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Abstract

We present a method for speeding up the
calculation of tree kernels during train-
ing. The calculation of tree kernels is still
heavy even with efficient dynamic pro-
gramming (DP) procedures. Our method
maps trees into a small feature space
where the inner product, which can be cal-
culated much faster, yields the same value
as the tree kernel formosttree pairs. The
training is sped up by using the DP pro-
cedure only for the exceptional pairs. We
describe an algorithm that detects such ex-
ceptional pairs and converts trees into vec-
tors in a feature space. We propose tree
kernels onmarked labeled ordered trees
and show that the training of SVMs for
semantic role labeling using these kernels
can be sped up by a factor of several tens.

1 Introduction

Many NLP tasks such as parse selection and tag-
ging can be posed as the classification of labeled
ordered trees. Several tree kernels have been pro-
posed for building accurate kernel-based classifiers
(Collins and Duffy, 2001; Kashima and Koyanagi,
2002). They have the following form in common.

K(T1, T2) =
∑

Si

W (Si) ·#Si(T1) ·#Si(T2), (1)

whereSi is a possible subtree,#Si(Tj) is the num-
ber of timesSi is included in Tj , andW (Si) is
the weight ofSi. That is, tree kernels are inner
products in a subtree feature space where a tree is

mapped to vectorV (Tj) =
(√

W (Si)#Si(Tj)
)

i
.

With tree kernels we can take global structures into
account, while alleviating overfitting with kernel-
based learning methods such as support vector ma-
chines (SVMs) (Vapnik, 1995).

Previous studies (Collins and Duffy, 2001;
Kashima and Koyanagi, 2002) showed that although
it is difficult to explicitly calculate the inner product
in Eq. (1) because we need to consider an exponen-
tial number of possible subtrees, the tree kernels can
be computed inO(|T1||T2|) time by using dynamic
programming (DP) procedures. However, these DP
procedures are time-consuming in practice.

In this paper, we present a method for speeding
up the training with tree kernels. Our target ap-
plication is node relation labeling, which includes
NLP tasks such as semantic role labeling (SRL)
(Gildea and Jurafsky, 2002; Moschitti, 2004; Ha-
cioglu et al., 2004). For this purpose, we designed
kernels onmarked labeled ordered treesand derived
O(|T1||T2|) procedures. However, the lengthy train-
ing due to the cost of kernel calculation prevented us
from assessing the performance of these kernels and
motivated us to make the training practically fast.

Our speed-up method is based on the observation
that very few pairs in the training set have a great
many common subtrees (we call such pairsmali-
ciouspairs) and most pairs have a very small number
of common subtrees. This leads to a drastic vari-
ance in kernel values, e.g., whenW (Si) = 1. We
thus call this property of dataunbalanced similarity.
Fast calculation based on the inner product is possi-
ble for non-malicious pairs since we can convert the
trees into vectors in a space of a small subset of all
subtrees. We can speed up the training by using the
DP procedure only for the rare malicious pairs.

We developed the FREQTM algorithm, a modifi-
cation of the FREQT algorithm (Asai et al., 2002),
to detect the malicious pairs and efficiently convert
trees into vectors by enumerating only the subtrees
actually needed (feature subtrees). The experiments
demonstrated that our method makes the training of
SVMs for the SRL task faster by a factor of several
tens, and that it enables the performance of the ker-
nels to be assessed in detail.



2 Kernels for Labeled Ordered Trees

The tree kernels proposed so far differ in how sub-
tree inclusion is defined. For instance, Kashima and
Koyanagi (2002) used the following definition.

DEFINITION 2.1 S is included inT iff there exists
a one-to-one functionψ from a node ofS to a node
of T such that (i)pa(ψ(ni)) = ψ(pa(ni)) (pa(ni)
returns the parent of nodeni), (ii) ψ(ni) º ψ(nj) iff
ni º nj (ni º nj means thatni is an elder sibling
of nj), and (iii) l(ψ(ni)) = l(ni) (l(ni) returns the
label ofni).

