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ABSTRACT

This thesis describes a method for constructing a probabilistic Japanese morpho-

logical analyzer with a small amount of tagged corpus. Probabilistic models have

been applied to natural language processing successfully due to the existence of

large manually tagged corpus to estimate their parameters. However, for the real

world texts such as ones from the Internet, it is hard to prepare sufficiently large

tagged corpus for all text and task type pairs. We solve this dilemma by using a

small amount of tagged corpus and a large raw corpus. The idea is, if the hidden

states of the probabilistic model such as hidden Markov models (HMMs) trained

by unsupervised learning from a large raw corpus compactly contain sufficient in-

formation to determine tags, we can easily learn the mapping between states and

tags by viewing a few occurrences of each state in a small tagged corpus.

In our method, character-based HMMs are employed to prevent the unknown

word problem, which is serious in Japanese because there is no word segmenta-

tion markers such as spaces. Given raw texts from a target domain, we train a

character-based HMM by the Baum-Welch algorithm, or a Gibbs sampling ver-

sion of the Baum-Welch algorithm when the number of states is large. Then, our

algorithm learns a tag emission model from a small tagged corpus by using the

maximum entropy (ME) method. The learned tag emission model emits a tag ap-

propriate for each character by viewing the Viterbi sequence of the HMM’s hidden

states. Experimental results are encouraging, showing that our method performs

better than existing methods when only 10–500 tagged sentences are available.



論文要旨

本論文では, 最小限のタグ付きコーパスから, 日本語の確率的形態素解析器を構
成する方法について述べる. これまで, 確率モデルは自然言語処理に応用され, 大
きな成功を収めてきたが, その成功は, モデルのパラメータを学習するために人手
でタグ付けされた, 大量のコーパスの存在に依存している. インターネット上の文
書などの実世界の文書を処理することを考えると, 全ての文書タイプとタスクの組
について, 十分な量のタグ付きコーパスを用意することは困難である. 我々は, こ
の問題を少量のタグ付きコーパスと大量のタグ無しコーパスを使うことによって
解決する. もし, 隠れマルコフモデル (HMM)など, 大量のタグ無しコーパスから
学習した確率モデルの隠れ状態がタスクのタグを決定するのに十分な情報を持つ
ようであれば, 少量のタグ付きコーパスにおいて, 各状態の出現を数回見るだけで,

隠れ状態とタグの対応を容易に学習できる可能性が高い.

我々の方法では, スペースなどの単語区切りを示すものが存在しない日本語にお
いて深刻な問題である未知語問題に対応するため, 文字ベースのHMMを用いる.

これを, 対象領域のタグ付けされていない生の文書から, Baum-Welch アルゴリズ
ム, あるいは, 状態数が大きいときには, Gibbs サンプリングを使ったBaum-Welch

アルゴリズムを用いて学習させる. その後, タグ出力モデルを, 最大エントロピー
法などを用いて, 少量のタグ付きコーパスから学習する. 学習されたタグ出力モデ
ルは, HMMの隠れ状態のビタビ列を見て, 各文字に最適なタグを出力する. 実験
から, 10～500文のタグ付きコーパスしか利用できないときには, 我々の方法が既
存の方法よりも高い精度を示すことが確認された.
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Chapter 1

Introduction

In this thesis, we propose a novel stochastic method for Japanese morphological analy-

sis. Our method consists of two parts, a tag-independent character-based hidden Markov

model (HMM) and a tag emission model which uses the maximum entropy method.

Morphological analysis identifiesmorphemessuch as words and affixes in a sen-

tence, and assigns them a tag such asNoun, Verb, andAdjective, which is called a

part-of-speech (POS) tag. We refer to these processes as word segmentation and POS

tagging. Probabilistic models have been applied to morphological analysis successfully

since they can accurately extract statistical tendencies between the input surface data

and the hidden POS tags from a large corpus where POS tags areannotatedor tagged

by human annotators. In order for these probabilistic models to be successfully applied,

a corpus must be annotated by human annotators with the tag set which other NLP sys-

tems require as input. Moreover, the annonated corpus must be of the same type of

which we are targeting.

