce(Fy) «— oce(Fr) U (j,nr)
if |occ(Fy)|/|sup(F;)| > Rthen
return ((¢, false))
return (({Fx|Fr € S, |sup(Fy)| > 2}, true))

(R)

procedure SEARCH(F;, precheck)
upif |Fi| > D then REGISTERMAL (F}) return ( false)—(P)
(C, suc) « GENERATECANDIDATE (F;)
if not suc then REGISTERMAL (F;) return ( false)—(S)
n foreach I, € C do

if malicious(F)) thengoto nextFy
[ee suc «—SEARCH(Fg, precheck)

if not suc and |sup(F;)| = |sup(Fy)| then

return (false)

P-if not precheck and marked(F;) then
Of REGISTERSUBTREE(F)
nsreturn (true)

-(P2)

(P1)

(F)

main

M — ¢ (a set of malicious pairs)

Ft — {F||F;| = 1 and|sup(F;)| > 2}
for each I; € F' do SEARCH(F;, true )
for each F; € F' do SEARCH(F;, false)
by MO <i< 1)

N, return (M AV (T}, {W(F)})

al-

-(PC)

Table 2: Functions in FREQTM.

2d e
r
n

(j,n) indicates that; appears ifl; and thatn (of T3)
is the node added to generat&din T; by the RME @
works as the position aF; in T7).

ed
nd

sup(F;) returns the IDs of distinct trees bxc(F;).

malicious(F;) returnstrue iff all pairs in sup(F;) are
already registered in the set of malicious pai¥4, (cur-

. support size of the malicious subtrees so far. We will remove this ¢
It since we found that it did not affect efficiency so much.)
It
X_

hg  generater; isn).

occ(F;) returns occurrence list of; whose elemen

rently, this returngalse if |sup(F;)| > M whereM is the maximum

RME(F;,T;,n) is a set of subtrees generated by RM
of F; in T; (permitted when previously expanded nodg¢

heck

1Es
2 to

Whatever definition we use, the correctness is pr@ossibly exponential number of subtrees of that sub-
served as long as we do not fail to enumerate ttgee in common. Although this test is heuristic and
subtrees that appear in the pairs we consider nogonservative in that it ignores the shape and marks

malicious. First, we consider paifs, i) to always

of a tree, it works fine empirically.

be malicious. Then, we use a FREQT search that Algorithm 4.2 is our algorithm, which we call
enumerates the subtrees that are included in at le&#REQTM. The differences from FREQT are under-
two trees as a basis. Next, we modify FREQT so thdihed. Table 2 summarizes the functions used. To
it stops the search if candidate subtfgeas too large make the search efficient, pruning is performed as
(larger than sizé), e.g., 20), and we regard the pairdollows (see also Figure 3). The basic idea behind is
of the trees wheré;; appears as malicious becausehat if malicious(F;) is true thenmalicious(Fy,)

having a large subtree in common implies having

& alsotrue for Fj, that is expanded fronk; by an



RME sincesup(Fy) C sup(F;). This means we do
not need to enumerafé nor any descendant ;.

e (P) Once|F;| > D and the malicious pairs are

registered, we stop searching further.

e (P1)If the search fromfy, (expanded frontF;)
found a malicious subtree and |fup(F;)| =
|sup(F)|,
subtreeF;,, (expanded fromF;) since we can
prove thatnalicious(F,,) = true without ac-

sup—{ZV’ 2.3 ¢ M l
sup = {1,2,3,4}
9Ty
should be pruned {1 2, 3} {1 3} {2 4}
(pruned after PC) ﬁ @ &
- ,p

{1,2, 3‘%‘ (Pl)
A /M(Pl) ,‘: enumerated

‘ pruned pruned

. {1,2 3} .(Pl) ‘5 ;
malicious pairs: H /i
(1,2) (1,3)(2,3) LA A

tually testing it (proof omitted). Figure 3: Pruning in FREQTM.

e (P2) If malicious(Fy) = true, we prune
the search fromF,. To prune even when ilar to finding closed and maximal subtrees (Chi et
malicious(F),) becomestrue as a result of al., 2004), itis easy to implement since we need only
succeeding searches, we first run a search orilye occurrence patter®),P(F;), which is easily ob-
for detecting malicious pairs (s¢BC)). tained fromocc(F;) in the FREQTM search.

e (S) We stop searching when the occurrencq 4 Alternative Methods
list becomes too long (larger than threshaiyl

since it causes a severe search slowdown. Vishwanathan and Smola (2004) presented the