We refer to the tree kernel based on this definition as
Klo. Collins and Duffy (2001) used a more restric-
tive definition where the preservation of CFG pro-
ductions, i.e.,nc(ψ(ni)) = nc(ni) if nc(ni) > 0
(nc(ni) is the number of children ofni), is required
in addition to the requirements in Definition 2.1. We
refer to the tree kernel based on this definition asKc.

It is pointed that extremely unbalanced kernel val-
ues cause overfitting. Therefore, Collins and Duffy
(2001) usedW (Si) = λ(# of productions inSi),
and Kashima and Koyanagi (2002) usedW (Si) =
λ|Si|, whereλ (0 ≤ λ ≤ 1) is a factor to alleviate
the unbalance by penalizing large subtrees.

To calculate the tree kernels efficiently, Collins
and Duffy (2001) presented anO(|T1||T2|) DP pro-
cedure forKc. Kashima and Koyanagi (2002) pre-
sented one forKlo. The point of these procedures is
that Eq. (1) can be transformed:

K(T1, T2) =
∑

n1∈T1

∑

n2∈T2

C(n1, n2),

C(n1, n2)≡
P

Si
W (Si) ·#Si(T1 M n1) ·#Si(T2 M n2),

where#Si(Tj M nk) is the number of timesSi is
included inTj with ψ(root(Si)) = nk. C(n1, n2)
can then be calculated recursively from those of the
children ofn1 andn2.

3 Kernels for Marked Labeled Ordered
Trees for Node Relation Labeling

3.1 Node Relation Labeling

The node relation labeling finds relations among
nodes in a tree. Figure 1 illustrates the concept of
node relation labeling with the SRL task as an ex-
ample. A0, A1, and AM-LOC are the semantic roles
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Figure 1: Node relation labeling.
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Figure 2: Semantic roles encoded by marked labeled
ordered trees.

of the arguments of the verb “see (saw)”. We repre-
sent an argument by the node that is the highest in
the parse tree among the nodes that exactly cover
the words in the argument. The node for the verb
is determined similarly. For example, the node la-
beled “PP” represents the AM-LOC argument “in
the sky”, and the node labeled “VBD” represents the
verb “see (saw)”. We assume that there is a two-
node relation labeled with the semantic role (repre-
sented by the arrow in the figure) between the verb
node and the argument node.

3.2 Kernels on Marked Labeled Ordered Trees

We define a marked labeled ordered tree as a labeled
ordered tree in which each node has a mark in ad-
dition to a label. We usem(ni) to denote the mark
of nodeni. If ni has no mark,m(ni) returns the
special markno-mark. We also use the function
marked(ni), which returnstrue iff m(ni) is not
no-mark. We can encode ak-node relation by using
k distinct marks. Figure 2 shows how the semantic
roles illustrated in Figure 1 can be encoded using
marked labeled ordered trees. We used the mark *1
to represent the verb node and *2 to represent the
argument node.

The node relation labeling task can be posed as
the classification of marked trees that returns+1
when the marks encode the correct relation and−1



Algorithm 3.1: KERNELLOMARK(T1, T2)

(nodes are ordered by the post-order traversal)
for n1 ← 1 to |T1| do

for n2 ← 1 to |T2| do —————————————(A)8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

if lm(n1) 6= lm(n2) then
C(n1, n2)← 0 Cr(n1, n2)← 0

else ifn1 andn2 are leaf nodesthen
C(n1, n2)← λ
if marked(n1) and marked(n2) then

Cr(n1, n2)← λ elseCr(n1, n2)← 0
else

S(0, j)← 1 S(i, 0)← 1
if marked(n1) and marked(n2) then

Sr(0, j)← 1 Sr(i, 0)← 1
elseSr(0, j)← 0 Sr(i, 0)← 0
for i← 1 to nc(n1) do

for j ← 1 to nc(n2) do
S(i, j)←
S(i− 1, j) + S(i, j − 1)− S(i− 1, j − 1)
+S(i− 1, j − 1) · C(chi(n1), chj(n2))

