
A Maximum Entropy Tagger
with Unsupervised Hidden Markov Models

Jun’ichi Kazama, Yusuke Miyao and Jun’ichi Tsujii

Department of Computer Science, Graduate School of Information Science and Technology,
University of Tokyo

7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
{kazama,yusuke,tsujii}@is.s.u-tokyo.ac.jp

Abstract

We describe a new tagging model
where the states of a hidden Markov
model (HMM) estimated by unsuper-
vised learning are incorporated as the
features in a maximum entropy model.
Our method for exploiting unsupervised
learning of a probabilistic model can re-
duce the cost of building taggers with
no dictionary and a small annotated cor-
pus. Experimental results on English
POS tagging and Japanese word seg-
mentation show that in both tasks our
method greatly improves the tagging ac-
curacy when the model is trained with
a small annotated corpus. Furthermore,
our English POS tagger achieved better-
than-state-of-the-art POS tagging accu-
racy (96.84%) when a large annotated
corpus is available.

1 Introduction

Recent statistical methods achieve high accuracy
for various tagging tasks such as part-of-speech
(POS) tagging, phrase chunking, and named en-
tity recognition (Brill, 1994; Ratnaparkhi, 1996;
Brants, 2000; Kudoh and Matsumoto, 2000;
Borthwick, 1999). However, existing methods as-
sume the existence of a large annotated corpus
and/or a large dictionary, which cannot be ex-
pected in practice. When we develop a tagger for
a new domain or task of interest, it is often the
case that we have no annotated corpus. It is also
not sure that we have a large dictionary for the
task. Therefore, there is an urgent need to reduce
the building cost of a tagger, or equivalently the
developing cost of an annotated corpus and a dic-
tionary, as well as a need to achieve high accuracy.

In this paper, we propose a new tagging model
which uses the states of a hidden Markov model
(HMM) estimated by unsupervised learning as the

features in a maximum entropy model. Unsuper-
vised learning of an HMM provides a reliable lan-
guage model without annotated corpora. Mean-
while, the maximum entropy method is powerful
enough to achieve the state-of-the-art accuracy in
tagging tasks (Ratnaparkhi, 1996). By combining
the two models, we expect to achieve (i) moder-
ately high accuracy with a small annotated cor-
pus, and (ii) the state-of-the-art accuracy with a
sufficiently large annotated corpus. These char-
acteristics are desirable when we develop a tag-
ger from scratch in an incremental manner where
we repeat training of a tagger, automatic tagging,
and hand correction.

The architecture of our model is motivated by
the following two aspects of the learning of a tag-
ging model: task learning (e.g., to be a POS tag-
ger or a phrase chunker) and domain adaptation
(e.g., to be for newspaper texts or Web texts; for
Japanese or English). Task learning inherently re-
quires annotated corpora or dictionaries because
the relation between observed events and unob-
servable tags must be learned. On the other hand,
there is a hope for annotation-free (i.e., unsuper-
vised) learning in domain adaptation. For exam-
ple, an n-gram model and an HMM can be trained
without annotated corpora so as to capture the
occurrence and cooccurrence patterns of words in
the domain in the form of probability parameters.
The trained models should provide the matrix for
the task learning. We will achieve higher tag-
ging accuracy with a small annotated corpus by
exploiting such unsupervised learning for domain
adaptation.

We conducted experiments on two different tag-
ging tasks, English POS tagging and Japanese
word segmentation. In English POS tagging, our
method significantly improved the accuracy with
a small annotated corpus, and achieved 96.84%
accuracy, which is better than the state-of-the-
art accuracy, for the Wall Street Journal (Mar-
cus et al., 1993) when a large annotated corpus is
used for training. We estimated the cost of build-

ing a tagger from scratch, and found that about
40% of the hand corrections required to achieve
95% accuracy are reduced in English POS tagging.
In Japanese word segmentation, we observed the
similar results, which attest the applicability of
our model to various tagging tasks.