We are interested in applying probabilistic methods to real-world texts from the In-

ternet. However, there are few tagged corpora for this type of texts, and the required tag

set varies depending on the situation. Therefore, the demands for anadaptivemethod

that requires only a small amount of tagged corpus are increasing. We define two types

of adaptabilities according to the above two requirements for tagged corpus – domain
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adaptability and tag adaptability. Domain adaptability refers to the fitting of the model’s

parameters to the target text type. On the other hand, tag adaptability indicates the

method’s ability to handle any tag set when required by another natural language pro-

cessing system which comes after morphological analysis. The final goal of this study

is to achieve these two adaptabilities at the same time by using only a small amount of

corpus.

In this thesis, domain adaptability is addressed by unsupervised learning of a character-

based tag-independent HMM from a large raw corpus of the domain using the well-

known Baum-Welch algorithm.

Arguments justifying the values of untagged raw corpus for achieving domain adapt-

ability follow those in [9, 26]. Namely, although an untagged corpus alone is insufficient

to yield better-than-random tagging because the relation between the hidden states of

the HMM and tags is not known, untagged corpora contain information about the dis-

tribution over features, in our case, character cooccurrence. If we use this information

together with a sample of tagged data, we will increase the tagging accuracy.

For tag adaptability, we propose the following approach.

• Divide parameter estimation into the estimation of a character-based tag-independent

HMM and the estimation of a relation between an HMM’s hidden states and the

part-of-speech tags.

• Employ an HMM which has a sufficiently large state space to contain information

required for morphological analysis with any tag set.

After the HMM is trained so that it can capture the statistical characteristics of the

domain, thetag emission model, which relates the hidden states of the trained HMM

and the part-of-speech tags, is estimated using a small amount of tagged corpus, uti-

lizing the trained HMM. The estimation of this relation is based on the cooccurrence

of the tags and the states in the Viterbi path which the trained HMM generates for a
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sentence in a small tagged corpus. In this thesis, we propose a simple estimation based

on frequency counts and a more complex estimation based on the maximum entropy

framework. When we have to output another tag set, the same HMM can be used and

the only thing we have to do is to re-train a tag emission model using a small tagged

corpus in the given tag set.

Brants [8] proposed the use of two different tag sets in part-of-speech tagging, one

is the internal tag set for the underlying HMM and the other is the external tag set for

its output. The internal tag set is more fine-grained than the external tag set, and all

information contained in the internal tag set is used for tagging. Using a large HMM

as a tag-independent HMM is the extension of this idea to unsupervised learning of a

tag-independent HMM. To enable training of such HMMs with large state space, we

apply Gibbs sampling to the standard Baum-Welch algorithm.

The reason for employing character-based HMM, which emits each character in

a sentence as output symbol, is to prevent theunknown word problem. Most exist-

ing morphological analysis methods use manually tailored word dictionaries. In word-

based methods, all the possible word candidates in a sentence are retrieved from a word

dictionary, then rules or probabilistic models select the most probable word sequence.

However, it is impossible to build a dictionary which contains all possible words. If the

identification of a word fails because of unknown words, the accuracy of POS tagging

greatly declines accordingly. On the other hand, character-based methods are said to be

robust against the unknown word problem because they do not require word dictionar-

ies, as they define probabilistic models on characters. In the domain we are targeting

such as the earlier, the rate of unknown words is high in addition to the lack of appro-

priate tagged corpora. Thus character-based methods are more suitable for our purpose.

In addition, character-based models are useful for both types of adaptabilities, since

domain adaptability often requires the solution of the unknown word problem and the
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tag set adaptability may require the adaptation to a tag set in which differences at the

word segmentation level cannot be solved by the word-based methods. We also propose

to augment the HMM’s output symbols with character type information to improve the

accuracy of Japanese morphological analysis.

In the experiments, we show that our method outperforms other charactern-gram

based methods in word segmentation when the amount of available tagged corpus is

less than 1,000 sentences.

Structure of the Thesis

In Chapter 2, we describe the background topics of this thesis. We first describe the

Expectation-Maximization (EM) algorithm briefly. Next, we introduce hidden Markov

models. Finally, we describe the maximum entropy framework. In Chapter 3, we de-

scribe the division of model parameter estimation and the actual morphological analysis

using it. In Chapter 4, we describe the training of a large HMM using Gibbs sampling.