O(|Ty| + |T»|) procedure that exploits suffix trees

Note that we use a depth-first version of FREQT at® speed up the calculation of tree kernels. However,
a basis to first find the largest subtrees and to detdattan be applied to only a few types of subtrees that
malicious pairs at early points in the search. Enuzan be represented as a contiguous part in a string
meration of unnecessary subtrees is avoided becausgresentation of a tree. Therefore, neithgj nor
the registration of subtrees is performed at the posis/ can be sped up by using this procedure.
order position(F). The conversion to vectors is per- Another method is to change an inner loop, such
formed by assigning an ID to subtrég&when regis- as(B) in Algorithm 3.1, so that it iterates only over
tering it at §) and distributing the ID to all the exam- nodes inl5 that have (n,). We use this as the base-
ples inocc(F;). Finally, D should be large enough line for comparison, since we found that this is about
to maker,, sufficiently small but should not be sotwo times faster than the standard implementatton.
large that too many feature subtrees are enumerated

We expect that the cost of FREQTM is offset by A
the faster training, especially when training on thé\ote that the method described here cannot speed up
same data is repeatedly performed as in the tunirid@ssification, since the converted vectors are valid
of hyperparameters. only for calculating the kernels between trees in the

For K, we use a similar search procedure. Howtraining set. However, when we classify the same
ever, the RME is modified so that all the children ofrees repeatedly, we can convert the trees in the train-
a CFG production are expanded at once. Althouging set and the classified trees at the same time and
the modification is not trivial, we omit the explana-use the obtained vectors for classification.
tion due to space limitations.

Remaining Problem

5 Evaluation

4.3 Feature Compression
P We first evaluated the speed up by our method for

compression technique to boost speed-up. The idgamonstrated that the speed-up method enables a de-
is simple: feature subtreds and F; can be treated tajled comparison ok7, andK? for the SRL task.
as one featurgy, with welghtW(fk) W(EF)+ ———— _

For K, it might be possible to speed up comparisons in

W( ]) if OP( l) - OP( J)' This draStica_”y_ re—. the algorithm by assigning IDs for CFG rules. We leave this for
duces the number of features. Although this is sinmfuture work since it complicates implementation.



Table 3: Conversion statistics and speed-up for semantic role A2.

l I Ki, I K¢ l
size (# positive examples) 1,000 2,000] 4,000] 8,000 12,000[1,000] 2,000] 4,000] 8,000 12,000
# examples 3,136| 6,246| 12,521] 25,034 34,6323,136| 6,246| 12,521 25,034 34,632
# feature subtrees<(10%) 804.4/2,427.3 6,542.916,750.1 26,146. §3.473| 9.009| 21.867| 52.179 78.440
# features (compressedy 104) 20.7) 67.3| 207.2] 585.9 977.0/{0.580] 1.437| 3.426] 8.128 12.001
avg.|V| (compressed) 468.0] 866.51,517.3 2,460.5 3,278.3| 10.5| 14.0f 17.9 23.1 25.9
rate of malicious pairs,, (%) |/0.845 0.711 0.598 0.575 1.24/|10.161| 0.0891] 0.0541] 0.0370 0.0361]
conversion time (sec.) 208.0 629.2/1,921.1] 6,519.8 14,824.9| 3.8 8.7 204 46.5 70.4
SVM time (DP+lookup) (sec.)||487.91,716.2 4,526.4 79,800.7 92,542.2|360.7| 1,263.55,893.3 53,055.5 47,089.2
SVM time (proposed) (sec.) 175/ 68.6| 186.4 1,721.7 2,531.8| 4.9 25.7| 119.5 982.8 699.1
speed-up factor 278 25.00 243 46.4 36.6|| 73.3] 49.1] 49.3] 53.98 67.35
5.1 Setting 5.2 Training Speed-up