Sr(i, j)← ——————————(B)
Sr(i− 1, j)+Sr(i, j − 1)−Sr(i− 1, j − 1)
+Sr(i− 1, j − 1) · C(chi(n1), chj(n2))
+S(i− 1, j − 1) · Cr(chi(n1), chj(n2))
−Sr(i− 1, j − 1) · Cr(chi(n1), chj(n2))

C(n1, n2)← λ · S(nc(n1), nc(n2))
Cr(n1, n2)← λ · Sr(nc(n1), nc(n2))

return (
P|T1|

n1=1

P|T2|
n2=1 Cr(n1, n2))

otherwise. To enable such classification, we need
tree kernels that take into account the node marks.
We thus propose mark-aware tree kernels formu-
lated as follows.

K(T1, T2) =
∑

Si:marked(Si)

W (Si)·#Si(T1)·#Si(T2),

wheremarked(Si) returnstrue iff marked(ni) =
true for at least one node in treeSi. In these ker-
nels, we requirem(ψ(ni)) = m(ni) in addition to
l(ψ(ni)) = l(ni) for subtreeSi to be regarded as in-
cluded in treeTj . In other words, these kernels treat
lm(ni) ≡ (l(ni),m(ni)) as the new label of node
ni and sum only over subtrees that have at least one
marked node. We refer to the marked version ofKlo

asKr
lo and the marked version ofKc asKr

c .
We can deriveO(|T1||T2|) DP procedures for the

above kernels as well. Algorithm 3.1 shows the DP
procedure forKr

lo, which is derived by extending
the DP procedure forKlo (Kashima and Koyanagi,
2002). The key is the use ofCr(n1, n2), which
stores the sum over only marked subtrees, and its re-
cursive calculation usingC(n1, n2) andCr(n1, n2)
(B). An O(|T1||T2|) procedure forKr

c can also be
derived by extending (Collins and Duffy, 2001).

Table 1: Malicious and non-malicious pairs in the
1k data (3,136 trees) used in Sec. 5.2. We used
K(Ti, Tj) = 104 with λ = 1 as the threshold for
maliciousness. (A): pairs(i, i). (B): pairs from the
same sentence except(i, i). (C): pairs from different
sentences. Some malicious pairs are from different
but similar sentences, which are difficult to detect.

Kr
lo Kr

c

# pairs avg.K(Ti, Tj) # of pairs avg.K(Ti, Tj)

≥
104

(A) 3,121 1.17× 1052 3,052 2.49× 1032

(B) 7,548 7.24× 1048 876 1.26× 1032

(C) 6,510 6.80× 109 28 1.82× 104

<

104

(A) 15 4.19× 103 84 3.06× 103

(B) 4,864 2.90× 102 11,536 1.27× 102

(C) 9,812,4381.82× 101 9,818,9201.84× 10−1

4 Fast Training with Tree Kernels

4.1 Basic Idea

As mentioned, we define two types of tree pairs: ma-
licious and non-malicious pairs. Table 1 shows how
these two types of pairs are distributed in an actual
training set. There is a clear distinction between ma-
licious and non-malicious pairs, and we can exploit
this property to speed up the training.

We define subsetF = {Fi} (feature subtrees),
which includes only the subtrees that appear as
a common included subtree in the non-malicious
pairs. We convert a tree to feature vectorV (Tj) =(√

W (Fi)#Fi(Tj)
)

i
using onlyF . Then we use a

procedure that chooses the DP procedure or the in-
ner product procedure depending on maliciousness:

K(Ti, Tj)=

{
K(Ti, Tj) (DP) if (i, j) is malicious.

