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Abstract. Data sparseness or overfitting is a serious problem in natural language processing employ-
ing machine learning methods. This is still true even for the maximum entropy (ME) method, whose
flexible modeling capability has alleviated data sparseness more successfully than the other proba-
bilistic models in many NLP tasks. Although we usually estimate the model so that it completely
satisfies the equality constraints on feature expectations with the ME method, complete satisfaction
leads to undesirable overfitting, especially for sparse features, since the constraints derived from a
limited amount of training data are always uncertain. To control overfitting in ME estimation, we
propose the use of box-type inequality constraints, where equality can be violated up to certain pre-
defined levels that reflect this uncertainty. The derived models, inequality ME models, in effect have
regularized estimation withL1 norm penalties of bounded parameters. Most importantly, this regular-
ized estimation enables the model parameters to become sparse. This can be thought of as automatic
feature selection, which is expected to improve generalization performance further. We evaluate the
inequality ME models on text categorization datasets, and demonstrate their advantages over standard
ME estimation, similarly motivated Gaussian MAP estimation of ME models, and support vector
machines (SVMs), which are one of the state-of-the-art methods for text categorization.
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1. Introduction

The maximum entropy (ME) method has gained a great deal of popularity in the
NLP field since its introduction (Berger et al., 1996; Della Pietra et al., 1997).
Applications include virtually all existing NLP tasks such as statistical machine
translation (Berger et al., 1996), part-of-speech (POS) tagging (Ratnaparkhi, 1996),
text categorization (Nigam et al., 1999), named entity recognition (Borthwick,
1999), language modeling (Chen and Rosenfeld, 1999; Chen and Rosenfeld, 2000),
and statistical parsing (Johnson et al., 1999; Johnson and Riezler, 2000). This
popularity has been due to its powerful but robust modeling capabilities, simple
and efficient learning algorithms, and empirical evidence that has demonstrated its
advantages in various NLP tasks.

Robustness against data sparseness is the most advantageous property of ME
models over traditional probabilistic models used for NLP such as naive Bayes
models. To alleviate data sparseness, the ME method allows us to usefeatureswith
various levels of specificity, which may be overlapping (e.g., uni-grams and bi-
grams), and provides a means of estimation that can handle even these overlapping
features based on the maximum entropy principle. However, the data sparseness
problem cannot be solved completely even with the ME method. Thus, ways to
avoid it, or control overfitting, are still important research topics for ME methods.

This paper also addresses the problem of data sparseness with the ME method.
We especially focus on inappropriateness of equality constraints with the stan-
dard ME method, and propose the use ofinequality constraints. The resulting ME
model, which we call theinequality MEmodel, eventually becomes regularized
and embeds feature selection in estimation, thus having good performance in gen-
eralization. In this study, we empirically demonstrate the advantages of inequality
ME models through a text categorization task, which we consider suitable to evalu-
ate the model’s ability to alleviate data sparseness since it is a simple and standard
task in evaluating machine learning techniques and the data sparseness problem,
however, certainly exists.

1.1. PROBLEM AND EXISTING SOLUTIONS

With the ME method, an event is decomposed into features, each of which indicates
the existence and strength of a certain aspect of the event. We estimate the model by
viewing training examples through these features. Since features can be as specific
or as general as required and do not need to be independent of one another, we can
deal with the problem of data sparseness by using features of appropriate speci-
ficity (coverage). The maximum entropy principle states that estimation selects the
model that has the highest entropy from models that satisfy, for all features, the
equality constraint on the expected feature value:

Ep̃[fi]− Ep[fi] = 0. (1)
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Ep̃[fi] (empirical expectation) represents the expectation of featurefi in the train-
ing data. Empirical expectation is the only information on the training data we can
utilize for estimation.Ep[fi] (model expectation) is the expectation with respect to
the model being estimated. When estimating, we maximize the model’s entropy,
while trying to satisfy the equality constraints. This estimation is based on the idea
that the model that has the highest entropy of models that satisfy the constraints
(i.e., the model that is the closest to the uniform distribution) is probably the best
in terms of generalization performance (robustness).

However, maximum entropy estimation does not solve the data sparseness prob-
lem completely. As we will describe later, maximum entropy estimation is solved
after being transformed to the maximum likelihood estimation (MLE) of the log-
linear model. That is, the maximum entropy principle only restricts the models to
the log-linear family and the overfitting problem in the MLE of log-linear family
still exists. The problem can also be exposed from the viewpoint of constraints.
Although the constraint in Eq. 1. is reasonable since, when we have a large (infinite)
number of ideal training examples (without noise), the true model should satisfy the
constraint, it is another cause of overfitting at the same time. In practice, empirical
expectation inevitably contains uncertainty because it is calculated from limited
training data, not from infinite amounts. Thus, complete satisfaction of equality
is too strict a criterion. Complete satisfaction would be disastrous especially for
sparse features. For example, if a feature occurs zero times in the training data,
the probability of an event where the feature fires (has a non-negative value for
the event) becomes zero, and the weights of that feature will be negative infinity.
When predicting, the model will output zero probability for all input events where
that feature fires. This is a kind of zero-frequency problem. It also cause numer-
ical instability for ME estimation. To prevent this, we often omit zero-frequency
features from the model beforehand. These concerns have motivated the need for
feature selection to prevent the model from overfitting unreliable constraints.

Cut-off, which omits features that occur fewer than a predefined number of
times, is a generalization of zero-frequency omission and one of the simplest ways
of selecting features. Cut-off has been used in many applications with the ME
method as a quick-fix. However, the problem with cut-off is that it omits features
irrespective of whether low frequency is the result of data sparseness or it really
indicates that they hold strong negative clues about prediction.

Many other feature selection methods have been proposed both for general
settings (see, e.g., Yang and Pedersen (1997), for a comparative study of these
methods for text categorization) and for ME estimation (Berger et al., 1996; Della
Pietra et al., 1997; Shirai et al., 1998; McCallum, 2003; Zhou et al., 2003). They
basically order and omit (or add) features, just by observing measures for the
predictive power of features such as information gain,χ2-test values, and gain
in likelihood (Berger et al., 1996; Della Pietra et al., 1997; McCallum, 2003; Zhou
et al., 2003). The common problem with these methods is that the ordering is based
on a heuristic criterion and ignores the fact that uncertainty is already contained in
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such measures. In addition, they are hardly able to consider the interaction between
features because the features are selected sequentially. General, off-the-shelf, fea-
ture selection methods such as through information gain have another problem
in that they ignore interaction with the model or the estimation algorithm. Since
the goal is to maximize generalization performance with the model employed or
estimation algorithm, the interaction between them should be taken into account.
Although the feature selection methods for ME models (Berger et al., 1996; Della
Pietra et al., 1997; Shirai et al., 1998; McCallum, 2003; Zhou et al., 2003) have in-
teraction with the estimation algorithm, they abandon giving a complete account of
feature interaction by resorting to approximation to avoid the expensive calculation
of measures such as gain in likelihood.

Another major technique for controlling overfitting is regularized estimation,
where the objective function is modified (regularized) so that overtraining can be
avoided. The regularized approach is principled in that optimization is performed
on the modified function exactly and no approximation is assumed. Several forms
of regularization have been proposed for ME estimation such as maximuma pos-
teriori (MAP) estimation with a Gaussian prior (Gaussian MAP estimation) (Chen
and Rosenfeld, 1999; Johnson et al., 1999; Chen and Rosenfeld, 2000), the fuzzy
maximum entropy model (Lau, 1994), fat constraints (Khudanpur, 1995; Newman,
1977), and, most recently, MAP estimation with an exponential prior (Goodman,
2003; Goodman, 2004), which is very closely related to our method as we will
describe in Section 6.

Empirically, Gaussian MAP estimation has been applied most successfully and
shown to be useful in alleviating overfitting in various NLP tasks such as language
modeling (Chen and Rosenfeld, 2000), text categorization (Nigam et al., 1999),
part-of-speech tagging (Curran and Clark, 2003), shallow parsing (Sha and Pereira,
2003), and statistical parsing (Johnson et al., 1999; Johnson and Riezler, 2000).
Gaussian MAP estimation alleviates overfitting by assuming a Gaussian prior on
the parameter, which prevents excessively large or small weights. As a result, the
objective function becomes a regularized log-likelihood, where the regularization
term is the square of (weighted)L2 norm of the parameters (i.e.,−∑

i
1

2σ2
i
λ2

i ).

From the viewpoint of constraint satisfaction, Gaussian MAP estimation satisfies
relaxed equality constraints:

Ep̃[fi]− Ep[fi] =
λi

σ2
i

, (2)

whereλi is the model parameter andσ2
i is variance in the Gaussian prior. Theσ2

i

can be thought of as reflecting reliability in the expectation of featurefi. Therefore,
this approach considers unreliability of features more naturally than the feature
selection methods we mentioned earlier. However, note that feature selection and
regularization are not exactly different. They are similar in the sense that both ap-
proaches favor more simple (and therefore with high entropy) models. It is easy to
see that fewer features yield higher entropy and reguralization approaches such as
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Gaussian MAP estimation (and our inequality ME estimation) find a model that has
higher entropy than the model found by unregularized standard ME estimation. The
similarity might be understood more easily by considering that selecting features
corresponds to setting the regularization constants of Gaussian MAP estimation
(1/σ2

i ) infinitely large, since the weights for such features should be zero.1 The
difference between the existing feature selection methods and the regularized es-
timation methods lies in whether or not the uncertainty of the training data and
feature interaction can be taken into account in a principled way.

Although principled estimation in the regularization approach is appealing, omit-
ting useless features explicitly also has an advantage in terms of model sizes,
which affect the efficiency of processing and generalization performance, as many
previous studies have demonstrated. Therefore, an interesting direction to take is
clarifying whether feature selection and regularized estimation can be combined in
a way where useless features are automatically given zero weights by setting the
regularized constants appropriately according to the uncertainty of the training data
and whether such a method improves the performance over regularized estimation
without feature selection ability. The inequality ME estimation, which we present
in this paper, is one positive response to the above.