2 Probabilistic Tagging Models

In this paper, we define tagging as the process
which assigns a tag τ for each symbol ot at the po-
sition t in a given symbol sequence. We denote a
sequence xkxk+1 · · ·xl−1xl as xl

k, and thus we de-
note a symbol sequence (i.e., a sentence) of length
T as oT

1 . In English POS tagging, a symbol corre-
sponds to a word, and in Japanese character-based
word segmentation it corresponds to a character.
This section presents a brief explanation for the
existing tagging models which our model based
on.

2.1 Tagging with a Maximum Entropy
Model

In a maximum entropy tagging model (Ratna-
parkhi, 1996), tags to be assigned are determined
according to the conditional probability of the
form:

p(τ |ht) =
1

Z(ht)

∏

i

α
fi(τ,ht)
i ,

Z(ht) =
∑

τ

∏

i

α
fi(τ,ht)
i , (1)

where τ is a tag and ht is a context at the position
t. One can consider ht as an information source
from which we can obtain the current symbol, sur-
rounding symbols, previously assigned tags, and
so on. A function fi(τ, ht), called a feature func-
tion, indicates the occurrence of a certain clue to
determine tags. In the model which we present,
feature functions have the following form as in
(Ratnaparkhi, 1996).

fi(τ, ht) =

{
1 if H(ht) ∧ τ = Y

0 otherwise

where H(ht) is a predicate whose truth value is
determined by ht. For example, H(ht) is defined
as follows.

ot
t−(n−1) = X1X2 · · ·Xn (symbol n-gram)

τ t−1
t−n = Y1Y2 · · ·Yn (previous tags), (2)

where Xi and Yi are instantiated with the actual
symbols or tags.

Parameters αi can be interpreted as the im-
portance of each feature function fi. The pa-
rameters are computed so as to maximize the

likelihood of the training data by using numer-
ical optimization methods such as Improved It-
erative Scaling (IIS) (Pietra et al., 1997). The
training data are pairs of tag and context such
as {(τ1, h1), (τ2, h2), · · · , (τN , hN)}. We can ob-
tain the training data from an annotated sentence
(i.e., oT

1 and corresponding τT
1). For example, if

we use the feature functions defined by H(ht) in
(2), ht will be constructed as follows, using oT

1 and
τT
1 .

ht = 〈ot−(n−1), · · · , ot, τt−n, · · · , τt−1〉 (3)

Given a maximum entropy model (i.e., fi and
αi), the tagging procedure is formulated as the
search which finds a sequence of tags τ̂T

1 which has
the maximum probability given a symbol sequence
oT
1 :

τ̂T
1 = argmax

τT
1

p(τT
1 |oT

1)

= argmax
τT
1

T∏
t=1

p(τt|ht). (4)

When ht includes tags previously assigned, a
search algorithm such as the Viterbi-type algo-
rithm or the beam search must be employed.

2.2 Tagging with a Hidden Markov
Model

Hidden Markov models (HMMs) have been used
in various NLP tasks because of their simplic-
ity and efficiency (Cutting et al., 1992; Merialdo,
1994; Bikel et al., 1997). Hidden Markov mod-
els are regarded as probabilistic finite automata,
which transit state to state according to transi-
tion probabilities and emit symbols according to
emission probabilities. A detailed explanation of
HMMs is found in (Rabiner, 1989).

In a classical tagging model using an HMM,
states correspond to tags. The tagging procedure
is formulated as the search which finds the state
sequence q̂T

1 which has the maximum probability
given a symbol sequence oT

1 :

q̂T
1 = argmax

qT
1

p(qT
1 |oT

1)

= argmax
qT
1

p(oT
1 , qT

1)

= argmax
qT
1

T∏
t=1

p(qt|qt−1)p(ot|qt), (5)

where p(qt|qt−1) is a transition probability and
p(ot|qt) is an emission probability. The Viterbi
algorithm (Viterbi, 1967) performs this search ef-
ficiently.