〈V (Ti), V (Tj)〉 otherwise

This procedure returns the same value as the origi-
nal calculation. Naively, if|V (Ti)| (the number of
feature subtrees such that#Fi(Ti) 6= 0) is small
enough, we can expect a speed-up because the cost
of calculating the inner product isO(|V (Ti)| +
|V (Tj)|). However, since|V (Ti)| might increase as
the training set becomes larger, we need a way to
scale the speed-up to large data. In most kernel-
based methods, such as SVMs, we actually need
to calculate the kernel values with all the train-
ing examples for a given exampleTi: KS(Ti) =
{K(Ti, T1), . . . ,K(Ti, TL)}, whereL is the num-
ber of training examples. Usingoccurrence pat-
ternOP (Fi) = {(k,#Fi(Tk))|#Fi(Tk) 6= 0} pre-



Algorithm 4.1: CALCULATE KS(Ti)

for eachF such that#F (Ti) 6= 0 do
for each (j, #F (Tj)) ∈ OP (F ) do

KS(j)← KS(j) + W (F ) ·#F (Ti) ·#F (Tj) (A)
for j = 1 to L do

if (i, j) is malicious then KS(j)← K(Ti, Tj) (DP)

pared beforehand, we can calculateKS(Ti) effi-
ciently (Algorithm 4.1). A similar technique was
used in (Kudo and Matsumoto, 2003a) to speed up
the calculation of inner products.

We can show that the per-pair cost of Algorithm
4.1 isO(c1Q + rmc2|Ti||Tj |), whereQ is the av-
erage number of common feature subtrees in a tree
pair, rm is the rate of malicious pairs,c1 andc2 are
the constant factors for vector operations and DP op-
erations. This cost is independent of the number of
training examples. We expect from our observations
that bothQ andrm are very small and thatc1 ¿ c2.

4.2 Feature Subtree Enumeration with
Malicious Pair Detection

To detect malicious pairs and enumerate feature sub-
treesF (and to convert each tree to a feature vector),
we developed an algorithm based on the FREQT al-
gorithm (Asai et al., 2002). The FREQT algorithm
can efficiently enumerate subtrees that are included
(Definition 2.1) in more than a pre-specified number
of trees in the training examples by generating can-
didate subtrees usingright most expansions(RMEs).
FREQT-based algorithms have recently been used
in methods that treat subtrees as features (Kudo and
Matsumoto, 2004; Kudo and Matsumoto, 2003b).

To develop the algorithm, we made the defini-
tion of maliciousness more search-oriented since it
is costly to check for maliciousness based on the ex-
act number of common subtrees or the kernel values
(i.e., by using the DP procedure for allL2 pairs).
Whatever definition we use, the correctness is pre-
served as long as we do not fail to enumerate the
subtrees that appear in the pairs we consider non-
malicious. First, we consider pairs(i, i) to always
be malicious. Then, we use a FREQT search that
enumerates the subtrees that are included in at least
two trees as a basis. Next, we modify FREQT so that
it stops the search if candidate subtreeFi is too large
(larger than sizeD, e.g., 20), and we regard the pairs
of the trees whereFi appears as malicious because
having a large subtree in common implies having a

Algorithm 4.2: FREQTM(D, R)

procedure GENERATECANDIDATE(Fi)
for each (j, n) ∈ occ(Fi) do

for each (Fk, nr) ∈ RME(Fi, Tj , n) do
S ← S ∪ {Fk}; occ(Fk)← occ(Fk) ∪ (j, nr)
if |occ(Fk)|/|sup(Fi)| > R then

return ((φ, false))————————————(R)
return (({Fk|Fk ∈ S, |sup(Fk)| ≥ 2}, true ))

procedure SEARCH(Fi, precheck)
if |Fi| ≥ D then REGISTERMAL(Fi) return ( false)–(P)
(C, suc)← GENERATECANDIDATE(Fi)
if not suc then REGISTERMAL(Fi) return ( false)—(S)
for eachFk ∈ C do

if malicious(Fk) then goto nextFk —————-(P2)
suc←SEARCH(Fk, precheck)
if not suc and |sup(Fi)| = |sup(Fk)| then

return ( false)——————————————–(P1)
if not precheck and marked(Fi) then

REGISTERSUBTREE(Fi)————————————(F)
return ( true )

main
M← φ (a set of malicious pairs)
F1 ← {Fi||Fi| = 1 and|sup(Fi)| ≥ 2}
for eachFi ∈ F1 do SEARCH(Fi, true )—————-(PC)
for eachFi ∈ F1 do SEARCH(Fi, false)
M←M∪ {(i, i)|1 ≤ i ≤ l}
return (M, {V (Ti)}, {W (fi)})

Table 2: Functions in FREQTM.
• occ(Fi) returns occurrence list ofFi whose element

(j, n) indicates thatFi appears inTj and thatn (of Tj)
is the node added to generatedFi in Tj by the RME (n
works as the position ofFi in Tj).