1.2. OUR APPROACH USING INEQUALITY CONSTRAINTS

Our approach is regularization estimation, which is carefully designed to result in
a kind of feature selection. Although the basic idea is to relax equality constraints
as in Gaussian MAP estimation, we employ the following box-type inequality
constraints.

−Bi ≤ Ep̃[fi]−Ep[fi] ≤ Ai

Ai > 0, Bi > 0. (3)

Here, equality can be violated by predefined widthsAi andBi. As theσi for Gaus-
sian MAP estimation,Ai andBi are suitably determined to reflect unreliability in
featurefi. These inequalities are the keys to enabling feature selection within the
regularization approach. We refer to an ME model with these inequality constraints
as aninequality MEmodel. It is an instance of the fat constraint model, and is a
particular manifestation using the fat constraint,ai ≤ Ep[fi] ≤ bi, as described by
Khudanpur (1995). However, as noted by Chen and Rosenfeld (2000), this type of
constraint has not yet been applied or evaluated since it was first suggested.

The parametric form of the inequality ME model becomes as simple as that of
the standard model, except that each feature has two parametersαi andβi, where
the first corresponds to the upper inequality constraint (≤ Ai) and the second cor-
responds to the lower inequality constraint (−Bi ≤). Training is also as simple as

1 Of course, this scenario is fictional since we should know what features are omitted using some
other ways.
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that for Gaussian MAP estimation. The objective function to estimate the inequal-
ity ME model also becomes a regularized log-likelihood, where the regularized
term is the (weighed)L1 norm of the parameters (i.e.,−∑

i Aiαi −
∑

i Biβi).
However, the parameters are bounded, i.e.,αi, βi ≥ 0 and algorithms that support
such bounded parameters are required. The extra computational cost is acceptable,
although there is actually extra cost since the number of the parameters are doubled
and the bounded optimization will be more difficult. As we will describe later, this
model corresponds to using an exponential prior in MAP estimation (Goodman,
2003; Goodman, 2004).

The inequality ME model differs from Gaussian MAP estimation in that, as
a result of using inequality constraints, the solution becomes sparse (i.e., many
parameters become zero) by setting constraint widthsAi and Bi appropriately.
As we demonstrate in the experiments, broader widths give a sparser solution.
Features with a zero parameter could be removed from the model without changing
its predictive behavior. Thus, the inequality ME model can be considered to embed
feature selection in its estimation. Note that this feature selection is completely
different from Gaussian MAP estimation with an infinitely large regularization
constant (i.e., zero variance), which we mentioned earlier as a fictional scenario.
This inequality ME estimation gives an exactly zero weight event ifAi andBi are
not infinite unless the equality violation is maximal (see Section 3 for details). That
is, inequality ME estimation favors zero weights much more than Gaussian MAP
estimation.

This embedded feature selection was inspired by the derivation of support vec-
tor machines (SVMs) (Vapnik, 1995), where sparse solutions (called support vec-
tors) are the result of inequality constraints in the problem definitions.2 A sparse
solution is recognized as an important concept in explaining state-of-the-art robust-
ness in SVMs. We believe that the sparse solution also improves the robustness of
the ME model. In fact, we demonstrate through experiments that the inequality ME
model outperforms the standard ME model.

This paper also presents an extension of the inequality ME model, where con-
straint widths can move by using slack variables. If we penalize slack variables by
the square of theirL2 norm (2-norm extension), we obtain a natural integration of
inequality ME estimation and Gaussian MAP estimation. While it adds quadratic
stabilization of parameters as in Gaussian MAP estimation, the sparseness of the
solution is preserved. We also show that we obtain a inequality ME model where
the parameters are bounded from above as well as from below when we penalize
the slack variables by theirL1 norm (1-norm extension).

We evaluated inequality ME models empirically, using two text categorization
datasets. The comparison in this study mainly focuses on how inequality ME es-
timation, which embeds feature selection, outperforms Gaussian MAP estimation,

2 We do not claim here that the solution to the SVM always becomes sparse. However, it is true
that the solution to the SVM becomes very sparse for many NLP tasks.
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which does not. Thus, comparisons with other feature selection methods have been
omitted. The experimental results revealed that the inequality ME models outper-
formed standard ME estimation and Gaussian MAP estimation. We also found that
such high accuracies can be achieved with a fairly small number of active features,
indicating that a sparse solution can effectively enhance performance. The 2-norm
extended model was more robust in several situations. We also compared inequality
ME models with SVMs, which have recently been thought of as state-of-the-art in
many respects for NLP applications. We found that, at least in our experiments
on text categorization, inequality ME models outperformed SVMs with a polyno-
mial kernel and an RBF kernel, while the SVMs achieved higher accuracies than
standard ME estimation or Gaussian MAP estimation.

The rest of the paper is organized as follows. Section 2 describes the maxi-
mum entropy model and its extension using Gaussian MAP estimation. Then, we
describe the inequality ME model in Section 3. Extensions to the inequality ME
method are described in Section 5. Section 4 discusses methods of determining the
width of inequality constraints. Experiments on text categorization are described
in Section 7. We conclude the paper with a discussion and outline plans for future
work.

2. Preliminaries

In this section, we describe a conditional ME model (Berger et al., 1996) and its
extension using MAP estimation with a Gaussian prior (Chen and Rosenfeld, 1999;
Johnson et al., 1999; Chen and Rosenfeld, 2000) to make the later explanation of
inequality models easier and more self-contained. Although our explanation uses
a conditional model throughout the paper, discussions such as the derivation of
inequality ME models can easily be applied to the case of a joint model.

2.1. MAXIMUM ENTROPY MODEL

Assume that our aim is to estimate the relation betweenx (input) andy (output)
as a probabilistic modelp(y|x) from the training examples{(xk, yk)}L

k=1. For text
categorization,x represents a document andy represents a category label (or +1/-1
labels that indicates whether the document belong to a certain category or not). In
ME estimation, we define a set of feature functionsF = {fi(x, y)} to model an
event(x, y)∈X×Y. Eachfi(x, y) indicates a certain aspect of the event(x, y) and
its strength through a non-negative value (i.e.,fi(x, y)≥ 0). ME estimation finds
the model with the highest entropy from models that satisfy the equality between
empirical expectation and model expectation, which are defined as follows.

Ep̃[fi] =
∑
x

p̃(x)
∑
y

p̃(y|x)fi(x, y) (empirical expectation) and (4)
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Ep[fi] =
∑
x

p̃(x)
∑
y

p(y|x)fi(x, y) (model expectation). (5)

Empirical expectation is the expectation of the value of a feature in the training
data, and model expectation is expectation by the model being estimated.p̃(x) and
p̃(y|x) are called empirical distributions and calculated as follows

p̃(x) = c(x)/L,

p̃(y|x) = c(x, y)/c(x).

L is the number of training examples, andc(x) indicates the number of timesx
occurs in the training data.

Then, ME estimation is formulated as the following optimization problem.

maximize
p(y|x)

H(p) = −
∑
x

p̃(x)
∑
y

p(y|x) log p(y|x)

subject to Ep̃[fi]− Ep[fi] = 0 1 ≤ i ≤ F,∑
y

p(y|x)− 1 = 0 for all x. (6)

We do not solve the above primal optimization problem directly. Instead, we de-
rive an easier unconstrained dual optimization problem with the Lagrange method,
where we find thatp(y|x) has a so-called “log-linear” parametric form:

pλ(y|x) =
1

Z(x)
exp(

∑

i

λifi(x, y)) λi ∈ IR (7)

Z(x) =
∑
y

exp(
∑

i

λifi(x, y))

Parameterλi is the Lagrange multiplier corresponding to the equality constraint
for fi.

The dual objective function becomes:

L(λ) =
∑
x

p̃(x)
∑
y

p̃(y|x)
∑

i

λifi(x, y) (8)

−
∑
x

p̃(x) log
∑
y

exp(
∑

i

λifi(x, y)).

Therefore, ME estimation becomes the maximization for thisL(λ). It can be shown
that this is equivalent to the maximization of log-likelihood, which we define here
as:

LL(λ) = log
∏
x,y

pλ(y|x)p̃(x)p̃(y|x)

The maximization of log-likelihood can easily be solved by using reasonable
optimization algorithms since the log-likelihood is a concave function. For ME

kazama_journal_ml_ieq.tex; 16/06/2005; 14:53; p.8



9

estimation, some specialized iterative algorithms such as the GIS algorithm (Dar-
roch and Ratcliff, 1972) and the IIS algorithm (Della Pietra et al., 1997) have been
applied. In addition, general-purpose gradient-based algorithms can be applied. Re-
cently, Malouf (2002) compared several algorithms to estimate ME models includ-
ing GIS, IIS, and gradient-based methods, and showed that the limited-memory
variable metric (LMVM) (also known as L-BFGS), a quasi-Newton method that
requires only limited memory size, converges much faster than other methods for
NLP datasets.3

Our preliminary experiments also revealed that LMVM converges faster for
our text categorization datasets. Because of this faster convergence, we could also
achieve improved accuracy compared with GIS or IIS since we can achieve a so-
lution that is much closer to the true optimum with the same computational cost.
Therefore, we used LMVM to estimate the ME models that were to be compared
with the inequality models. As we will describe later, we employed a variant of
LMVM called BLMVM (Benson and Moŕe, 2001) to estimate the inequality ME
models. This is because it supports the bounded parameters required in estimating
inequality models, which cannot be handled by standard GIS or IIS.

LMVM (and BLMVM) only requires the function value and the gradient at a
given point to perform optimization. Thus, we now only need to state the gradient
of the objective function to specify the estimation.

The gradient of the objective function in Eq. 8 is computed as:

∂L(λ)
∂λi

= Ep̃[fi]− Ep[fi]. (9)

We can see that the original constraintEp̃[fi]−Ep[fi] = 0 will certainly be satisfied
at the optimal point.