We used the data set provided for the CoNLLO5 SRMVe calculated the statistics for the conversion by
shared task (Carreras and Marquez, 2005). We useREQTM and measured the speed-up in SVM train-
only the training part and divided it into our training,ing for semantic role A2, for various numbers of
development, and testing sets (23,899, 7,966, aitihining examples. For FREQTM, we uséd= 20
7,967 sentences, respectively). As the tree structu@)d R = 20. For SVM training, we used conver-
we used the output of Collins’ parser (with WSJ-gence tolerance.001 (-e option in TinySVM), soft
style non-terminals) provided with the data set. Wenargin costC = 1.0 x 103 (-c), maximum num-
also used POS tags by inserting the nodes labeled bgr of iterationsl0°, kernel cache size 512 MB (-
POS tags above the word nodes. The average num), and decay factoA = 0.2 for the weight of
ber of nodes in a tree was about 82. We ignored argach subtree. We compared the time with our fast
arguments (and verbs) that did not match any nodeethod (Algorithm 4.1) with that with the DP pro-
in the tree (the rate of such cases was about 3.5%)cedure with the node lookup described in Section
The words were lowercased. 4.4. Note that these two methods yield almost iden-
We used TinySVM as the implementation of tical SVM models (there are very slight differences
SVM and added our tree kernels; and k7. We due to the numerical computation). The time was
implemented FREQTM based on the implementaheasured using a computer with 2.4-GHz Opterons.
tion of FREQT by Kudd® We normalized the kernel ~ Table 3 shows the results fdt;, and K. The
values: K (T;,T;)//K(T;,T;) x K(T;,T;). Note proposed method made the SVM training substan-
that this normalization barely affected the trainingially faster for bothKj and K7. As we expected,
time since we can calculaf€ (T}, T;) beforehand. the speed-up factor did not decrease even though
We assumed two-step labeling where we first finéicreased as the amount of data increased. Note
the argument node and then we determine the lapg&at FREQTM actually detected non-trivial mali-
by using a binary classifier for each semantic role. 1§10US pairs such as those from very similar sentences
this experiment, we focused on the performance fdp addition to trivial ones, e.g(;, i). FREQTM con-
the classifiers in the latter step. We used the mark&@rsion was much faster and the converted feature
labeled ordered tree that encoded the target role %&ctors were much shorter fét;, presumably be-
a positive example and the trees that encoded oth@@usek restricts the subtrees more.
roles of the verb in the same sentence as negativeThe compression technique described in Section
examples. We trained and evaluated the classifiefis3 greatly reduced the number of features. Without
using the examples generated as abéve. this compression, the storage requirement would be
— , impractical. It also boosted the speed-up. For ex-
This was caused by parse errors, which can be solved by

us- « . . . .
ing more accurate parsers, and by bracketing inconsistencies léemplf:"’ the training time Wlthl?; for th? size 1,000
tween parser outputs and SRL annotations (e.g., phrasal verbdgta in Table 3 was 86.32 seconds without compres-

many of which can be avoided by using heuristic transformersgion. This means that the compression boosted the
3http://chasen.org/ taku/software/TinySVM

“http://chasen.org/ taku/software/freqt X is evaluated only on the examples generated from the sen-
5The evaluation is slightly easier since the classifier for roléences that contain a verb that héisas a role.
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o W A T used the technique described in Section 4.5 to en-
ot sbonosed) 0y Ty ot sl propeses) o able fast classification of the development set). We
AR I - © "™ experimented with two training set sizes (4,000 and
Y =Y1 " . .+ 8,000). Foreach (0.1, 0.15, 0.2, 0.25, and 0.30),

100 i 100 * we tested 40 different values 6f (C' € [2...10?]
19 ber o e 19 berof e for size 4,000 and’ € [0.5...10%] for size 8,000),
Figure 4: Scaling of conversion time and SVM train-2nd we evaluated the accuracy of the best setting for
ing time. Left: K. Right: K7/ the test set. Fast training is crucial since the per-

formance differs substantially depending on the val-
ues of these hyperparameters. Table 4 shows the re-
sults. The accuracies are shown By We can see
that K] outperformedK in all cases, presumably
becausds allows only too restrictive subtrees and
e e 75-2;*“3'0' therefore causes data sparseness. In addition, as one
0 D would expect, larger training sets are beneficial.
Figure 5: Relation betweel and conversion time,
SVM training time, and-,,. Left: K . Right: K 6 Discussion
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speed-up by a factor of more than 5. The proposed speed-up method can also be applied
The cost of FREQTM is much smaller than thato labeled ordered trees (e.g., for parse selection).
of SVM training with DP. Therefore, our method isHowever, the speed-up might be smaller since with-
beneficial even if we train the SVM only once. out node marks the number of subtrees increases
To see how our method scales to large amountghile the DP procedure becomes simpler. On the
of data, we plotted the time for the conversion an@ther hand, the FREQTM conversion for marked la-
the SVM training w.r.t. data size on a log-log scalebeled ordered trees might be made faster by exploit-
As shown in Figure 4, the scaling factor was aboufd the mark information for pruning. Although our
1.7 for the conversion time, 2.1 for SVM training method is not a complete solution in a classification
with DP, and 2.0 for the proposed SVM training forsetting, it might be in a clustering setting (in a sense
K. For K7, the factors were about 1.3, 2.1, andt is training only). However, it is an open question
2.0, respectively. Regardless of the method, the coghether unbalanced similarity, which is the key to
of SVM training was about(L?), as reported in our speed-up, is ubiquitous in NLP tasks and under
the literature. Although FREQTM also has a supewhat conditions our method scales better than the
linear cost, it is smaller than that of SVM training.SVMs or other kernel-based methods.
Therefore, the cost of SVM training will become a Several studies claim that learning using tree ker-
problem before the cost of FREQTM does. nels and other convolution kernels tends to overfit
As we mentioned, the choice @ is a trade-off. and propose selecting or restricting features (Cumby
Figure 5 shows the relationships betwe@rnd the 2nd Roth, 2003; Suzuki et al., 2004; Kudo and Mat-

time of conversion by FREQTM, the time of SVM sumoto, 2004). Sometimes, the classification be-

training using the converted vectors, and the rate W?eﬁ faster as az(r)e(:;ult (\./Svuz;kl et ald’, 2004; Kgdho
malicious pairsy,,,. We can see that the choicebf an atsu_moto, ). We do not disagree W't
is more important in the case &f,, and thatD — 20 these studies. The fact that smallalues resulted in

o =

used in our evaluation is not a bad choice. the highest accuracy in our experiment implies t_hat
too large subtrees are not so useful. However, since
5.3 Semantic Role Labeling this tendency depends on the task, we need to assess