: s y m b o l s (w o r d s)
: s t a t e s o f H M M
: t a g s

HMM
11 ��q

1o 2o 3o 4o1o 2o 3o 4o

22 ��q 33 ��q 44 ��q

(a) HMM-based tagger

ME model

1o 2o 3o 4o1o 2o 3o 4o

1� 2� 3�

(b) ME-based tagger

HMM

ME m o d e l

1o 2o 3o 4o1o 2o 3o 4o

1� 2� 3�

1q 2q 3q 4q1q 2q 3q 4q

(c) Our model

Figure 1: Other tagging models and our model. Note that states and tags are equivalent in a classical
HMM-based tagger (a), while they are not necessarily equivalent in our model (c).

What we focus on in this paper is unsuper-
vised learning of HMM’s parameters (i.e., tran-
sition probabilities and emission probabilities).
The Baum-Welch algorithm (Baum and Eagon,
1967) repeatedly updates parameters from the ini-
tial parameters, and tries to find the parameters
which maximize the likelihood of given symbol se-
quences. We can say that the model trained by
the Baum-Welch algorithm is a task-independent
language model which adapts to the domain from
which the symbol sequences are collected.

Unsupervised learning by the Baum-Welch al-
gorithm appears useful for our purpose. Cutting
et al. achieved 96% accuracy in English POS tag-
ging without an annotated corpus by training an
HMM by the Baum-Welch algorithm (Cutting et
al., 1992). However, their success is much due to
the use of a word dictionary built from a large an-
notated corpus. As mentioned earlier, we do not
assume any dictionary since we are thinking of
building a tagger for a new domain or task where
such a dictionary is not available. In our setting,
the direct application of the Baum-Welch algo-
rithm to an HMM-based tagger always decreases
the accuracy in our setting, as shown in the exper-
iments on English POS tagging in Section 4. This
result seems to be the worst case expected from
the report by Merialdo (Merialdo, 1994) that the
Baum-Welch algorithm does not always improve
the tagger’s accuracy even though it always im-
proves the model in terms of the likelihood.

In spite of these anxieties, we will see that the
Baum-Welch training of HMMs really improves
the accuracy by being combined with the maxi-
mum entropy method using our method which is
presented in the next section.

3 Integration of HMM and
Maximum Entropy Tagging

Our method to integrate a maximum entropy
method and unsupervised learning of an HMM is

quite simple: use the states of an HMM as the
features of a maximum entropy tagging model.

We introduce feature functions which access the
state sequence q̂T

1 of an HMM obtained by the
Viterbi algorithm. That is, we introduce the fea-
ture functions of the form:

fi(τ, ht) =

1 if q̂t+k
t+k−(n−1) = Z1 · · ·Zn

∧ τ = Y

0 otherwise,

where k indicates the offset from the current posi-
tion t. We call these features state features. Fig-
ure 1 illustrates the relation between previously
described standard models and our model. Our
method is described as follows.

Training:

1. Train an HMM M1 with an unannotated cor-
pus by using the Baum-Welch algorithm.

2. Find the most probable state sequence q̂T
1

for a symbol sequence oT
1 in an anno-

tated corpus by using the Viterbi algorithm
of M1. Then, make the training data
{(τ1, h1), · · · , (τT , hT)} from q̂T

1 , oT
1 , and the

corresponding tag sequence τT
1 .

3. Estimate the parameters of the maximum en-
tropy model M2, using the training data for
all the symbol sequences in the annotated
corpus.

Runtime:

1. Find the most probable state sequence q̂T
1 for

a symbol sequence oT
1 by using the Viterbi

algorithm of M1.
2. Find for each symbol ot the most appropriate

tag τt determined by ht, which includes q̂T
1 ,

using the maximum entropy model M2.

Our method is very flexible from the viewpoint
of model design. Because unsupervised learning
of an HMM is separated from the maximum en-

tropy model, which is responsible for assigning
tags, we can choose the HMM’s properties such
as the number of states and the initial parameters
independently from the tag set (i.e., the task) so
that we can achieve the best domain adaptation.
There are several possibilities for the HMM’s set-
ting as follows.
• Assume one-to-one state-tag correspondence

as in classical models. The initial parameters
are estimated from an available small anno-
tated corpus.

• Not assume one-to-one correspondence.
Therefore, the number of states can be
greater than the number of tags. The HMM
can be initialized, for example, randomly.