In Chapter 5, we report a series of experiments and analyze the results to confirm the

effectiveness of our approach. In Chapter 6, we conclude this thesis and discuss future

work.
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Chapter 2

Background

In this chapter, we describe the background topics of this thesis. We first describe the

Expectation-Maximization (EM) algorithm briefly. This is the basis of the Baum-Welch

algorithm which we use in the unsupervised learning of a character-based HMM. Next,

we introduce hidden Markov models and their basic algorithms used in our approach for

morphological analysis. Then, we describe the maximum entropy framework which is

used in the estimation of tag emission model. Finally we describe existing unsupervised

approaches to morphological analysis.

2.1 The EM Algorithm

The Expectation-Maximization (EM) algorithm is a method for computing the maxi-

mum likelihood (ML) estimates from incomplete data iteratively [11].

Let Y be a random vector corresponding to observed datay, which has a probability

density functionp(y; Ψ) whereΨ = (ψ1, · · · , ψd) is a vector of model’s parameters. And

let X be a random vector corresponding to complete datax, which include observed data

and hidden unobservable data with a probability density functionpc(x; Ψ). For example,

in hidden Markov models,y is the observed sequence, andx is an observed sequence

and a state sequence.
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The aim of the maximum likelihood estimation is to find the parametersΨ̂ that

maximize the likelihood,

L(Ψ) = p(y; Ψ),

or equivalently the log likelihood,

logL(Ψ) = log p(y; Ψ).

We defineQ(Ψ, Ψ̄) as

Q(Ψ, Ψ̄) = EΨ

[
log pc(X; Ψ̄)|y

]
.

Here,EΨ [•] denotes the expectation with respect to the distribution over the range ofX

given by

k(x|y; Ψ) =
pc(x; Ψ)
p(y; Ψ)

.

That is,

Q(Ψ, Ψ̄) =

∫

X(y)
k(x|y; Ψ) log pc(x; Ψ̄)dx,

whereX(y) denotes allx that yieldy.

Let Ψ(0) be the some initial value forΨ. Then, the EM algorithm repeatedly alter-

nates the following two steps.

On thekth iteration,

E-Step: CalculateQ(Ψ(k),Ψ)

M-Step: ChooseΨ(k+1) so that

Ψ(k+1) = argmax
Ψ

Q(Ψ(k),Ψ),

12



that is,

Q(Ψ(k),Ψ(k+1)) ≥ Q(Ψ(k),Ψ) for all Ψ.

Dempster et al. [11] showed that the log likelihood logL(Ψ) does not decrease after an

EM iteration, i.e.,

logL(Ψ(k+1)) ≥ logL(Ψ(k)).

Therefore, for most models, the algorithm will monotonically converges to a local max-

imum of likelihood by iteratively applying these two steps.

The most important advantage is the simplicity of its implementation. An intuitive

interpretation of the EM algorithm is that predicting values for unobservable variables

depending on current parameters and observed variables, i.e.,k(x|y; Ψ(k)) and consider-

ing that values as complete data, the computation of the maximum likelihood estimates

for complete data is performed. For most problems, the computation of maximum likeli-

hood estimates for complete data is very easy – in some cases, it falls into the calculation

of relative frequencies. Thus, the implementation of the EM algorithm tends to be easy.

There are some criticisms for the EM algorithm. The convergence of the EM al-

gorithm is slow in some cases. It is not a global optimization algorithm. For the first

problem, some methods are proposed to speed-up the convergence [17, 25, 20]. If the

application suffers from the second problem, i.e., local optima, we may need the meth-

ods such as [33] which utilize annealing.

2.2 Hidden Markov Models

In this section we describe hidden Markov models and basic algorithms for them. Be-

cause of their simplicity and efficiency, hidden Markov models are used to model a

time series data in various applications in natural language processing such as speech
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recognition [19, 29], part-of-speech tagging [10, 21], named-entity extraction [5], and

information extraction [13].