• sup(Fi) returns the IDs of distinct trees inocc(Fi).

• malicious(Fi) returnstrue iff all pairs in sup(Fi) are
already registered in the set of malicious pairs,M. (Cur-

rently, this returnsfalse if |sup(Fi)| > M whereM is the maximum

support size of the malicious subtrees so far. We will remove this check

since we found that it did not affect efficiency so much.)

• RME(Fi, Tj , n) is a set of subtrees generated by RMEs
of Fi in Tj (permitted when previously expanded node to
generateFi is n).

possibly exponential number of subtrees of that sub-
tree in common. Although this test is heuristic and
conservative in that it ignores the shape and marks
of a tree, it works fine empirically.

Algorithm 4.2 is our algorithm, which we call
FREQTM. The differences from FREQT are under-
lined. Table 2 summarizes the functions used. To
make the search efficient, pruning is performed as
follows (see also Figure 3). The basic idea behind is
that if malicious(Fi) is true thenmalicious(Fk)
is alsotrue for Fk that is expanded fromFi by an



RME sincesup(Fk) ⊆ sup(Fi). This means we do
not need to enumerateFi nor any descendant ofFi.

• (P) Once|Fi| ≥ D and the malicious pairs are
registered, we stop searching further.

• (P1) If the search fromFk (expanded fromFi)
found a malicious subtree and if|sup(Fi)| =
|sup(Fk)|, we stop the search from any other
subtreeFm (expanded fromFi) since we can
prove thatmalicious(Fm) = true without ac-
tually testing it (proof omitted).

• (P2) If malicious(Fk) = true, we prune
the search fromFk. To prune even when
malicious(Fk) becomestrue as a result of
succeeding searches, we first run a search only
for detecting malicious pairs (see(PC)).

• (S) We stop searching when the occurrence
list becomes too long (larger than thresholdR)
since it causes a severe search slowdown.

Note that we use a depth-first version of FREQT as
a basis to first find the largest subtrees and to detect
malicious pairs at early points in the search. Enu-
meration of unnecessary subtrees is avoided because
the registration of subtrees is performed at the post-
order position(F). The conversion to vectors is per-
formed by assigning an ID to subtreeFi when regis-
tering it at (F) and distributing the ID to all the exam-
ples inocc(Fi). Finally,D should be large enough
to makerm sufficiently small but should not be so
large that too many feature subtrees are enumerated.

We expect that the cost of FREQTM is offset by
the faster training, especially when training on the
same data is repeatedly performed as in the tuning
of hyperparameters.

ForKr
c , we use a similar search procedure. How-

ever, the RME is modified so that all the children of
a CFG production are expanded at once. Although
the modification is not trivial, we omit the explana-
tion due to space limitations.

4.3 Feature Compression

Additionally, we use a simple but effective feature
compression technique to boost speed-up. The idea
is simple: feature subtreesFi andFj can be treated
as one featurefk, with weightW (fk) = W (Fi) +
W (Fj) if OP (Fi) = OP (Fj). This drastically re-
duces the number of features. Although this is sim-

sup = {1, 2, 3, 4}
sup = {2, 3} (2, 3) /∈ M

(1, 2) (1, 3) (2, 3)

{1, 2, 3}

{1, 2, 3}

{1, 2, 3}

{1, 3} {2, 4}

> D

� �

Figure 3: Pruning in FREQTM.

ilar to finding closed and maximal subtrees (Chi et
al., 2004), it is easy to implement since we need only
the occurrence pattern,OP (Fi), which is easily ob-
tained fromocc(Fi) in the FREQTM search.