If we select the former, we can say that our
method combines a classical HMM-based tagger
trained by the Baum-Welch algorithm with a max-
imum entropy model. This can be a reasonable
way, but we emphasize the latter in this paper. A
larger state space possibly leads to a better model
and might cause higher accuracy. In fact, the ex-
periments on English POS tagging in Section 4
show that the best performance is achieved when
we use the latter scheme. In Japanese character-
based word segmentation, the former would yield
a very poor model since we have only two tags. As
shown in the experiments, our method becomes
applicable to Japanese character-based word seg-
mentation by using the latter scheme.

4 Experimental Results

4.1 Experiments on English
Part-of-Speech Tagging

We applied our method to English POS tagging.
The experiments are conducted on the Wall Street
Journal from the Penn Treebank (Marcus et al.,
1993). The Wall Street Journal consists of ap-
proximately 50, 000 annotated sentences, and the
number of POS tags is 45. Over 96.5% accuracy is
reported in previous studies (Ratnaparkhi, 1996;
Brants, 2000). We divided the corpus into two
parts, one for training (section 00–22), and one for
test (section 23 and 24). The training part con-
sists of 45, 446 sentences (1, 084, 229 words) and
the test part consists of 3, 762 sentences (89, 537
words). First 32, 000 sentences of the training cor-
pus are used as an unannotated corpus for unsu-
pervised learning.

Experiment 1

To see the effect of our method, we compare the
accuracies of the following three models, (A), (B),
and (C), varying the number of available anno-

Table 1: Features used in our maximum entropy
English POS tagger. The expressions such as
({a, b}, c) mean (a, c), (b, c).

category H(ht)
symbols ot+k

t+k−(n−1) = X1 · · ·Xn

(k, n) = ({−2,−1, 0, 1, 2}, 1)

previous tags τ t−1
t−n = Y1 · · ·Yn

n = 1, 2
HMM states qt+k

t+k−(n−1) = Z1 · · ·Zn

(k, n) = ({−1, 0, 1}, 1), (0, 2), (0, 3)

number ot contains a number
uppercase ot contains an uppercase
hyphen ot contains a hyphen
suffix suffix of ot = W , |W | ≤ 4
prefix prefix of ot = W , |W | ≤ 4

tated sentences from 100 to 40, 0001.

(A) A baseline tagger which uses a 45-state HMM
estimated from annotated sentences by rela-
tive frequency with absolute discounting2.

(B) A maximum entropy based tagger which is
almost the same as the state-of-the-art En-
glish POS tagger described in (Ratnaparkhi,
1996). The difference is that we ignored
whether a word is rare or not and used the
first-order Viterbi search instead of the beam
search. This difference has little impact on
the accuracy and the result is consistent with
the published accuracy 96.43%.

(C) Our model, which uses state features in addi-
tion to the features in (B). A 160-state HMM
trained from random parameters is used. The
HMM is trained by using a variant of the
Baum-Welch algorithm which employs the
Gibbs sampling as described in (Ghahramani
and Jordan, 1997) to enable fast training.
The whole set of features used in our model
is listed in Table 1.

Annotated sentences are used to estimate the pa-
rameters of the HMM (A) and the maximum en-
tropy models (B) and (C). In all the models, the
most frequent 10,000 words are treated as distinct
symbols and all other words are shrunk to one
symbol UNK.

Table 2 shows the results, and Figure 2 depicts
them graphically. We can see that our model im-
proves the accuracy especially when we have only
a small annotated corpus. In addition, our model
performs better than the state-of-the-art maxi-
mum entropy model when we have sufficiently

1Annotated sentences are contiguous, starting from
the beginning of the training corpus.

2The discount value is 0.5.