We assessed the performanceidf and K for se- the performance of full tree kernels for comparison.
(&

mantic roles A1. A2. AM-ADV. and AM-LOC us- N this sense, our method is of great importance.
ing our fast training method. We tuned soft mar- Node relation labeling is a generalization of node

gin costC and A by using the development set (we  ®We usedl0° as the maximum number of iterations.



Table 4: Comparison betweéty, and K.

training set size = 4,000 training set size = 8,000
best setting [ F1 (dev) | Fi (test) best setting [ F1(dev) | Fi (test)
Al K, || A=0.2,C=13.95 87.89 87.90 A =0.25C = 8.647 89.80 89.81
K7 A=0.15,C =3.947 85.36 85.56 A=02,C=17.63 87.93 87.96
A2 K], || A=0.20,C =13.95 85.65 84.70 A =0.20,C =57.82 87.94 87.26
K7 A=0.10,C ="7.788 84.79 83.51 A=0.15C=1.0x10° 87.37 86.23
AM-ADV K[, || A=0.25,C =8.647 86.20 86.64 A =0.15,C = 45.60 86.91 87.01
K7 A=0.20,C =3.344 83.58 83.72 A=0.20,C =2.371 84.34 84.08
AM-LOC Kj, || A=0.15,C = 20.57 91.11 92.92 N/A
K7 A=0.15,C =13.95 89.59 91.32 AM-LOC does not have more than 4,000 positive examples.

marking where we determine the mark (tag) of &. Chi, Y. Yang, Y. Xia, and R. R. Muntz. 2004.
node. Kashima and Koyanagi (2002) dealt with this CMTreeMiner: Mining both closed and maximal fre-
task by inserting the node representing the mark 9uent subtrees. IRAKDD 2004
above the node to be tagged and classifying theé. Collins and N. Duffy. 2001. Convolution kernels for
transformed tree using SVMs with tree kernels such nhatural language. INIPS 2001
ask,. For the SRL task, Moschitti (2004) applied culotta and J. Sorensen. 2004. Dependency tree ker-
the tree kernelK.) to tree fragments that are heuris- nels for relation extraction. IACL 2004
Itlcglly extract_ed toéeIﬂeCt thedr(;le of mtere;goljlm Ife_C. Cumby and D. Roth. 2003. On kernel methods for
ation extraction, Culotta and Sorensen ( ) Pro-" qlational learning. INCML 2003
posed atree kernel that operates on only the smallest _ _
tree fragment including two entities for which a re-P- Gildea and D. Jurafsky. 2002. Automatic labeling of

. . semantic rolesComputational Linguistic28(3).
lation is assigned. Our kernels on marked labeled
ordered trees differ in what subtrees are permitte&k. Hacioglu, S. Pradhan, W. Ward, J. H. Martin, and
Although comparisons are needed, we think our ker- D- Jurafsky. 2004. Semantic role labeling by tagging
nels are intuitive and general. syntactic chunks. ICoNLL 2004

There are many possible structures for which treld. Kashima and T. Koyanagi. 2002. Kernels for semi-
kernels can be defined. Shen et al. (2003) proposedstructured data. IFCML 2002 pages 291-298.
atree kernel for LTAG derivation trees to focus onlyr, Kudo and Y. Matsumoto. 2003a. Fast methods for
on linguistically meaningful structures. Culotta and kernel-based text analysis. ACL 2003
Sorensen (2004? proposed a tree kernel fqr dep-e‘?_- Kudo and Y. Matsumoto. 2003b. Subtree-based
dency trees. An important future task is to find suit- - Markoy random fields and its application to natural
able structures for each task (the SRL task in our language analysis (in Japanes®SJ, NL-157

Icase). Cr)]ur speedk;ulp met:oq \.’:””.be beneficial a‘F Kudo and Y. Matsumoto. 2004. A boosting algorithm
ong as there Is unbalanced similarity. for classification of semi-structured text. EMNLP

. 2004 pages 301-308.
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i A. Moschitti. 2004. A study on convolution kernels for
We have presented a method for speeding up theshallow semantic parsing. ICL 2004

training with tree kernels. Using the SRL task, we
demonstrated that our speed-up method made the
training substantially faster.
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