First, we introduce building blocks of HMMs and two algorithms, the forward-

backward algorithm and the Viterbi algorithm. Next, we describe the Baum-Welch

algorithm, which is used to estimate parameters of HMMs from incomplete (untagged)

date. Finally, we note some issues to be cautious of when we implement Baum-Welch

algorithm in the following section.

2.2.1 Hidden Markov Models

Let Xt ∈ {s1, s2, · · · , sN} denote a discrete random variable that takesN possible values

at timet. A series of random variables{Xt} is said to be thenth order Markov process

whenXt depends only on the previousn random variables (Markov property). Formally,

P(Xt|Xt−1
1 ) = P(Xt|Xt−n, · · · ,Xt−1).

In general, annth order Markov process can be transformed to first order Markov pro-

cess by introducing new random variableYt = {Xt, · · · ,Xt+n−1}. Thus, we assume first

order Markov process in the following explanation. The Markov process is also said to

bestationaryif P(Xt|Xt−1) does not depend on the time:

P(Xt = si |Xt−1 = sj) = p(si |sj).

A stationary Markov process can be specified byN×1 initial probabilitiesπ andN×N

transition probabilitiesA{ai j }:

πi = P(Xt = si),

ai j = P(Xt = si |Xt−1 = sj).

An hidden Markov model (HMM) is a stochastic process whose hidden statesQt ∈
{q1,q2, · · · ,qN} form a stationary Markov process and emit observationsOt ∈ {o1,o2, · · · ,oM}

14



Q1 Q2 Q3 QT

O1 O2 O3 OT

· · ·

· · ·

Figure 2.1: Probabilistic structure of an hidden Markov model (state emission model)

stochastically. Throughout this thesis we use state emission type HMMs where each

state emits one observation symbol with probabilityP(Ot = oi |Qt = qj) (Figure 2.1).

In addition to initial probabilities and transition probabilities, we needN × M emission

probabilitiesB{bi j } to specify an HMM. Then an HMM can be specified by

πi = P(Qt = qi),

ai j = P(Qt = q j |Qt−1 = qi),

bi j = P(Ot = o j |Qt = qi).

We denote this whole set of parameters asλ = 〈π,A, B〉. Then the probability that the

HMM specified byλ generates the observationoT
1 (We write a sequence{oi ,oi+1, · · · ,oj−1,oj}

asoj
i ) with the state transitionsqT

1 , i.e., the joint probabilityP(oT
1 ,q

T
1 |λ) is calculated as

P(oT
1 ,q

T
1 |λ) = π(q1)b(q1,o1)

T−1∏

t=1

{a(qt,qt+1)b(qt+1,ot+1)} .

By summing this probability over all possible state transitions naively, the probability

that the HMM specified byλ generates the observationoT
1 , i.e., thelikelihoodP(oT

1 |λ)

can be calculated as

P(oT
1 |λ) =

∑

qT
1

P(oT
1 ,q

T
1 |λ).

However this calculation is clearly intractable even for HMMs with smallN. Fortu-

nately, there is an efficient dynamic programming algorithm which utilizes Markov

property and calculatesP(oT
1 |λ) in time O(T N2). We describe this algorithm – the

forward-backward algorithm – in the next section.
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2.2.2 Forward-Backward Algorithm

We defineforward probabilitiesandbackward probabilitiesas follows.

Forward Probability αt(i): The probability that the modelλ generates the observa-

tionsot
1 and is in stateqi at timet, i.e.,P(ot

1,Qt = qi |λ).

Backward Probability βt(i): The probability that the modelλ generates the rest of the

observationsoT
t+1 starting from stateqi at timet, i.e.,P(oT

t+1|Qt = qi , λ).

The forward and backward probabilities are used extensively in applications of HMMs.

For instance, the forward and backward probabilities can be used to calculate the likeli-

hoodP(oT
1 |λ), which is one of the measurements for model goodness. Also, the forward

and backward probabilities are used at the first step of the Baum-Welch algorithm which

estimates model parameters from incomplete data. This extensive use of the forward and

backward probabilities is due to the efficient algorithm – the forward-backward algo-

rithm. The forward-backward algorithm calculates these probabilities by the following
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procedures.

Forward Procedure:

Initialization:

α1(i) = πibi(o1), 1 ≤ i ≤ N.