2.2. GAUSSIAN MAP ESTIMATION

In Gaussian MAP estimation (Chen and Rosenfeld, 1999; Johnson et al., 1999;
Chen and Rosenfeld, 2000), we maximize the posterior probability of parameters
given the training data instead of the likelihood of the training data, assuming that
the prior distribution for the parameter of the log-linear model (Eq. 7) is Gaussian
centered around zero with varianceσ2

i . In this case, posterior probability can be
represented as:

pposterior(λ|D) ≈ p(D|λ)× pprior(λ)

≈
∏
x,y

pλ(y|x)p̃(x,y) ×
∏

i

1√
2πσ2

i

exp(− λ2
i

2σ2
i

).

3 Minka (2001) also compared iterative scaling methods and gradient-based methods for logistic
regression, which is very similar to ME estimation, and demonstrated the advantage of gradient-based
methods.
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Taking the logarithm of the above and ignoring the constant terms, the objective
function becomes the regularized log-likelihood:

L(λ) = LL(λ)−
∑

i

(
1

2σ2
i

)λ2
i . (10)

The gradient becomes:

∂L(λ)
∂λi

= Ep̃[fi]−Ep[fi]− λi

σ2
i

. (11)

At the optimal point,Ep̃[fi]−Ep[fi]− λi

σ2
i

= 0. Therefore, Gaussian MAP estima-

tion can also be considered as relaxing equality constraints.

3. Inequality ME Model

We will now describe the ME method with box-type inequality constraints (Eq. 3).
The derivation of the parametric form and the dual objective function is similar to
that of the standard ME method. After we define the primal optimization problem,
we use the Lagrange method.

Maximum entropy estimation with box-type inequality constraints (Eq. 3) can
be formulated as the following optimization problem:

maximize
p(y|x)

H(p) = −
∑
x

p̃(x)
∑
y

p(y|x) log p(y|x), (12)

subject to Ep̃[fi]− Ep[fi]−Ai ≤ 0 (upper constraints), and (13)

Ep[fi]− Ep̃[fi]−Bi ≤ 0 (lower constraints). (14)

The box-type inequality constraints are reasonable in the following sense. First, if
we letAi, Bi → 0, the problem is as close as standard ME estimation. Second, if
standard ME estimation has a solution, inequality ME estimation will also have
a solution, since the feasible region – the region where all the constraints are
satisfied – is not empty because, if equality constraints are satisfied, the inequality
constraints are also satisfied.

By using the Lagrange method for optimization problems with inequality con-
straints, the following parametric form is derived (see Appendix A for details on
derivation).

pα,β(y|x) =
1

Z(x)
exp(

∑

i

(αi − βi)fi(x, y)),

αi ≥ 0, βi ≥ 0, (15)

whereαi andβi are the Lagrange multipliers (αi corresponds to the upper inequal-
ity constraint (Eq. 13) andβi corresponds to the lower inequality constraint (Eq.

kazama_journal_ml_ieq.tex; 16/06/2005; 14:53; p.10



11

14)). Note that although each parameter must not be negative,αi − βi can be any
real value (as we will describe below,αi = 0 whenβi > 0 andβi = 0 when
αi > 0). Thus, we can interpret thatαi is responsible for the positive importance
of the feature whileβi is responsible for the negative. Although there are two
parameters per feature, we can view the above model as a standard ME model
by considering it asλi = αi − βi once the parameters are estimated. However,
estimation is affected by the fact that there are two bounded parameters.

The dual objective function becomes:

L(α, β) = −
∑
x

p̃(x) log
∑
y

exp(
∑

i

(αi − βi)fi(x, y))

+
∑
x

p̃(x)
∑
y

p̃(y|x)
∑

i

(αi − βi)fi(x, y)

−
∑

i

αiAi −
∑

i

βiBi. (16)

Then, the estimation is formulated as:

maximize
αi≥0,βi≥0

L(α, β). (17)

Unlike the optimization in standard ME estimation, we now have bound constraints
on parameters that state that they must be non-negative. In addition, maximizing
L(α,β) is no longer equivalent to maximizing log-likelihood, which is defined
here as:

LL(α, β) = log
∏
x,y

pα,β(y|x)p̃(x,y).

Instead, we maximize:

LL(α, β)−
∑

i

αiAi −
∑

i

βiBi. (18)

The significant difference between inequality ME estimation and Gaussian MAP
estimation is that the parameters are stabilized linearly in the inequality ME model
(by penalty term−∑

i αiAi −
∑

i βiBi as in Eq. 18), while they are stabilized
quadratically in Gaussian MAP estimation (by penalty term−∑

i(1/2σ2
i )λ

2
i as in

Eq. 10). In this sense, inequality ME estimation penalizes large weights less and
penalizes small weights more than Gaussian MAP estimation.

Since the objective function is still concave, we can use gradient-based opti-
mization methods to solve this dual problem if they support bounded parameters.
In this study, we used the BLMVM algorithm (Benson and Moré, 2001), a variant
of the limited-memory variable metric (LMVM) algorithm, which supports bound
constraints.4

4 Although we have only considered gradient-based methods for reasons of efficiency, extensions
of GIS or IIS to support bounded parameters are also possible (Goodman, 2003; Goodman, 2004).
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The gradient of the objective function in Eq. 16 is:

∂L(α, β)
∂αi

= Ep̃[fi]−Ep[fi]−Ai

∂L(α, β)
∂βi

= Ep[fi]−Ep̃[fi]−Bi. (19)

3.1. SOLUTION SPARSENESS

The existence of a sparse solution is predicted from the conditions in the Lagrange
method with inequality constraints. The Karush-Kuhn-Tucker (KKT) conditions
state that, at the optimal point (i.e., after training),

αi(Ep̃[fi]− Ep[fi]−Ai) = 0 and (20)

βi(Ep[fi]−Ep̃[fi]−Bi) = 0. (21)

These conditions mean that the equality constraint is maximally violated (i.e.,
Ep̃[fi] − Ep[fi] = Ai or − Bi) when the parameter is non-zero, but, on the
other hand, the parameter must be zero when the violation is strictly less than the
width (i.e.,−Bi < Ep̃[fi] − Ep[fi] < Ai). Then, a feature after training can be
classified as one of the following cases.

1. αi >0 andβi = 0 (upper active),

2. αi = 0 andβi >0 (lower active), or

3. αi = 0 andβi = 0 (inactive).

Whenαi − βi 6= 0 (i.e., cases 1 and 2), we say that the feature isactive.5 Only
active features have an impact on the model’s behavior. Inactive features can be
removed from the model without changing its behavior. The case forαi > 0 and
βi >0 is excluded since it is theoretically impossible because of definitionsAi >0
andBi >0.

The sparse solution results from the existence of case 3. If many features fall
into case 3 as a result of optimization, we say that the solution is sparse. There is a
basic relation between widths and solution sparseness: the solution becomes more
sparse as the widths increase. Figure 1 illustrates this in a very simplified way. As
we can see from the figure, when the widths are sufficiently narrow, the feasible
region does not contain the point at which entropy achieves the global maximum.
Thus, the distribution selected by the optimization (indicated by X in the figure)

5 The term ‘active’ may be confusing since in the ME literature, a feature is sometimes called
active whenfi(x, y) > 0. However, we use the term ’active’ to denote that a parameter value is non-
zero, following the terminology in constrained optimization. For denoting the casefi(x, y) > 0, we
use another term ’firing’, which is used in several previous studies.
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Figure 1. The triangular plane represents
∑

y
p(y|x)−1=0 for a certainx. The entropy varies on

this plane concavely with the maximum at the center marked ‘+’. The shaded region represents the
feasible region for each case. The left-most case is the standard ME model (equality constraints); the
middle is the inequality model with narrow widths; the right-most case is the inequality model with
broad widths. The point marked ‘x’ indicates the estimated point.

will be on the edge of the feasible region (i.e.,Ep̃[fi] − Ep[fi] = Ai or − Bi).
This means that the feature is active. When the widths are broad enough on the
other hand, the feasible region might contain the global maximum entropy point.
In this case, the chosen distribution is the global maximum entropy point itself.
This means that the feature is inactive. As the widthsAi andBi determine the
width of the feasible region, it can be said that the broader the widths, the larger
this feasible region is. The empirical relation between the widths and the sparseness
of the solution will be demonstrated in the experiment.

Although there is this tendency, Fig. 1 also suggests that solution sparseness
is also affected by the distance between the global maximum entropy point and
the feasible region. In addition, although it seems simple to predict the activity
of a feature when we have only one feature as in Fig. 1, the interaction between
features complicates the matter. That is, there are cases where a feature that is
active if it is alone becomes inactive when another feature is included in the model
(and vice versa). There are also cases where a feature that is upper active alone be-
comes lower active with another feature (and vice versa). This feature interaction,
however, is the reason for our devising inequality ME estimation. If the activity
of features is determined independently beforehand, there is no need for running
inequality ME estimation in terms of selecting features. However, the fact is that
we have many interacting features in a model and the interactions between them
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should be solved by inequality ME estimation. Solution sparseness is a result of
optimization (Eq. 17), which considers all these factors.

However, note that a feature with zero empirical expectations (zero count) must
be lower active if it is active, regardless of feature interaction. BecauseEp[fi] ≥ 0
(sincefi(x, y) ≥ 0) andAi >0, it is impossible to satisfy upper equalityEp̃[fi]−
Ep[fi]−Ai = 0 whenEp̃[fi] = 0. Thus, a feature with zero empirical expectation
cannot be upper active. Lower equality, on the other hand, can be satisfied even if
empirical expectation is zero. This is similar to Gaussian MAP estimation, where
the weights for zero-count features must be zero or negative, as implied by the
relation in Eq. 2.

4. Calculation of constraint width

This section describes how to determine constraint widths,Ai andBi. Because our
aim was to improve the generalization performance of the model, one straightfor-
ward way was cross-validation or development-set testing that estimate the best
widths empirically. However, it is computationally impossible to do such tests for
all combinations of possible widths. Therefore, we sought methods that determine
the widths in a principled way with a few control parameters, for which finding
the best values through development-set testing gives the widths close to the ideal
ones. It is reasonable to think that the widths,Ai andBi, are widened depending
on the unreliability of the feature, because we can expect that unreliable features
will become increasingly more inactive, and this will improve generalization per-
formance. In this paper, we examine two methods that fulfill this expectation with
a few (or one) control parameters.