Table 2: English POS tagging accuracy for the
Wall Street Journal corpus.

of (A) (B) (C) (C’)
annotated
sentences

cut-
off=2

100 72.29 70.74 75.73 83.54
200 78.25 80.03 84.48 87.62
500 83.89 86.03 89.14 91.45

1,000 87.19 89.76 91.84 92.89
2,000 89.98 92.58 93.82 94.22
4,000 91.63 94.16 94.91 95.02
8,000 92.86 95.25 95.66 95.54

16,000 93.61 96.11 96.30 96.13
32,000 93.86 96.54 96.73 96.52
40,000 93.94 96.74 96.84 96.63

70

75

80

85

90

95

100

100 1000 10000 100000

A
cc

ur
ac

y

Number of Sentences

(A) Supervised HMM (45 states)
(B) ME w/o state features
(C) ME w/ state features (160 states, Random initialization)
(C’) ME w/ state features (cut-off=2)

Figure 2: English POS tagging accuracy for the
Wall Street Journal corpus.

large annotated corpora. This indicates that the
use of state features has its own right in maximum
entropy tagging as well as it prevents the accuracy
declining with a small annotated corpus.

We can further improve the accuracy with a
small annotated corpus by tuning the cut-off value
in the estimation of the maximum entropy model.
In a maximum entropy model, it is preferable to
omit (cut-off) features which occur rarely and not
statistically reliable. The optimal cut-off value
may vary depending on many factors such as the
size of available annotated corpus, the set of fea-
tures, and the number of symbols. While we omit-
ted features which occur less than 10 times in (B)
and (C) as in (Ratnaparkhi, 1996) for the compar-
ison, we also included the accuracy of the model
(C’), which is the same as (C) except that the cut-
off value is set to 2. We can see that such a small
cut-off value increases the accuracy with a small
annotated corpus but decreases with a large an-
notated corpus. Although we do not investigate

Table 3: Required hand corrections (corr.) and
total annotations (total.) for English POS tag-
ging. Numbers are shown in terms of word. 1
sentence ≈ 25 words.

(B) (C)
target reduction
acc. corr. total corr. total corr. total
90.00 3,983 23,355 2,101 13,259 47% 43%
94.00 9,526 89,391 5,502 54,218 42% 39%
95.00 14,171 167,600 8,532 105,162 40% 37%
96.00 23,503 359,025 17,275 292,191 26% 19%
96.50 38,186 730,802 27,713 558,571 27% 24%

this issue further in this paper, the results indi-
cate that we can expect further improvement if
we employ a more sophisticated cut-off method.

In addition, we roughly assessed how many
hand corrections can be reduced by our method.
The number of hand corrections is one measure of
the building cost of a tagger, while the total cost
includes other factors such as the cost of finding
the incorrect regions. As stated in Section 1, we
often develop an annotated corpus and a tagger
in the following manner.

1. Set the milestones in the size of annotated
corpus.

2. Make a temporal tagger by using an available
annotated corpus at each milestone.

3. Make the next milestone corpus by tagging
unannotated sentences with that tagger, and
correcting incorrect tags by hand.

4. Repeat 2. and 3. until the target accuracy is
achieved.

If we follow such an incremental development, the
amount of hand corrections is calculated as:

N−1∑

i=1

{annot(i+1)−annot(i)}×{1−acc(i)}, (6)

where annot(i) is the size of the annotated cor-
pus at ith milestone, and acc(i) is the accuracy
of the ith tagger. The target accuracy is acc(N).
Table 3 shows how many hand corrections are re-
quired for the model (B) and our model (C) to
reach various target accuracies3. We included the
total amount of annotated sentences as well. Our
method greatly reduces both the required hand
corrections and the total amount of the annotated
sentences. For example, we can reduce 40% of the
hand corrections when the target accuracy is 95%.

3The total size of annotated corpus annot(N) is
approximated by using linear interpolation, when the
target accuracy is in between the accuracies known
from the table.