4.4 Alternative Methods

Vishwanathan and Smola (2004) presented the
O(|T1| + |T2|) procedure that exploits suffix trees
to speed up the calculation of tree kernels. However,
it can be applied to only a few types of subtrees that
can be represented as a contiguous part in a string
representation of a tree. Therefore, neitherKr

lo nor
Kr

c can be sped up by using this procedure.
Another method is to change an inner loop, such

as(B) in Algorithm 3.1, so that it iterates only over
nodes inT2 that havel(n1). We use this as the base-
line for comparison, since we found that this is about
two times faster than the standard implementation.1

4.5 Remaining Problem

Note that the method described here cannot speed up
classification, since the converted vectors are valid
only for calculating the kernels between trees in the
training set. However, when we classify the same
trees repeatedly, we can convert the trees in the train-
ing set and the classified trees at the same time and
use the obtained vectors for classification.

5 Evaluation

We first evaluated the speed-up by our method for
the semantic role labeling (SRL) task. We then
demonstrated that the speed-up method enables a de-
tailed comparison ofKr

lo andKr
c for the SRL task.

1For Kr
c , it might be possible to speed up comparisons in

the algorithm by assigning IDs for CFG rules. We leave this for
future work since it complicates implementation.



Table 3: Conversion statistics and speed-up for semantic role A2.
Kr

lo Kr
c

size (# positive examples) 1,000 2,000 4,000 8,000 12,000 1,000 2,000 4,000 8,000 12,000
# examples 3,136 6,246 12,521 25,034 34,632 3,136 6,246 12,521 25,034 34,632

# feature subtrees (×104) 804.4 2,427.3 6,542.9 16,750.1 26,146. 5 3.473 9.009 21.867 52.179 78.440
# features (compressed) (×104) 20.7 67.3 207.2 585.9 977.0 0.580 1.437 3.426 8.128 12.001
avg. |V | (compressed) 468.0 866.5 1,517.3 2,460.5 3,278.3 10.5 14.0 17.9 23.1 25.9
rate of malicious pairsrm (%) 0.845 0.711 0.598 0.575 1.24 0.161 0.0891 0.0541 0.0370 0.0361
conversion time (sec.) 208.0 629.2 1,921.1 6,519.8 14,824.9 3.8 8.7 20.4 46.5 70.4
SVM time (DP+lookup) (sec.) 487.9 1,716.2 4,526.4 79,800.7 92,542.2 360.7 1,263.5 5,893.3 53,055.5 47,089.2
SVM time (proposed) (sec.) 17.5 68.6 186.4 1,721.7 2,531.8 4.9 25.7 119.5 982.8 699.1
speed-up factor 27.8 25.0 24.3 46.4 36.6 73.3 49.1 49.3 53.98 67.35

5.1 Setting

We used the data set provided for the CoNLL05 SRL
shared task (Carreras and Màrquez, 2005). We used
only the training part and divided it into our training,
development, and testing sets (23,899, 7,966, and
7,967 sentences, respectively). As the tree structure,
we used the output of Collins’ parser (with WSJ-
style non-terminals) provided with the data set. We
also used POS tags by inserting the nodes labeled by
POS tags above the word nodes. The average num-
ber of nodes in a tree was about 82. We ignored any
arguments (and verbs) that did not match any node
in the tree (the rate of such cases was about 3.5%).2

The words were lowercased.
We used TinySVM3 as the implementation of

SVM and added our tree kernels,Kr
lo andKr

c . We
implemented FREQTM based on the implementa-
tion of FREQT by Kudo.4 We normalized the kernel
values:K(Ti, Tj)/

√
K(Ti, Ti)×K(Tj , Tj). Note

that this normalization barely affected the training
time since we can calculateK(Ti, Ti) beforehand.

We assumed two-step labeling where we first find
the argument node and then we determine the label
by using a binary classifier for each semantic role. In
this experiment, we focused on the performance for
the classifiers in the latter step. We used the marked
labeled ordered tree that encoded the target role as
a positive example and the trees that encoded other
roles of the verb in the same sentence as negative
examples. We trained and evaluated the classifiers
using the examples generated as above.5

2This was caused by parse errors, which can be solved by us-
ing more accurate parsers, and by bracketing inconsistencies be-
tween parser outputs and SRL annotations (e.g., phrasal verbs),
many of which can be avoided by using heuristic transformers.