4.1. SINGLE WIDTH

The first is to use a common width for all features, which is calculated with the
following formula.

Ai = Bi = W × 1
L

, (22)

whereW is a constantwidth factor to control the widths, andL is the number
of training examples. This method takes the reliability of training examples as a
whole into account, and is calledsingle. Note that although we can use different
widths forAi andBi, we have restricted ourselves throughout the paper to using
the same width for upper and lower inequality (i.e.,Ai = Bi).

4.2. BAYESIAN WIDTH

The second, which we callbayes, is a method that determines widths based on a
Bayesian framework that provides different widths for each feature based on their
reliabilities.
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The reasoning behindbayesis as follows. For many NLP applications including
text categorization, we use features with the following form.

fi,j(x, y) = hi(x) if y = yj , 0 otherwise. (23)

Even if two features have the same empirical expectation (count), the meaning dif-
fers depending on the frequency of the historyhi(x). For example,hi(x) typically
represents the occurrence of wordwi in text categorization. If the frequency of
the word is low, then the reliability of the corresponding feature will also be low.
However, if the frequency of the word is high and the frequency of the feature is
low, the feature is reliably having a negative importance.

To calculate widths that increase when the frequency of the history decreases,
we use Bayesian estimation here. If we assume approximation,p̃(y|x)≈ p̃(y|hi(x)>
0), the empirical expectation can be interpreted as follows.6

Ep̃[fi,j ]=
∑

x: hi(x)>0

p̃(x)p̃(y = yj |hi(x)>0)hi(x). (24)

Here, the source of unreliability is̃p(y|hi(x)>0). We consider̃p(y = yj |hi(x)>
0) to be parameterθ for Bernoulli trials. That is,p(y = yj |hi(x) > 0) = θi,j and
p(y 6= yj |hi(x) > 0) = 1 − θi,j . We estimate the posterior distribution ofθ from
the training examples by Bayesian estimation and utilize variance to calculate the
width. With uniform distribution as a prior,k times out ofn trials give the posterior
distribution:p(θ) = Be(1+k, 1+n−k), whereBe(α, β) is thebetadistribution.
The variance is calculated as follows.

V [θ] = (1+k)(1+n−k)
(2+n)2(n+3)

. (25)

Letting k = c(fi,j(x, y) > 0) and n = c(hi(x) > 0), we obtain fine-grained
variances narrowed according toc(hi(x) > 0). Assuming the independence of
training examples, the variance in empirical expectation can be calculated as:

V [Ep̃[fi,j ]] =


 ∑

x: hi(x)>0

{p̃(x)hi(x)}2


 V [θi,j ]. (26)

We then calculate the widths as follows.

Ai = Bi = W ×
√

V [Ep̃[fi,j ]]. (27)

As with thesinglemethod,W is the only control parameter.

6 This is only to estimate unreliability, and is not used to calculate actual empirical expectations
used in constraints.
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5. Soft Width Extensions

This section presents extensions of the inequality ME model, which we callsoft-
widthextensions. The soft-width extension allows the widths to move asAi+δi and
−Bi − γi using slack variables, but with some penalties in the objective function.
This soft-width extension is analogous to the soft-margin extension for SVMs, and
in fact, the mathematical derivation is similar.7 If we penalize the slack variables
by the square of theirL2 norm, we obtain a natural combination of the inequality
ME model and Gaussian MAP estimation. We refer to this extension, using the
L2 penalty, as the2-norm inequality MEmodel. As Gaussian MAP estimation
has been shown to be successful in several NLP tasks, it should be interesting
empirically as well as theoretically to integrate Gaussian MAP estimation into
inequality ME estimation. In addition to the 2-norm extension, we can see what
happens when we penalize the slack variables by theirL1 norm (1-norm inequality
ME model) as in 1-norm soft-margin extension for SVMs.

5.1. 2-NORM PENALTY EXTENSION

Our 2-norm extension to the inequality ME model is formulated as follows.

maximize
p(y|x),δ,γ

H(p)− C1

∑

i

δi
2 − C2

∑

i

γ2
i ,

subject to Ep̃[fi]−Ep[fi]−Ai ≤ δi and (28)

Ep[fi]−Ep̃[fi]−Bi ≤ γi, (29)

whereC1(>0) andC2(>0) are the penalty constants.8 9

This formulation can be viewed as an extension inspired by the 2-norm soft-
margin extension of SVM. At the same time, it can be seen as an extension in-
spired by Gaussian MAP estimation. As Chen and Rosenfeld (2000) pointed out,
Gaussian MAP estimation can be viewed as a fuzzy ME model, whose primal
formulation is:

maximize
p(y|x),δ

H(p)−
∑

i

σ2
i

2
δ2
i

subject to Ep̃[fi]− Ep[fi] = δi (30)

Thus, we can notice a similarity between this 2-norm ME estimation and Gaussian
MAP estimation in that the slack variables are penalized by the square of theirL2

norm.
7 See, for example, Cristianini and Shawe-Taylor (2000) for soft-margin SVMs.
8 AlthoughC1 andC2 can differ for eachi, we will present them here as they are common for all

i.
9 We do not need to explicitly specify the bounds forδi andγi such asδi > 0, since in the course

of applying the Lagrange method, we find thatδi = αi
2C1

andγi = βi
2C2

, andδi, γi≥0 automatically
follows fromαi, βi≥0 andC1, C2 >0.
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The parametric form of 2-norm extension is identical to the inequality ME
model (Eq. 15). However, the dual objective function becomes:

LL(α, β)−
∑

i

(
αiAi +

α2
i

4C1

)
−

∑

i

(
βiBi +

β2
i

4C2

)
. (31)

Accordingly, the gradient becomes:

∂L(α,β)
∂αi

= Ep̃[fi]− Ep[fi]−
(

Ai +
αi

2C1

)
,

∂L(α,β)
∂βi

= Ep[fi]− Ep̃[fi]−
(

Bi +
βi

2C2

)
. (32)

We can see that this model is a natural combination of the inequality ME model
and Gaussian MAP estimation. It is important to note that the possibility of a sparse
solution is preserved in the 2-norm extension above because of inequalities in the
constraints.

5.2. 1-NORM PENALTY EXTENSION

It is also possible to impose 1-norm penalties in the objective function, as in the
1-norm soft-margin extension of SVM (Cristianini and Shawe-Taylor, 2000). If we
impose 1-norm penalties, we obtain the following optimization problem.

maximize
p(y|x),δ,γ

H(p)− C1

∑

i

δi − C2

∑

i

γi,

subject to Ep̃[fi]−Ep[fi]−Ai ≤ δi (δi > 0), and

Ep[fi]−Ep̃[fi]−Bi ≤ γi (γi > 0).

The parametric form and dual objective function for this optimization problem are
identical to those of the inequality ME model, except that the parameters are also
upper-bounded as0 ≤ αi ≤ C1 and0 ≤ βi ≤ C2. That is, excessive parameters
are explicitly prevented by the bounds. We will not evaluate this 1-norm extension
in the experiments and leave this for future research.

6. Related Work

Our work is not the first that has applied inequality constraints for ME estimation.
As we previously mentioned, Khudanpur (1995) suggested inequality constraints
ai ≤ Ep[fi] ≤ bi and showed that standard iterative scaling such as GIS and IIS
cannot be used to train the ME models derived from these inequality constraints.
Newman (1977) presented an ME model with inequality constraints with the form∑

i Wi(Ep̃[fi] − Ep[fi])2 ≤ σ2, for spectral analysis. However, this model is for
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continuous distributions, and there is only one constraint (i.e., constraints are not
for each feature) and weightsWi instead seem to work as theλi of standard ME
models. It is unclear how to apply this model to NLP tasks, where discrete distribu-
tions are used. Fang et al. (1997) contains more general definitions and references
to ME estimation using inequality constraints. However, as Chen and Rosenfeld
(2000) noted, ME estimation using inequality constraints has not been applied or
evaluated for NLP.

We recently noted that Goodman (2003) and (2004) derived an ME model,
which is very closely related to our inequality ME model. Goodman used an expo-
nential prior, which is written as follows, instead of a Gaussian prior.

p(λi) = ai exp(−aiλi) (nonzero only forλi > 0)

He proposed the use of an exponential prior from an observation of the actual
distributions of parameters, which indicated that the Gaussian is not necessarily
the best prior. With an exponential prior, the objective function becomes:L(λ) =
LL(λ)−∑

i aiλi. The model has the bounds of parameters:λi >0. He also noted
that an exponential prior favors zero parameters, which is not the case with the
Gaussian prior. Therefore, it is clear that Goodman’s exponential prior model is
almost the same as our inequality ME model. However, there are slight differ-
ences and these are as follows. First, his model has only upper active features.
That is, Goodman’s model is equivalent to our inequality ME model where the
lower constraints (Eq. 14) are not imposed at all. This one-sided model might have
an advantage in terms of training speed since it does not double the number of
parameters, achieving the desired improvement in accuracy. However, as Good-
man himself pointed out, this one-sided model discards some information when
negative weights are appropriate.10 In the discussion on estimation cost, we will
briefly compare the benefit of one-sided and double-sided inequality ME models.
Second, the boundsλi > 0 are rather artificial in Goodman’s model, while they
were given a natural interpretation as the consequence of inequality constraints in
our model. In addition, his training algorithm is a variant of GIS modified to sup-
port the parameter bounds (λi > 0). However, GIS is no longer state-of-the-art in
estimating ME models. Although he pointed out difficulties with the gradient-based
method, our experiments revealed that BLMVM estimates inequality models very
well. Last, he did not focus much on solution sparseness and did not demonstrate
how sparse his model actually becomes. Although solution sparseness is not the
direct purpose of study, and depends on the task, how sparse the solution becomes
is of considerable interest since it indicates the essential number of features for
that task. Our experiments show that for the text categorization task, many features
become inactive when generalization performance is maximized. Despite these
differences, his study reveals the relation between our inequality ME models and
MAP estimation.