Table 4: Tagging accuracy for the Wall Street
Journal corpus: combination with 45-state
HMMs.

of annotated
sentences

(A) (A’) (D) (E)

100 72.29 65.46 74.58 79.13
200 78.25 65.38 82.88 85.01
500 83.89 64.98 88.45 89.18

1,000 87.19 64.81 91.52 91.58
2,000 89.98 65.97 93.21 93.74
4,000 91.63 67.63 94.73 94.80
8,000 92.86 68.75 95.46 95.62

16,000 93.61 70.31 96.27 96.21
32,000 93.86 71.31 96.71 96.67

Experiment 2

In this experiment, we investigate the effect of the
Baum-Welch algorithm. As described in Section
3, it is also possible to assume one-to-one state-tag
correspondence in an HMM in English POS tag-
ging. Table 4 shows the accuracies of the following
models (D) and (E).
(D) A maximum entropy model combined with a

45-state supervised HMM ((A) in Experiment
1).

(E) A maximum entropy model combined with an
HMM, (A’), which is trained by the Baum-
Welch algorithm with (A) as the initial pa-
rameters.

The direct application of the Baum-Welch algo-
rithm always decreases the accuracies as shown
in (A’) in Table 4. In spite of this fact, the
model (E) combined with (A’) performs better
than (D) combined with (A), when the size of an-
notated corpus is 100–8000 sentences. That is, the
Baum-Welch algorithm really improves the accu-
racy when only a small annotated corpus is avail-
able.

Another fact which we can see from these ex-
periments is that the model (C), where the num-
ber of states is greater than the number of tags,
achieves the best accuracy with a large annotated
corpus. However, it seems that a small number of
states has an advantage to prevent the decline of
accuracy with a small annotated corpus. This in-
dicates that we have to choice the size of an HMM
carefully, or switch the scheme at some appropri-
ate point of the development.

4.2 Experiments on Japanese Word
Segmentation

To see that our method is generally applicable to
other tagging tasks, we conducted experiments on
Japanese word segmentation. In languages such as
Japanese and Chinese we must identify each word

first of all since words are not separated by spaces.
This task is called word segmentation. Character-
based methods for word segmentation are consid-
ered to be robust against the unknown word prob-
lem because it does not require word dictionar-
ies. 95–96% segmentation accuracies are reported
in previous studies on character-based word seg-
mentation (Nagamatsu and Tanaka, 1997; Oda
and Kita, 1999; Oda et al., 1999). Following the
previous studies, we formulate character-based
Japanese word segmentation as the tagging which
assigns end to the characters at the end of words,
and others to the other characters.

We conducted the experiments on the Kyoto
corpus (ver. 3.0) (Kurohashi and Nagao, 1997),
which consists of about 40, 000 (20,000 from arti-
cles and 20,000 from editorials) annotated news-
paper sentences of the Mainichi Newspapers. We
used only the article part for the experiments, and
divided it into the training part (17,694 sentences)
and the test part (1,966 sentences). Unsuper-
vised training of an HMM was performed using
about 110,000 sentences of Mainichi Newspapers
(1994)4.

We measure the performance of word segmen-
tation by recall and precision as well as tagging
accuracy per character. Let Std be the number
of words in the test data and Cor the number
of correctly identified words, recall is defined as
Cor/Std. And let Sys be the number of words
identified by the tagger, precision is defined as
Cor/Sys. To save spaces, we show the results in
F-value calculated as:

F-value =
2× Recall × Precision

Recall + Precision

In this experiments, we compared the follow-
ing three models, (A), (B), and (C), varying the
number of annotated sentences.
(A) A character trigram model based on the seg-

mentation model described in (Stolcke and
Shriberg, 1996)5. This model’s structure is
almost the same as the model used in (Oda
et al., 1999), except that they use character
classes obtained by character clustering.

(B) A maximum entropy model without state fea-
tures. The features are only the symbol fea-
tures in Table 5.

(C) A maximum entropy model with state fea-
tures. The features are listed in Table 5. The

4CD-Mainichi Shimbun’94, Nichigai Associates.
These sentences and the Kyoto corpus are disjoint,
since the Kyoto corpus covers the year 1995.

5We used SRILM (The SRI Language Modeling
Toolkit) to estimate this trigram model (SRI, 2000).