Recursion:

αt+1( j) =


N∑

i=1

αt(i)a(qi ,qj)

 b(qj ,ot+1), 1 ≤ t ≤ T − 1,1 ≤ j ≤ N.

Backward Procedure:

Initialization:

βT(i) = 1, 1 ≤ i ≤ N.

Recursion:

βt(i) =

N∑

j=1

a(qi ,qj)b(qj ,ot+1)βt+1( j), T − 1 ≥ t ≥ 1,1 ≤ i ≤ N.

The forward-backward algorithm has the time complexity ofO(T N2). After the

calculation of the forward and backward probabilities finished, we can calculateP(oT
1 |λ)

by summing up the forward probabilities at timeT as

P(oT
1 |λ) =

N∑

i=1

αT(i),

or summing up the backward probabilities at time 1 as

P(oT
1 |λ) =

N∑

i=1

β1(i)πib(qi ,o1).

More generally,P(oT
1 |λ) can be calculated as

P(oT
1 |λ) =

∑

i

∑

j

αt(i)a(qi ,qj)b(qj ,ot+1)βt+1( j) ∀t 1 ≤ t ≤ T − 1

=
∑

i

αt(i)βt(i) ∀t 1 ≤ t ≤ T − 1.
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2.2.3 Viterbi Algorithm

We are also interested in finding the most probable state transitions given the obser-

vations. The Viterbi algorithm computes the most probable state transitions through a

procedure similar to forward procedure in the forward-backward algorithm [34]. The

difference is that at each time step the Viterbi algorithm memorize the best probability

and the previous state that yields it for each state. Backtracking the stored previous

states recovers the most probable state transitions. Before we describe the Viterbi algo-

rithm we definebest probabilitiesandbest previous statesas follows.

Best Probabilitiesδt(i): The highest probability of being in statei at timet among all

state transitions, i.e., max
q1,q2,··· ,qT

P(Qt = qi ,oT
1 |λ).

Best Previous Statesψt(i): The state at timet−1 of the state transition that yieldsδt(i).

Now, we describe the Viterbi algorithm:

Initialization:

δ1(i) = πib(qi ,o1), 1 ≤ i ≤ N

ψ1(i) = 0 1≤ i ≤ N.

Recursion:

δt( j) = max
1≤i≤N

[
δt−1(i)a(qi ,qj)

]
b(qj ,ot), 2 ≤ t ≤ T,1 ≤ j ≤ N

ψt(i) = argmax
1≤i≤N

δt−1(i)a(qi ,qj), 2 ≤ t ≤ T,1 ≤ j ≤ N.

Termination:

p̂ = max
1≤i≤N

δT(i),

q̂T = argmax
1≤i≤N

δT(i).

Backtracking:

q̂t = ψt+1( ˆqt+1), T − 1 ≥ t ≥ 1.
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Although the Viterbi algorithm has the same time complexity ofO(T N2) as the forward-

backward algorithm, we can compute the most probable transitions by add operations

of floating point numbers since if we hold probabilities as logarithm, we obtain

logδt( j) = max
1≤i≤N

[
logδt−1(i) + loga(qi ,qj)

]
+ logb(qj ,ot).

2.2.4 Baum-Welch Algorithm

In the context of HMM, the EM algorithm had been known as the Baum-Welch algo-

rithm [3] before Dempster et al. formulated the EM algorithm generally. The reestima-

tion formulas in the Baum-Welch algorithm can be easily derived from the definition

of Q(Ψ, Ψ̄) for an HMM by using the Lagrange multiplier method. We show only the

result here.

To describe the reestimation formulas, we first defineγt(i), the probability of being

statei at timet, given the modelλ and the observationsoT
1 , i.e.,

γt(i) = P(Qt = qi |oT
1 , λ).

By using Bayes’ rule, we can writeγt(i) as follows using forward and backward proba-

bilities.

γt(i) =
P(Qt = qi ,oT

1 |λ)

P(oT
1 |λ)

=
αt(i)βt(i)

P(oT
1 |λ)

.