10 Though actual experimental results are not presented, Goodman (2004) mentions the advantage
of a double-sided model the same as ours.
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7. Experiments

This section describes a series of experiments that demonstrate the properties and
advantages of inequality ME models. The experiments were conducted using the
text categorization task.

7.1. EXPERIMENTAL SETTING

We used the “Reuters-21578, Distribution 1.0” dataset and the “OHSUMED” dataset
for the experiments.

The Reuters dataset developed by David D. Lewis is a collection of labeled
newswire articles.11 We adopted “ModApte” split to divide the collection into train-
ing and test sets. We obtained 7,048 documents for training, and 2,991 documents
for testing. We further divided the test set into another two sets. The first half (1,496
documents) was used as the development set to tune the control parameters, and the
second half (1,495 documents) was left for the final evaluation using tuned control
parameters. We used 112 “TOPICS” that actually occurred in the training set as the
target categories.

The OHSUMED dataset (Hersh et al., 1994) is a collection of clinical paper
abstracts from the MEDLINE database. Each abstract is manually assigned MeSH
terms. We simplified a MeSH term, like “A/B/C 7→ A”, so that the major part of
the MeSH term would be used as a target category. We considered 100 such simpli-
fied terms that occurred most frequently in the training set as the target categories.
We extracted 9,947 abstracts for training, and 9,948 abstracts for testing from the
file “ohsumed.91” in the OHSUMED collection. We further divided the test set into
a development set (4,974 documents) and an evaluation set (4,974 documents), as
we did for the Reuters collection.

After the stop words had been removed and all the words had been downcased
(no stemming was performed), documents were converted to bag-of-words vectors
with TFIDF values (Salton and Buckley, 1988), which are well-used representa-
tions for text categorization. TFIDF is a product ofterm frequency(TF (wi)),
which is the number of times wordwi occurs in the document andinverse document
frequency(IDF (wi)), which is calculated as

IDF (wi) = log
|D|

number of documents wherewi occurs
,

where D denotes all the documents considered. The idea behind IDF is that a word
that rarely occurs is potentially important, and the usefulness of TFIDF has been
proved in many IR-related tasks, including text categorization. The IDF value was

11 Available from http://www.daviddlewis.com/resources/
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calculated using the training set.12 Then the document vector was normalized by
theL1 norm so that the sum of all elements became 1.

Since the text categorization task requires that multiple categories be assigned
if appropriate, we constructed a binary categorizerpc(y| d) for each categoryc,
wherey ∈ {+1,−1} (+1 means that categoryc should be assigned for document
d, and−1 that it should not). Ifpc(+1|d) is greater than0.5, categoryc is assigned.
To construct a conditional maximum entropy model, we used the feature functions
with the form in Eq. 23, wherehi(d) returns the TFIDF value of thei-th word of the
document vector. Note that, when we considered bothf+1,i(y, d) andf−1,i(y, d)
for all hi(d) that occurred at least once in the training set, the average number of
features in a categorizer (averaged over all categories) became 63,150.0 for the
Reuters dataset, and 116,452.0 for the OHSUMED dataset. These numbers are
the same when the cut-off threshold is zero with the cut-off method, and we will
compare these with the number of active features in the inequality models later.

We implemented the estimation algorithms by extending an ME estimation tool,
Amis.13

As we discussed, we used LMVM to estimate the standard ME models. We also
used it to estimate the Gaussian MAP models. The only difference is in the gradi-
ent we gave to the LMVM module. The gradient in Eq. 9 was used for standard
ME models, and the gradient in Eq. 19 was used for Gaussian MAP models. For
inequality ME estimation, in addition to setting the parameter boundsαi, βi ≥ 0
for the BLMVM module, we added a hook that checks the KKT conditions af-
ter the normal convergence test. Specifically, we examine whether the following
conditions hold for all features.

Ep̃[fi]−Ep[fi]−Ai

Ai
≤ T if αi = 0,

|Ep̃[fi]−Ep[fi]−Ai|
Ai

≤ T if αi > 0,

Ep[fi]−Ep̃[fi]−Bi

Bi
≤ T if βi = 0,

|Ep[fi]−Ep̃[fi]−Bi|
Bi

≤ T if βi > 0,

whereT is the tolerance for the KKT checks.
LMVM and BLMVM are provided in the Toolkit for Advanced Optimization

(TAO) (Benson et al., 2002), which is well established and was also used by Malouf
(2002). By using algorithms in the same family implemented in the same code
base, we could compare the inequality ME model with the standard and Gaus-
sian ME models on an even basis. Comparison also has a practical value because
each model’s accuracy will be the highest possible with the existing optimization
algorithms for ME estimation.

The tolerance for the normal convergence test (relative improvement in the
objective function value) and the KKT check was10−4. Although we noted that

12 For the OHSUMED dataset, we in fact extracted 30,000 documents for training, and the first
10,000 documents were used to construct the actual 9,947 training documents. The IDF value was
calculated using these 30,000 documents for the OHSUMED dataset.

13 Developed by Yusuke Miyao to support various ME models such
as the Feature Forest model (Miyao and Tsujii, 2002). Available at
http://www-tsujii.is.s.u-tokyo.ac.jp/˜yusuke/amis
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a feature cannot be upper and lower active at the same time theoretically, this
is not exactly achieved because we performed numerical optimization. In actual
implementation, we set a small tolerance for the existence of features that were
upper and lower active at the same time. That is, we stopped the training if the
KKT check failed many times and the ratio of ‘bad’ (upper and lower active at the
same time) features in active features was lower than 0.01.

7.2. COMPARISON WITH STANDARD AND GAUSSIAN MAP ME ESTIMATION

We first compared inequality ME models (with no cut-off) with standard ME mod-
els and Gaussian MAP ME models (both with cut-off) to demonstrate the properties
and advantages of inequality ME models. We compared the following models:

− ME models only with cut-off (cut-off)

− ME models with cut-off and Gaussian MAP estimation (gaussian)

− Inequality ME models (ineq)

− Inequality ME models with 2-norm extension (2-norm)14

We compared the two methods to determine the widths,singleandbayes, for the
inequality ME models, as described in Section 4.

To test practical generalization performance, we first found the best values for
the control parameters, using the development set, and then observed how these
values worked in the evaluation set. That is, how good control parameters can be
discovered is part of the performance of the model. Throughout the experiments,
performance was assessed by micro-averaged recall, precision, and F-score, which
are widely used for the text categorization task. LettingCorc be the number of
documents where the system assigned categoryc correctly,Stdc be the number of
documents wherec should be assigned according to the correct labeling, andSysc

be the number of documents where the system assignedc, these measures could be
defined as follows.

Recall =
∑

c Corc∑
c Stdc

, P recision =
∑

c Corc∑
c Sysc

, F =
2Recall × Precision

Recall + Precision

We considered the value with which the micro-averaged F-score marked the
highest value for the development set as the best value for the control parameter.
We searched for the best control parameter by exhaustively testing several values
within a given range.15 Note that we considered the values of the control param-
eters were the same over all categories to simplify the experiments. Therefore,

14 Here, we fixed penalty constants asC1 = C2 = 1016.
15 We tested at least 40 values within a range by automatically choosing the test points so that the

resulting graph would become smooth. When there was a region where the curve was not smooth
enough, we added experiments to smooth the region.
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Figure 2. Bestcthr andσ combinations for Gaussian MAP estimation.

the accuracies can be higher than those reported in our experiments if the control
parameters are optimized for each category independently.

The control parameter forcut-off is the count thresholdcthr. Features that
occurred≥ cthr times in the training set were included in the model. We tested
cthr: 0, 1, 2,. . ., 10, 12, 15, 20, 30, 40, 50, 60,. . ., and found thatcthr=2 was the
best for the Reuters dataset, andcthr=0 was the best for the OHSUMED dataset.

The control parameters for thegaussianwerecthr andσ of a Gaussian prior.
Although we can use a differentσi for each feature in Gaussian MAP estimation,
we used common varianceσ for the gaussian. Thus, thegaussianroughly cor-
responds tosingle in the way it deals with unreliability of features. We variedσ
within the range for eachcthr. Figure 2 plots the results of searching for the best
cthr andσ. We found thatcthr=3 andσ=4.22×103 were the best for the Reuters
dataset, and thatcthr = 20 andσ = 2.90 × 103 were the best for the OHSUMED
dataset.16 The lower horizontal line indicates the highest accuracy forcut-off. As
the previous work indicated (Nigam et al., 1999), Gaussian MAP estimation out-
performed standard ME estimation in text categorization. The curious point here is
that count thresholds greater than the best thresholds for standard ME estimation
yielded the best accuracies, since it seems plausible to expect that MAP estimation
would allow the count threshold to decrease because of its regularization effect.
However, this is probably more complicated. Although we are still not sure why
this behavior was observed, one possible explanation is that we should also count
the (counter intuitive) properties that estimation tends to overfit more with less
features because of faster convergence (if the convergence levels are the same).
Gaussian MAP estimation enables more stable estimation with such less features
compared with standard ME estimation due to its regularization.

16 Note that these results may differ slightly from those in Kazama and Tsujii (2003), because we
have added several experimental points to each model. However, the overall arguments are the same.
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Figure 3. Relation between width factorW and accuracy of inequality ME models for development
set.

The control parameter for inequality ME models was width factorW . Figure
3 plots accuracies of inequality ME models for variousW . In this experiment,
we started our estimates with all possible features (i.e.,cthr = 0) and relied on
the ability of inequality models to remove unnecessary features through solution
sparseness. The horizontal lines indicate the best accuracies forcut-off andgaus-
sianpreviously discussed. We can see that the inequality models outperform stan-
dard ME estimation and Gaussian MAP estimation with an appropriate value for
W in both datasets. As can be seen, the OHSUMED dataset seems more difficult
than the Reuters. However, the improvement in the OHSUMED is greater than that
in the Reuters dataset. The plotted curves are smoother for the OHSUMED dataset
than they are for the Reuters. This may be because the development set for the
Reuters dataset is relatively small (1,496 documents) compared with that of the
OHSUMED (4,974 documents). We could not observe any advantage in using the
bayesmethod to determine widths. Although 2-norm extension seemed to increase
the accuracies forbayes, we could not observe apparent advantages in terms of
greatest accuracy.