Table 5: Features used in our maximum entropy model for Japanese word segmentation.

category H(ht)
symbols ot+k

t+k−(n−1) = X1 · · ·Xn (k, n) = ({−1, 0, 1}, 1), ({−1, 0, 1}, 2), ({−1, 0, 1}, 3)
HMM states qt+k

t+k−(n−1) = Z1 · · ·Zn (k, n) = ({−1, 0, 1, 2, 3}, 1), ({0, 1, 2}, 2), (0, 3)

Table 6: Word segmentation accuracy (F-value)
for the Kyoto corpus.

of annotated
sentences

(A) (B) (C)

50 40.80 66.57 76.97
100 49.43 71.38 82.46
200 62.88 74.57 85.80
500 77.30 80.55 89.31

1,000 84.36 85.09 91.32
2,000 88.01 87.90 92.54
4,000 91.35 90.75 93.97
8,000 93.75 92.92 94.84

10,000 94.21 93.53 95.12
12,000 94.61 93.93 95.32
16,000 95.18 94.76 95.68

Table 7: Required hand corrections and total an-
notations for Japanese word segmentation. 1 sen-
tence ≈ 46 characters.

(A) (C)
target reduction
acc. corr. total corr. total corr. total
94.0 22,167 411,491 7,177 185,412 68% 55%
95.0 28,399 673,520 12,824 414,486 55% 38%

cut-off value was set to 1. A 320-state HMM
trained from random parameters is used.

The most frequent 2,000 characters are consid-
ered as distinct symbols, and they are augmented
by a binary feature which indicates whether the
next character type is different from the current
character type (i.e., the number of symbols be-
comes approximately 4,000)6. We did not use this
augmentation for model (A) because it had turned
out to have little effects on the accuracy.

The accuracies for these three models are shown
in Table 6, and graphically in Figure 3. As in
the English POS tagging, our method greatly im-
proves the accuracy especially with only a small
annotated corpus, and achieves the highest accu-
racy when a large annotated corpus is available.

Table 7 shows the amount of hand corrections
required for model (A) and (C) to reach the tar-
get accuracies. Target accuracies are shown in F-
value and the required amounts are shown in the

6In Japanese, there are three major character
types, kanji, hiragana, and katakana, and they are
very useful clues to identify a word.

50

55

60

65

70

75

80

85

90

95

100

10 100 1000 10000 100000

A
cc

ur
ac

y
(F

-v
al

ue
)

Number of Sentences

(A) Character Trigram
(B) ME w/o state featurea
(C) ME w/ state features (320 states, Random initalization)

Figure 3: Word segmentation accuracy for the Ky-
oto corpus.

number of characters7. Our method reduced 55%
of the hand corrections when our target is 95.0%
F-value.

5 Discussion

Our method relates to data sparseness preven-
tion by clustering (Brown et al., 1992; Oda et al.,
1999). If we use a 320-state HMM, a state for each
symbol obtained by the Viterbi algorithm is con-
sidered as the most appropriate class for the sym-
bol among 320 classes. Our approach differs from
previous works in that classes are dynamically de-
termined by the Viterbi algorithm, depending on
the context in which the symbol appears. Al-
though we believe such dynamic classification is
more suitable for tagging tasks than static clas-
sification as in the previous works, we will need
more study on whether our model is better than
the other models using clustering methods.

While we used only the most probable path of
an HMM obtained by the Viterbi algorithm, it is
also possible for the maximum entropy model to
access other paths of the HMM. In that case, state
feature functions will be non-binary real-valued
functions which indicate the probability of being
in a state. Such ambiguous features, which are
analogous to soft clustering, might be useful to
prevent data sparseness, while we need more re-
search on this.

7The accuracy per character is used as acc(i) in the
formula (6).

6 Conclusion

We have presented a tagging model which uses the
states of an HMM as the features in a maximum
entropy model, aiming at reducing the building
cost of a tagger. The experiments showed that
our method improves the accuracy especially with
a small corpus and achieves better-than-state-of-
the-art accuracy when a large annotated corpus
is available. Furthermore, a series of experiments
showed our method is widely applicable to several
tagging tasks. We will further investigate more
sophisticated cut-off methods in the estimation
of the maximum entropy model, and more suit-
able unsupervised models. We should also apply
our method to other tagging tasks such as phrase
chunking and named entity recognition in the do-
main where there is only a small annotated corpus.