3http://chasen.org/˜taku/software/TinySVM
4http://chasen.org/˜taku/software/freqt
5The evaluation is slightly easier since the classifier for role

5.2 Training Speed-up

We calculated the statistics for the conversion by
FREQTM and measured the speed-up in SVM train-
ing for semantic role A2, for various numbers of
training examples. For FREQTM, we usedD = 20
andR = 20. For SVM training, we used conver-
gence tolerance0.001 (-e option in TinySVM), soft
margin costC = 1.0 × 103 (-c), maximum num-
ber of iterations105, kernel cache size 512 MB (-
m), and decay factorλ = 0.2 for the weight of
each subtree. We compared the time with our fast
method (Algorithm 4.1) with that with the DP pro-
cedure with the node lookup described in Section
4.4. Note that these two methods yield almost iden-
tical SVM models (there are very slight differences
due to the numerical computation). The time was
measured using a computer with 2.4-GHz Opterons.

Table 3 shows the results forKr
lo andKr

c . The
proposed method made the SVM training substan-
tially faster for bothKr

lo andKr
c . As we expected,

the speed-up factor did not decrease even though|V |
increased as the amount of data increased. Note
that FREQTM actually detected non-trivial mali-
cious pairs such as those from very similar sentences
in addition to trivial ones, e.g.,(i, i). FREQTM con-
version was much faster and the converted feature
vectors were much shorter forKr

c , presumably be-
causeKr

c restricts the subtrees more.
The compression technique described in Section

4.3 greatly reduced the number of features. Without
this compression, the storage requirement would be
impractical. It also boosted the speed-up. For ex-
ample, the training time withKr

lo for the size 1,000
data in Table 3 was 86.32 seconds without compres-
sion. This means that the compression boosted the

X is evaluated only on the examples generated from the sen-
tences that contain a verb that hasX as a role.
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Figure 5: Relation betweenD and conversion time,
SVM training time, andrm. Left: Kr

lo. Right:Kr
c

speed-up by a factor of more than 5.
The cost of FREQTM is much smaller than that

of SVM training with DP. Therefore, our method is
beneficial even if we train the SVM only once.

To see how our method scales to large amounts
of data, we plotted the time for the conversion and
the SVM training w.r.t. data size on a log-log scale.
As shown in Figure 4, the scaling factor was about
1.7 for the conversion time, 2.1 for SVM training
with DP, and 2.0 for the proposed SVM training for
Kr

lo. ForKr
c , the factors were about 1.3, 2.1, and

2.0, respectively. Regardless of the method, the cost
of SVM training was aboutO(L2), as reported in
the literature. Although FREQTM also has a super-
linear cost, it is smaller than that of SVM training.
Therefore, the cost of SVM training will become a
problem before the cost of FREQTM does.

As we mentioned, the choice ofD is a trade-off.
Figure 5 shows the relationships betweenD and the
time of conversion by FREQTM, the time of SVM
training using the converted vectors, and the rate of
malicious pairs,rm. We can see that the choice ofD
is more important in the case ofKlo and thatD = 20
used in our evaluation is not a bad choice.

5.3 Semantic Role Labeling

We assessed the performance ofKr
lo andKr

c for se-
mantic roles A1, A2, AM-ADV, and AM-LOC us-
ing our fast training method. We tuned soft mar-
gin costC andλ by using the development set (we

used the technique described in Section 4.5 to en-
able fast classification of the development set). We
experimented with two training set sizes (4,000 and
8,000). For eachλ (0.1, 0.15, 0.2, 0.25, and 0.30),
we tested 40 different values ofC (C ∈ [2 . . . 103]
for size 4,000 andC ∈ [0.5 . . . 103] for size 8,000),
and we evaluated the accuracy of the best setting for
the test set.6 Fast training is crucial since the per-
formance differs substantially depending on the val-
ues of these hyperparameters. Table 4 shows the re-
sults. The accuracies are shown byF1. We can see
thatKr

lo outperformedKr
c in all cases, presumably

becauseKr
c allows only too restrictive subtrees and

therefore causes data sparseness. In addition, as one
would expect, larger training sets are beneficial.