Figure 4 plots the average number of active features (averaged over all cate-
gories) for each inequality ME model for various width factors. The active features
increased when the widths narrowed, as expected.

Figure 5 plots the accuracy of each model for the development sets as a func-
tion of the number of active features. Forcut-off andgaussian, the best accuracy
for each count threshold is plotted against the number of features with that count
threshold. Only2-normis displayed for inequality models to make the curves easier
to distinguish. We can see that inequality ME models achieve the highest accuracy
with a fairly small number of active features, by removing unnecessary features
through solution sparseness. Also, inequality models (single width) consistently
achieve much higher accuracies thancut-off and gaussianwith a small number
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Figure 4. Relation between width factor and average number of active features.

 0.79

 0.8

 0.81

 0.82

 0.83

 0.84

 0.85

 100  1000  10000

A
cc

ur
ac

y 
(F

-s
co

re
)

# of active features

B

D

F

E

B: 2-norm + single
D: 2-norm + bayes
E: cut-off
F: gaussian

 0.54

 0.55

 0.56

 0.57

 0.58

 0.59

 0.6

 0.61

 0.62

 1000  10000  100000

A
cc

ur
ac

y 
(F

-s
co

re
)

# of active features

B

D

F E

B: 2-norm + single
D: 2-norm + bayes
E: cut-off
F: gaussian

a. Reuters b. OHSUMED

Figure 5. Accuracies of inequality models plotted as function of average number of active features.

of features, whilecut-off and gaussianconsiderably degrade accuracy as count
threshold increases.

Tables I and II summarize the results thus far and show how well each model
performs for an evaluation set with the found best control parameters. Inequality
ME models outperform other models for both the development and evaluation sets.
That is, the inequality ME model is generally superior to standard ME estimation
and Gaussian MAP estimation. The features reduced by inequality ME models are
considerable. For the OHSUMED dataset, the features were reduced by a factor of
100 compared with all possible features, and by over a factor of 4 compared with
the best Gaussian MAP estimates.

We can see that 2-norm extension has an advantage in being robust. That is,
2-norm models outperformed normal inequality models in the evaluation set. Of
course, the level of difference here cannot be proved to be statistically significant
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Table I. Comparison of accuracies for Reuters dataset

Methods Best control Active Accuracy (dev) Accuracy (eval)

parameters features P / R / F P / R / F

cut-off c=2 16, 961.9 87.06 / 79.75 / 83.24 90.11 / 82.95 / 86.38

gaussian c=3, σ=4.22e3 12, 326.6 91.21 / 77.86 / 84.01 94.18 / 80.90 / 87.04

ineq+single W =1.78e−11 9, 479.9 87.87 / 81.32 / 84.47 90.63 / 84.40 / 87.41

2-norm+single W =5.62e−11 6, 611.1 87.98 / 81.01 / 84.35 91.22 / 84.23 / 87.59

ineq+bayes W =3.16e−15 63, 150.0 89.54 / 79.49 / 84.21 92.98 / 82.40 / 87.37

2-norm+bayes W =3.16e−9 10, 022.3 89.02 / 79.54 / 84.01 92.47 / 83.18 / 87.57

Table II. Comparison of accuracies for OHSUMED dataset

Methods Best control Active Accuracy (dev) Accuracy (eval)

parameters features P / R / F P / R / F

cut-off c=0 116, 452.0 68.37 / 51.63 / 58.83 68.12 / 51.04 / 58.35

gaussian c=20, σ=2.90e3 5, 252.3 69.54 / 52.09 / 59.56 69.92 / 51.35 / 59.21

ineq+single W =4.81e−2 1, 257.6 72.49 / 53.08 / 61.28 72.82 / 52.73 / 61.17

2-norm+single W =4.50e−2 1, 316.5 72.15 / 53.23 / 61.26 72.54 / 52.96 / 61.23

ineq+bayes W =9.46 1, 136.6 72.66 / 52.05 / 60.65 72.56 / 51.60 / 60.31

2-norm+bayes W =9.46 1, 154.5 72.65 / 52.08 / 60.67 72.60 / 51.89 / 60.32

only from these experiments. However, to see whether there was actually a dif-
ference between normal inequality ME estimation and the 2-norm extension, we
investigated the relation between width factorW and the averaged cross entropy
of each inequality model for the development set. Here, we used cross entropy
as another measure for the behavior of probabilistic models. The average cross
entropy was calculated as− 1

C

∑
c

1
L

∑
i log pc(yi|di), whereC is the number of

categories. Figure 6 plots the results. The cross entropy of 2-norm models is clearly
different and more stable than that of normal inequality models. This difference
is one explanation for the robustness of 2-norm extension, although there is no
absolute relation between accuracy and cross entropy (e.g., the best accuracy for
the Reuters dataset is not achieved with the lowest entropy). This stability in 2-
norm extension was also observed in Fig. 4, which plotted the relation between
W and the number of active features as smoother curves. This smoothness might
avoid the development set from being overfitted through tuningW .
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Figure 6. W vs. average cross entropy for development set.

7.3. PERFORMANCE WITH MORE SPARSE FEATURES

In this experiment, we investigated using the OHSUMED dataset how inequality
ME models perform when more sparse features are included. We here consider the
case where we include bi-gram features, which use two consecutive words as an
unit.

Although intuitively reasonable, the empirical usefulness of beyond-one-word
features has been controversial (Lewis, 1992; Mladenic and Globelnik, 1998; Scott
and Matwin, 1999; Tan et al., 2002; Pang et al., 2002), andn-gram features are still
not standard for text categorization. One reason might be that sparseness caused by
these features sometimes cancels out their benefits. Note that the maximum average
number of features with bi-gram features in the OHSUMED dataset is 1,241,546.0,
which is over 10 times greater than that with only uni-gram features (116,452.0).
Another reason is that they increase the cost of both training and categorization.
We can expect that inequality ME models prevent overfitting caused by including
bi-gram features. In addition, inequality ME models would solve the problem of
runtime costs because of sparse solutions in some cases.

In this experiment, we show that the inequality ME model achieves the highest
accuracy of ME models even if bi-gram features are included. We use TFIDF for bi-
gram features as well. TF for bi-gramwiwj is the frequency of the two consecutive
words in the document, and IDF is calculated as:

IDF (wiwj) = log
|D|

number of documents wherewiwj occurs
.

Table III lists the results, comparing them with those of the models using only
uni-gram features. We can see that the inequality ME model had the highest accu-
racy of ME models even if bi-gram features are included, although all ME models
improved accuracy by including bi-gram features. Striking point here is the sta-
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Table III. Effect of adding bi-gram features (best results are listed).

Methods Best control Active Accuracy (dev) Accuracy (eval)

parameters features P / R / F P / R / F

cut-off (uni) c=0 116, 452.0 68.37 / 51.63 / 58.83 68.12 / 51.04 / 58.35

cut-off (+bi) c=4 74, 183.0 69.11 / 53.18 / 60.11 69.43 / 52.52 / 59.81

gaussian(uni) c=20, σ=2.90e3 5, 252.3 69.54 / 52.09 / 59.56 69.92 / 51.35 / 59.21

gaussian(+bi) c=2, σ=4.47e6 176, 745.3 71.85 / 51.60 / 60.07 72.42 / 50.92 / 59.80

ineq(uni) W =4.81e−2 1, 257.6 72.49 / 53.08 / 61.28 72.82 / 52.73 / 61.17

ineq(+bi) W =1.15e−2 1, 547.1 72.17 / 53.62 / 61.53 72.87 / 53.36 / 61.61
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Figure 7. Effect of count threshold for inequality ME model (OHSUMED dataset).

ble ability for feature selection of inequality ME estimation. The inequality ME
estimation achieved improved accuracy just by adding a few features. Note that
511.7 features that were not active in the uni-gram model were newly added to
the bi-gram model on average. Out of these 511.7 features, 372.1 features were bi-
gram features (222.1 uni-gram features that had been active in the uni-gram model
were inactive in the bi-gram model). On the other hand, standard ME estimation
found fewer features are the best and Gaussian MAP estimation found much more
features are the best. This indicates the unstable behavior of the combination of
these estimation methods and cut-off thresholding.

7.4. EFFECT OF COUNT THRESHOLD FOR INEQUALITYME MODEL

In the previous experiment, we fixed the count threshold for inequality ME mod-
els at zero to check what effect solution sparseness had. In this experiment, we
assessed what effect the count threshold had on inequality ME models. Figure
7 plots theW -accuracy curves with various count thresholds for anineq+single
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Table IV. Best accuracies of inequality ME models (ineq+single) with various count thresholds (OHSUMED).

cthr Maximum Active Accuracy (dev) Accuracy (eval)

features features P / R / F P / R / F

0 116,452.0 1,257.6 72.49 / 53.08 / 61.28 72.82/ 52.73 / 61.17

1 64,385.1 1,098.4 72.67 / 52.90 / 61.23 73.06 / 52.62 / 61.18

2 28,865.4 1,083.5 72.02 / 53.39 / 61.32 72.46 / 53.17 / 61.33

3 20,764.1 867.2 73.30 / 52.65 / 61.29 73.61 / 52.40 / 61.22

4 16,692.2 963.0 71.25 / 53.83 / 61.30 71.61 / 53.46 / 61.32

5 14,216.5 855.5 72.57 / 53.10 / 61.33 73.04 / 52.79 / 61.29

6 12,428.5 823.8 72.68 / 53.12 / 61.38 73.03 / 52.73 / 61.24

7 11,137.0 750.5 73.21 / 52.96 / 61.46 73.58 / 52.43 / 61.23

8 10,154.7 773.6 72.68 / 53.26 / 61.47 73.21 / 52.63 / 61.23

9 9,324.4 709.4 73.23 / 52.91 / 61.43 73.65 / 52.28 / 61.15

10 8,666.5 733.8 72.78 / 53.19 / 61.46 73.29 / 52.58 / 61.23

12 7,614.8 701.2 72.83 / 53.08 / 61.41 73.33 / 52.39 / 61.12

15 6,463.5 663.2 72.88 / 53.01 / 61.38 73.43 / 52.42 / 61.17

20 5,251.3 576.7 73.65 / 52.37 / 61.21 73.91 / 51.92 / 60.99

30 3,856.8 517.8 73.77 / 51.97 / 60.98 73.96 / 51.56 / 60.76

model in the OHSUMED dataset and Table 7.4 lists the details on the best ac-
curacies. Although the count threshold seems to affect accuracy at moderateW ,
the best accuracy was not significantly affected (though thresholds such as 4 seem
to yield the highest accuracy). This means that features with low counts are not
that important in achieving high accuracies for the OHSUMED dataset. Inequality
models perform such thresholding automatically. With cut-off thresholds around
15, however, the best accuracy started to decrease. This means that there are es-
sential features for the OHSUMED dataset at around 15 counts. However, there
are features that should be omitted to improve accuracy even in very frequent
features. The inequality ME model omits such features appropriately. For example,
the maximum number of features is 3856.8 with a count threshold of 30, but the
number of active features after training is only 517.8. Note that Gaussian MAP
estimation only achieved an F-score of 59.40 for the development set and 59.13 for
the evaluation set at a count threshold of 30.