We next defineξt(i, j), the probability of being in stateqi at timet and in stateqj at time

t + 1, given the modelλ and the observationsoT
1 , i.e.,

ξt(i, j) = P(Qt = qi ,Qt+1 = qj |oT
1 , λ).
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By the same argument forγt(i), we can writeξt(i, j) as

ξt(i, j) =
P(Qt = qi ,Qt+1 = qj ,oT

1 |λ)

P(oT
1 |λ)

=
αt(i)a(qi ,qj)b(qj ,ot+1)βt+1( j)

P(oT
1 |λ)

.

By summingγt(i) andξt(i, j) over the timet except fort = T, we obtain two quantities

which can be interpreted as follows.

T−1∑

t=1

γt(i) = expected number of transitions from stateqi

T−1∑

t=1

ξt(i, j) = expected number of transitions from stateqi to stateqj .

Using theseγt(i) andξt(i, j), the reestimation formulas of the Baum-Welch algorithm

are written as

π̄i = expected number of transitions fromqi at time 1

= γ1(i)

=
α1(i)β1(i)∑N

i=1αT(i)

āi j =
expected number of transitions fromqi to qj

expected number of transitions fromqi

=

∑T−1
t=1 ξt(i, j)∑T−1

t=1 γt(i)

=

∑T−1
t=1 αt(i)a(qi ,q j)b(qj ,ot+1)βt+1( j)

∑T−1
t=1 αt(i)βt(i)

b̄i j =
expected number of emissions of symboloj in stateqi

expected number of times being in stateqi

=

∑T
t=1 δ(Ot,oj)γt(i)∑T

t=1 γt(i)

=

∑T
t=1 δ(Ot,oj)αt(i)βt(i)∑T

t=1αt(i)βt(i)
,
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whereδ is Kronecker’s delta, i.e.,

δ(Ot,o j) =


1 Ot = oj

0 otherwise.

In the Baum-Welch algorithm, the calculation of the forward and backward probabili-

ties,γ andξ corresponds to the E-Step of the EM algorithm, and this reestimation of the

parameters corresponds to the M-Step. Most of the time of one iteration is consumed at

the calculation of the forward and backward probabilities. Therefore, the Baum-Welch

algorithm also has the time complexity ofO(T N2).

2.2.5 Implementation Issues

Scaling

As described in Section 2.2.2, the calculation of the forward and backward probabilities

involves a number of multiplications of small numbers in the range of [0,1], which

can easily lead to underflow to zero. To prevent this, somescaling techniques must

be applied [19, 29, 10]. By scaling the probabilities at each time step by some scaling

factor to make them fall into a constant range, we can prevent underflow. The technique

described here [10] scales the forward probabilitiesαt(i) to α̂t(i) so that

N∑

i=1

α̂t(i) = 1 for all t.
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The modified forward-backward algorithm is as follows.

Forward Procedure:

Initialization:

α̃1(i) = α1(i) 1 ≤ i ≤ N

c1 =


N∑

i=1

α̃1(i)


−1

Recursion: 1≤ t ≤ T − 1

α̂t(i) = ctα̃t(i) 1 ≤ i ≤ N

α̃t+1( j) =


N∑

i=1

α̂t(i)ai j

 b j(ot+1) 1 ≤ j ≤ N

ct+1 =


N∑

i=1

α̃t+1(i)


−1

.

Backward Procedure:

Initialization:

β̂T(i) = βT(i) = 1 1≤ i ≤ N

β̃T(i) = ˆβT(i) 1 ≤ i ≤ N

Recursion: T − 1 ≥ t ≥ 1

β̂t(i) =

N∑

j=1

ai j bj(ot+1)β̃t+1( j) 1 ≤ i ≤ N.

β̃t(i) = ctβ̂t(i) 1 ≤ i ≤ N

Note thatα̂t(i) = Ct
1αt(i) andβ̂t(i) = βt(i)CT

t+1 where

C j
i =

j∏

t=i

ct.

P(oT
1 |λ) can not be calculated directly since it would be out of the machine precision

(that is the reason why we introduced the scaling). By using scaling factorsct calculated
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in the modified forward-backward algorithm, logP(oT
1 |λ) can be calculated as follows.

logP(oT
1 |λ) = log

N∑

i=1

αT(i)

= log
1

CT
1

N∑

i=1

α̂T(i)

︸    ︷︷    ︸
=1

= −
T∑

t=1

logct.