6 Discussion

The proposed speed-up method can also be applied
to labeled ordered trees (e.g., for parse selection).
However, the speed-up might be smaller since with-
out node marks the number of subtrees increases
while the DP procedure becomes simpler. On the
other hand, the FREQTM conversion for marked la-
beled ordered trees might be made faster by exploit-
ing the mark information for pruning. Although our
method is not a complete solution in a classification
setting, it might be in a clustering setting (in a sense
it is training only). However, it is an open question
whether unbalanced similarity, which is the key to
our speed-up, is ubiquitous in NLP tasks and under
what conditions our method scales better than the
SVMs or other kernel-based methods.

Several studies claim that learning using tree ker-
nels and other convolution kernels tends to overfit
and propose selecting or restricting features (Cumby
and Roth, 2003; Suzuki et al., 2004; Kudo and Mat-
sumoto, 2004). Sometimes, the classification be-
comes faster as a result (Suzuki et al., 2004; Kudo
and Matsumoto, 2004). We do not disagree with
these studies. The fact that smallλ values resulted in
the highest accuracy in our experiment implies that
too large subtrees are not so useful. However, since
this tendency depends on the task, we need to assess
the performance of full tree kernels for comparison.
In this sense, our method is of great importance.

Node relation labeling is a generalization of node
6We used106 as the maximum number of iterations.



Table 4: Comparison betweenKr
lo andKr

c .
training set size = 4,000 training set size = 8,000

best setting F1 (dev) F1 (test) best setting F1 (dev) F1 (test)

A1 Kr
lo λ = 0.2, C = 13.95 87.89 87.90 λ = 0.25, C = 8.647 89.80 89.81

Kr
c λ = 0.15, C = 3.947 85.36 85.56 λ = 0.2, C = 17.63 87.93 87.96

A2 Kr
lo λ = 0.20, C = 13.95 85.65 84.70 λ = 0.20, C = 57.82 87.94 87.26

Kr
c λ = 0.10, C = 7.788 84.79 83.51 λ = 0.15, C = 1.0× 103 87.37 86.23

AM-ADV Kr
lo λ = 0.25, C = 8.647 86.20 86.64 λ = 0.15, C = 45.60 86.91 87.01

Kr
c λ = 0.20, C = 3.344 83.58 83.72 λ = 0.20, C = 2.371 84.34 84.08

AM-LOC Kr
lo λ = 0.15, C = 20.57 91.11 92.92 N/A

Kr
c λ = 0.15, C = 13.95 89.59 91.32 AM-LOC does not have more than 4,000 positive examples.

marking where we determine the mark (tag) of a
node. Kashima and Koyanagi (2002) dealt with this
task by inserting the node representing the mark
above the node to be tagged and classifying the
transformed tree using SVMs with tree kernels such
asKlo. For the SRL task, Moschitti (2004) applied
the tree kernel (Kc) to tree fragments that are heuris-
tically extracted to reflect the role of interest. For re-
lation extraction, Culotta and Sorensen (2004) pro-
posed a tree kernel that operates on only the smallest
tree fragment including two entities for which a re-
lation is assigned. Our kernels on marked labeled
ordered trees differ in what subtrees are permitted.
Although comparisons are needed, we think our ker-
nels are intuitive and general.

There are many possible structures for which tree
kernels can be defined. Shen et al. (2003) proposed
a tree kernel for LTAG derivation trees to focus only
on linguistically meaningful structures. Culotta and
Sorensen (2004) proposed a tree kernel for depen-
dency trees. An important future task is to find suit-
able structures for each task (the SRL task in our
case). Our speed-up method will be beneficial as
long as there is unbalanced similarity.

7 Conclusion

We have presented a method for speeding up the
training with tree kernels. Using the SRL task, we
demonstrated that our speed-up method made the
training substantially faster.
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