7.5. THE COST OF ESTIMATION

As we previously mentioned, the cost of estimating inequality models will be
higher than that of standard ME models probably because of the inherent difficulty
of bounded optimization and the doubled number of parameters. However, as can
be seen from the number of experiments we successfully conducted, the additional
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Table V. Cost of estimating inequality ME models (time in seconds).

Dataset cut-off gaussian ineq+single 2-norm+single

Reuters 1,624 518 8,151 7,409

OHSUMED 2,976 942 6,867 6,859

estimation cost is probably tolerable for the sizes of the usual annotated NLP re-
sources used for supervised training. Table V lists the times (I/O times excluded)
required to estimate the best models (training all categories) withcthr = 0 in
the first experiment on 1.27 GHz Pentium III machines. Gaussian MAP estimation
requires much less time, reflecting the fact that it favors small weights and the
estimates will reach the optimal point quicker. Inequality ME models certainly
require much more time as expected.

One-sided inequality ME models (or equivalently exponential MAP ME mod-
els (Goodman, 2003; Goodman, 2004)), which are derived using only the upper
constraints, do not double the number of parameters. Therefore, it may be more
efficient and it is desirable if it does not degrade the accuracy. To investigate the
risk of not having lower active features and also to obtain greater insight into
the causes of increased estimation costs, we briefly compared the one-sided in-
equality ME models with the double-sided inequality ME models we had used
so far. For the Reuters dataset, the one-sided model achieved an 84.14 F-score
for the development set and 87.10 for the evaluation set, with 8134.7 (average)
active features, taking 5,720 seconds to estimate all categories. For the OHSUMED
dataset, it achieved 61.22 for the development set and 61.13 for the evaluation set,
with 541.6 active features, taking 7,658 seconds to estimate. These results prove
that double-sided models (though the slight difference in the OHSUMED dataset)
outperform one-sided models in terms of accuracy, indicating that lower active
features contain some useful information. The one-sided models had fewer active
features than the double-sided models as expected. In terms of training costs, we
could not observe expected results. The training time was decreased for the Reuters
dataset, as expected, but was increased for the OHSUMED dataset, as opposed to
expectations, and in any case, the training for one-sided inequality ME models was
far more expensive than that for standard ME and Gaussian MAP ME models.
This suggests that the dominant cause of increased estimation costs for inequality
ME estimation was not the doubled number of parameters, but more plausibly the
inherent difficulty of bounded optimization.

Therefore, we could reduce the estimation costs, for example, by removing
features when they are inactive for several iterations; this means removing bounded
constraints from the estimation. In addition, if the doubled parameters are not the
dominant cause, a great deal of additional time might be spent because of the KKT
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checks, e.g., more iterations due to the tightened convergence criterion and the
actual time spent on the KKT check itself. We simply added KKT checks to our
estimation algorithm, following the convention of optimization derived using the
Lagrange method (e.g., SVM training), since our primal goal was not fast estima-
tion but the evaluation of accuracies. Designing estimation so that KKT checks can
be omitted will also improve estimation efficiency. In fact, the training time was
decreased to 2,482 seconds for the Reuters dataset with increased F-scores of 84.53
(dev) and 87.78 (eval), and to 3,073 seconds for the OHSUMED with decreased
F-scores of 61.21 (dev) and 61.00 (eval), if we did not check the KKT conditions at
all. The results indicate the possibility of faster estimation, although the results also
indicate an unpredictable effect of convergence criteria on the accuracy (we think
this is a common problem in evaluating machine learning algorithms). Note that,
however, the change in the accuracy does not override the advantages of inequality
ME estimation.

Of course, we can omit many features through count thresholding before train-
ing without affecting the best accuracy in some cases, as the experiment in Section
7.4 demonstrated. This will also reduce the cost of estimation.

7.6. COMPARISON WITH SUPPORTVECTORMACHINES

In our final evaluation, we compared inequality ME models with SVM-based text
categorization. Support Vector Machines (SVMs) (Vapnik, 1995) are now consid-
ered a state-of-the-art machine learning method for many NLP tasks including text
categorization. Since Joachims (1998b), there have been a number of previous stud-
ies that applied SVMs to text categorization and these demonstrated a high level of
performance. Therefore, a comparison with an SVM-based categorizer would be
considered a serious evaluation.

Data collections were the same as in the previous experiments. We used the
polynomial kernel:(sx·y+r)d with s = 1, r = 1 and the RBF kernel:exp(−γ||x−
y||2) as in Joachims (1998b). We evaluated text categorizers using these kernels
for severalds of the polynomial kernel and severalγs of the RBF kernel. Al-
though there were many other candidates17, soft-margin constantC (Cristianini
and Shawe-Taylor, 2000) is most equivalent to theW andσ of ME models for the
purposes of comparison. Therefore, we consideredC as the control parameter to be
tuned using the development set. We used SVMlight (Ver. 5.0) (Joachims, 1998a)
to estimate SVMs.

Figure 8 plots the results of searching for the bestC for each kernel and dataset
pair. Table VI and Table VII list the best accuracies for SVM-based categorizers for
each dataset. We can see that SVMs outperform at least standard ME models for

17 For example, the value of the ‘-j’ option, which handles imbalance in examples for +1 and -1
targets, and the parameters in kernel functions. However, many control parameters are sometimes a
disadvantage: it is hard to conduct experiments by varyingC and the coefficients of the polynomial
kernel.
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Figure 8. Relation betweenC and accuracy of SVM-based categorizers. Upper plots are for
polynomial kernel, and lower plots for RBF kernel.

both datasets, and outperform Gaussian MAP models for the OHSUMED dataset,
proving that they are certainly state-of-the-art.

We did not observe apparent advantages of using higher dimensions in the case
of the polynomial kernel as opposed to the results obtained by Joachims (1998b).
That is, although theC that yielded the best F-scores differed depending ond,
the best F-scores we achieved did not differ a great deal. The literature often
emphasizes that the advantage of the polynomial kernel is its implicit (therefore
efficient) combination of features. The results seem to indicate that the combina-
tion of features is not useful for this task. However, we already showed in Section
7.3 that bi-gram features (a form of feature combination) improve accuracy with
inequality ME models. The polynomial kernel might produce too many useless
combinations that cause so severe sparseness that cannot be solved even with the
large margin properties of SVMs, whereas bi-gram features produce a moderate
number of combinations, which actually include useful combinations. In addition,
the fact that value of the combination feature of the polynomial kernel is not TFIDF,
whereas the value of a bi-gram feature is explicitly given a TFIDF value, might lead
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Table VI. Accuracy of SVM classifiers (Reuters)

Kernel Best control Support Accuracy (dev) Accuracy (eval)

function parameters vectors P / R / F P / R / F

polyd = 1 C = 109.5 306.6 90.84 / 77.54 / 83.67 93.48 / 81.18 / 86.89

polyd = 2 C = 44.6 308.6 91.64 / 77.07 / 83.73 93.88 / 80.96 / 86.94

polyd = 3 C = 38.4 315.1 90.79 / 77.60 / 83.68 93.67 / 81.29 / 87.04

rbf γ = 0.6 C = 109.5 279.7 91.42 / 77.18 / 83.70 94.47 / 81.51 / 87.51

rbf γ = 0.8 C = 81.2 277.2 91.37 / 77.18 / 83.67 94.76 / 81.29 / 87.51

rbf γ = 1.0 C = 44.6 277.6 92.23 / 76.60 / 83.69 95.14 / 80.46 / 87.18

rbf γ = 2.0 C = 33.1 271.2 91.77 / 77.18 / 83.84 95.06 / 81.18 / 87.57

Table VII. Accuracy of SVM classifiers (OHSUMED)

Kernel Best control Support Accuracy (dev) Accuracy (eval)

function parameters vectors P / R / F P / R / F

polyd = 1 C = 84.0 2,030.0 72.02 / 51.22 / 59.86 72.39 / 50.86 / 59.75

polyd = 2 C = 43.2 2,051.1 71.79 / 51.34 / 59.87 72.19 / 50.94 / 59.73

polyd = 3 C = 27.8 2,067.8 72.21 / 51.17 / 59.87 72.41 /50.78 / 59.72

rbf γ = 0.6 C = 81.2 2,020.7 71.43 / 51.59 / 59.91 71.95 / 51.23 / 59.85

rbf γ = 0.8 C = 60.2 2,023.8 71.62 / 51.54 / 59.94 72.13 / 51.13 / 59.84

rbf γ = 1.0 C = 44.6 2,027.8 72.22 / 51.33 / 60.01 72.62 / 50.82 / 59.80

rbf γ = 2.0 C = 24.5 2,062.0 72.03 / 51.40 / 59.99 71.00 / 51.66 / 59.80

to that difference. To investigate these explanations, we evaluated an SVM catego-
rizer using a polynomial kernel (d = 1) with feature vectors that explicitly contain
bi-gram features represented by TFIDF values as in Section 7.3, and found that it
achieved an F-score of 61.45 for the development set and 61.37 for the development
set whenC = 1.2× 103 with 3,466.2 support vectors. The achieved accuracy was
close to that of the inequality ME model with bi-gram features (though still lower),
demonstrating the plausibility of the above explanations.