References

L. E. Baum and J. A. Eagon. 1967. An inequal-
ity with applications to statistical estimation for
probabilistic functions of Markov processes and
to a model of ecology. Bull. Amer. Math. Soc.,
73:360–363.

D. Bikel, S. Miller, R. Schwartz, and
R. Weischedel. 1997. Nymble: a high-
performance learning name-finder. In Proceed-
ings of the Fifth Conference on Applied Natural
Language Processing, pages 194–201.

Andrew Borthwick. 1999. A maximum entropy
approach to named entity recognition. Ph.D.
Thesis. New York University.

Thorsten Brants. 2000. TnT – a statistical part-
of-speech tagger. In Proceedings of the Sixth
Applied Natural Language Processing Confer-
ence ANLP-2000.

Eric Brill. 1994. Some advances in
transformation-based part of speech tagging. In
Proceedings of the Twelefth National Confer-
ence on Artificial Intelligence (AAAI-94).

Peter F. Brown, Vincent J. Della Pietra, Peter V.
deSouza, Jenifer C. Lai, and Robert L. Mer-
cer. 1992. Class-based n-gram models of natu-
ral language. 18(4):467–479.

Doug Cutting, Julian Kupiec, Jan Pedersen, and
Penelope Sibun. 1992. A practical part-of-
speech tagger. In Proceedings of the Third Con-
ference on Applied Language Processing, pages
133–140.

Zoubin Ghahramani and Michael I. Jordan. 1997.
Factorial hidden Markov models. Machine
Learning, 29:245–273.

Taku Kudoh and Yuji Matsumoto. 2000. Use of
support vector learning for chunk identification.
In Proceedings of CoNLL-2000 and LLL-2000.

Sadao Kurohashi and Makoto Nagao. 1997. Ky-
oto University text corpus project. In 3rd An-
nual Meeting of Natural Language Processing,
pages 115–118. (in Japanese).

Mitchell Marcus, Beatrice Santrini, and
Mary Ann Marcinkiewicz. 1993. Build-
ing a large annotated corpus of English:
Penn Treebank. Computational Linguistics,
19(2):313–330.

Bernard Merialdo. 1994. Tagging English text
with a probabilistic model. Computational Lin-
guistics, 20(2):155–171.

Kenji Nagamatsu and Hidehiko Tanaka. 1997. A
stochastic morphological analysis for Japanese
employing character n-gram and k -NN method.
In NLPRS’97, pages 23–28.

Hiroki Oda and Kenji Kita. 1999. A character-
based Japanese word segmenter using a PPM*-
based language model. In Proceedings of
the 18th International Conference on Com-
puter Processing of Oriental Languages (IC-
CPOL’99), pages 527–532.

Hiroki Oda, Shinsuke Mori, and Kenji Kita. 1999.
A Japanese word segmenter by a character class
model. Natural Language Processing, 6. (in
Japanese).

S. Pietra, V. Pietra, and J. Lafferty. 1997. Induc-
ing features of random fields. IEEE Transac-
tions on Pattern Analysis and Machine Intelli-
gence, 19(4):380–393.

Lawrence R. Rabiner. 1989. A tutorial on hid-
den Markov models and selected applications
in speech recognition. Proceedings of the IEEE,
77(2):257–285, February.

Adwait Ratnaparkhi. 1996. A maximum entropy
model for part-of-speech tagging. In Proceed-
ings of the Conference on Empirical Methods in
Natural Language Processing, pages 133–142.

SRI. 2000. SRILM – The SRI Language
Modeling Toolkit ver. 1.0. available via
http://www.speech.sri.com/projects/srilm/.

A. Stolcke and E. Shriberg. 1996. Automatic lin-
guistic segmentation of conversational speech.
In Proc. ICSLP ’96, volume 2, pages 1005–1008,
Philadelphia, PA.

Andrew J. Viterbi. 1967. Error bounds for convo-
lutional codes and an asymptotically optimum
decoding algorithm. IEEE Transactions on In-
formation Theory, IT-13:260–267.