The accuracy of the RBF kernel is better than that of the polynomial kernel, and
it outperformed the Gaussian MAP ME models for both datasets and performed as
well as the inequality ME models for the evaluation set of the Reuters dataset. How-
ever, it still could not outperform inequality ME models. In particular, inequality
ME models are superior to SVMs with a large margin for the OHSUMED dataset.
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Therefore, the most important conclusion from this experiment was that SVMs
could not outperform inequality ME models, indicating that our inequality ME
models are state-of-the-art for text categorization.

8. Discussion

Although the inequality ME models achieved the best performance of the models
we compared, the best performance was achieved withsinglewidth, where a com-
mon width was used, and we could not observe any advantage in using thebayes
width, which calculates widths depending on the unreliability of each feature. The
existing regularized methods, Gaussian and exponential MAP estimation (Chen
and Rosenfeld, 1999; Johnson et al., 1999; Chen and Rosenfeld, 2000; Goodman,
2003; Goodman, 2004) can also incorporate unreliability of features through using
different control parameter for each feature (e.g.,σi). However, attempts to use
a different control parameter for each feature have been rare. One exception we
know of, is that by Chen and Rosenfeld (2000), where a differentσn is used for
each level (n) of n-grams, orσn,1, σn,2, and σn,3+ are used for features with
1, 2, and 3 or more counts for each level of then-grams. Chen and Rosenfeld
(2000) reported that such parameter partitioning improved performance slightly
over models with a singleσ. However, as Chen and Rosenfeld (2000) themselves
pointed out, it is unclear how to apply such partitioning to other tasks including
text categorization. Another recent exception is the method presented by Goodman
(2003) and (2004) where control parameterai of the exponential prior is set so that
the constraint represents Good-Turing discounting. Unfortunately, these widths
based on Good-Turing discounting did not outperform the single width (Goodman,
2003; Goodman, 2004).

If the single width is adequate, this might be explained as follows. By using
the same width for all features, frequent features are given relatively smaller un-
certainty in effect since the empirical and model expectations for frequent features
are larger by default than for infrequent features. However, the discussion here is
too premature to conclude that using different widths due to the unreliability of
features will not be successful. It is possible that he uncertainty ofp̃(x), which we
were not concerned with in thebayeswidth, needs to be modeled, or the Bernoulli
trial assumption may be inappropriate. These matters bear further investigation.

Next, it is an open question how inequality ME models differ from the existing
feature selection methods. However, inequality ME models significantly outper-
formed cut-off, which is closely related to DF (document frequency thresholding).
As Yang and Pedersen (1997) reported, DF is competitive with other best per-
forming feature selection methods. Therefore, we could expect that inequality ME
models would also be competitive with such feature selection methods.

Compared with the existing ME specific feature selection methods (Berger et al.,
1996; Della Pietra et al., 1997; Shirai et al., 1998; McCallum, 2003), the inequality
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ME model is more elegant than those methods in that no approximation is re-
quired in the selection process, and that feature selection is seamlessly embedded
in estimation. Although our current methods for determining the constraint widths
also introduce a kind of approximation about feature interaction, the interaction
is exactly taken into account during estimation and the appropriate features are
selected automatically, once the degree of uncertainty (i.e., the number of features)
is determined by one control parameter. On the other hand, there is no such freedom
in those ME specific feature selection methods, since the order of the features
is determined by the approximation that abandons the exact account of feature
interaction. However, performance should be compared empirically using actual
tasks to clarify the advantages of each method.

Last, our justification for the advantages of inequality ME models was rather
empirical, and we will need even more experiments in future. We also need to
justify the advantages of inequality ME models theoretically. In the Bayesian sense,
however, the inequality ME model is just a model with an exponential prior, and
there is no reason to believe that the exponential prior always works best (Good-
man, 2003; Goodman, 2004). Therefore, it would also be interesting to investigate
when inequality ME models outperform other models. Such investigations might
reveal why the 2-norm extension, which in effect combined an exponential prior
and a Gaussian prior, seemed more robust in our experiments.

9. Conclusion and Future Work

We proposed inequality ME models, where the equality constraints of standard ME
estimation are relaxed by using box-type inequality constraints to solve the data
sparseness problem in ME estimation. We demonstrated, using two text categoriza-
tion datasets, that the inequality ME models outperformed standard ME estimation,
similarly motivated Gaussian MAP estimation, and state-of-the-art SVMs. The in-
equality ME models achieved high accuracies with a significantly small number of
features thanks to the sparseness of the solution. There might be two possible direc-
tions for future work. The first is to collect more empirical evidences that prove the
advantage of inequality ME models, through, for example, comparing inequality
ME models with existing feature selection methods, and evaluating inequality ME
models with other NLP tasks.18 The second direction is to theoretically justify the
advantages of inequality ME models, since our justification was rather empirical,
or to investigate in what cases the inequality ME models outperform the other ME
models.

18 Preliminary experiments on named entity recognition can be found in Kazama (2004).
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A. Parametric Form and Objective Function of Inequality ME model

We derive the parametric form and the dual objective function for inequality ME
estimation, using the Lagrange method for convex optimization problems with lin-
ear inequality constraints.19 To make the dual problem a maximization problem,
we first rewrite the problem (Eq. refeq:ineq-def) as:

minimize
p(y|x)

∑
x

p̃(x)
∑
y

p(y|x) log p(y|x),

subject to Ep̃[fi]−Ep[fi]−Ai ≤ 0,

Ep[fi]−Ep̃[fi]−Bi ≤ 0,∑
y

p(y|x)− 1 = 0

Then, the Lagrangian is:

L(p, α,β, µ) =
∑
x

p̃(x)
∑
y

p(y|x) log p(y|x)

+
∑

i

αi(Ep̃[fi]−Ep[fi]−Ai)

+
∑

i

βi(Ep[fi]− Ep̃[fi]−Bi)

+
∑
x

p̃(x)µx(
∑
y

p(y|x)− 1), (33)

whereαi, βi, andµx are the Lagrange multipliers corresponding to each constraint.
Differentiating the Lagrangian with respect to primal variablesp and letting

them be zero, we obtain:

∂L
∂p(y|x)

= p̃(x)

{
1 + log p(y|x)−

∑

i

(αi − βi)fi(x, y) + µi

}
= 0.

Assumingp̃(x) 6= 0,

log p(y|x) = −µx − 1 +
∑

i

(αi − βi)fi(x, y),

p(y|x) = exp(−µx − 1)× exp(
∑

i

(αi − βi)fi(x, y)). (34)

19 See, for example, Bertsekas (1999) for details on Lagrange methods.
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Since
∑

y p(y|x) = 1,

exp(−µx − 1)
∑
y

exp(
∑

i

(αi − βi)fi(x, y)) = 1. (35)

Thus,

exp(−µx − 1) =

{∑
y

exp(
∑

i

(αi − βi)fi(x, y))

}−1

≡ Z(x)−1. (36)

Substituting the above into Eq. 34, we obtain the parametric form for the inequality
ME model as follows.

pα,β(y|x) =
1

Z(x)
exp(

∑

i

(αi − βi)fi(x, y)). (37)

In addition, the Lagrange method states that multipliers for inequality constraints
must be greater than or equal to zero, i.e.,αi ≥ 0 andβi ≥ 0. We now have the
parametric form in Eq. 15.

By substituting the parametric form into the Lagrangian (Eq. 33), we obtain the
dual objective function as follows.

Let S ≡
∑

i

(αi − βi)fi(x, y)

L(α, β) =
∑
x,y

p̃(x)Z(x)−1 exp(S) (S − log Z(x))

+
∑

i

αi

{
Ep̃[fi]−

∑
x,y

p̃(x)Z(x)−1 exp(S)fi(x, y)−Ai

}

+
∑

i

βi

{∑
x,y

p̃(x)Z(x)−1 exp(S)fi(x, y)− Ep̃[fi]−Bi

}

=
∑
x,y

p̃(x)Z(x)−1 exp(S) (S − log Z(x))

−
∑
x,y

p̃(x)Z(x)−1 exp(S)

S︷ ︸︸ ︷∑

i

(αi − βi)fi(x, y)

+
∑
x,y

p̃(x,y)︷ ︸︸ ︷
p̃(x)p̃(y|x)

S︷ ︸︸ ︷∑

i

(αi − βi)fi(x, y)−
∑

i

αiAi −
∑

i

βiBi

= −
∑
x,y

p̃(x)Z(x)−1 exp(S) log Z(x) +
∑
x,y

p̃(x, y)S

−
∑

i

αiAi −
∑

i

βiBi
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= −
∑
x

p̃(x)Z(x)−1 log Z(x)

Z(x)︷ ︸︸ ︷∑
y

exp(S)+
∑
x,y

p̃(x, y)S

−
∑

i

αiAi −
∑

i

βiBi

= −
∑
x

p̃(x) log Z(x) +
∑
x,y

p̃(x, y)S −
∑

i

αiAi −
∑

i

βiBi

On the other hand, the log-likelihood becomes:

LL(α, β) = log
∏
x,y

pα,β(y|x)p̃(x,y)

=
∑
x,y

p̃(x, y) (S − log Z(x))

= −
∑
x

p̃(x)

{
log Z(x)

∑
y

p̃(y|x)

}
+

∑
x,y

p̃(x, y)S

= −
∑
x

p̃(x) log Z(x) +
∑
x,y

p̃(x, y)S

Thus, there is the following relation between the dual objective function and the
log-likelihood.

L(α,β) = LL(α, β)−
∑

i

αiAi −
∑

i

βiBi (38)
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