When the scaling is used at the forward-backward probability calculation of the Baum-

Welch algorithm, the reestimation formulas need to be modified. However, the modifi-

cation is simple as follows, just replacingαt(i) with α̂t(i), andβt(i) with β̂t(i), except for

the addition of the termct+1 in the reestimation formula forai j .

π̄i =
α̂1(i)β̂1(i)∑N

i=1 α̂T(i)

= α̂1(i)β̂1(i)

āi j =

∑T−1
t=1 α̂t(i)a(qi ,qj)b(qj ,ot+1)β̂t+1( j)ct+1∑T−1

t=1 α̂t(i)β̂t(i)

b̄i j =

∑T
t=1 δ(Ot,oj)α̂t(i)β̂t(i)∑T

t=1 α̂t(i)β̂t(i)
.

Multiple Observations

When we apply the Baum-Welch algorithm to the training of a character-based HMM

in our approach, we consider eachkth sentenceSk = o(k)Tk

1 in the texts is independently

generated by the HMM. Then the probability to be maximized is as follows.

P(Text|λ) =

K∏

k=1

P(Sk|λ) (2.1)

=

K∏

k=1

P(o(k)Tk

1 |λ). (2.2)

This situation is calledmultiple observations. The modification to the single observation

Baum-Welch algorithm is straightforward. In the numerator and the denominator of the
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reestimation formulas, we sum the statistics for each sentence as

π̄i =

∑K
k=1 γ

(k)
1 (i)

K

āi j =

∑K
k=1

∑Tk−1
t=1 ξ(k)

t (i, j)
∑K

k=1

∑Tk−1
t=1 γ(k)

t (i)

b̄i j =

∑K
k=1

∑Tk
t=1 δ(O

(k)
t ,oj)α

(k)
t (i)β(k)

t (i)
∑K

k=1

∑Tk
t=1α

(k)
t (i)β(k)

t (i)
.

We can easily introduce the scaling to the multiple observation Baum-Welch algorithm

in the same way we introduced it to the single observation Baum-Welch algorithm.

Decomposing training data into independent multiple sequences will make it easy

to apply some techniques for faster training such as incremental estimation [17] and

parallelization. In addition, in the case where word-based HMMs are trained, we might

not need to perform the scaling since each observation is not long.

2.3 Maximum Entropy Framework

In this section, we describe the maximum entropy framework. Recently, the maximum

entropy framework has been successfully applied to many natural language processing

tasks such as machine translation, part-of-speech tagging, and named entity recognition

[4, 30, 6]. One of the most important advantages of the maximum entropy framework is

that it can combine diverse forms of cues, known asfeatures, in a principled manner, and

does not assume any condition on their distributions such as the independence of each

feature. Therefore, we can automatically obtain the same effect as backoff or smoothing

by introducing a bag of overlapping features at ease.

The maximum entropy method estimates a probability distributionp(x, y) ∈ P given

training data{(x1, y1), (x2, y2), · · · , (xN, yN)}. In our estimation of a tag emission model,

x corresponds to a tag andy corresponds to the contexts that the tag emission model can

access to determine output the tag at each time step. To focus on a certain part of the
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contexts, we define a binary-valued function, called afeature function, and denote a set

of feature functions as

F = { fi : (x, y) 7→ {0,1}, i ∈ {1,2, · · · ,n}}.

As mentioned above, these feature functions do not need to be independent of each

other. For example, in a tag emission model which we describe in Chapter 3.3, feature

functions look like as follows.

f1(x, y) =


1 x = t5 ∧ current-state(y) = q3

0 otherwise

f2(x, y) =


1 x = t5 ∧ current-state(y) = q3 ∧ previous-state(y) = q1

0 otherwise

We define anempirical distributionas

p̃(x, y) =
Count(x, y)

N
,

whereCount(x, y) counts the number of times that (x, y) appeared in the training data

andN is the traing data size. Then, we denote the empirical expectation offi as

Ep̃[ fi] =
∑

x,y

p̃(x, y) fi(x, y).

Similarly, the expectation offi with respect to the distributionp(x, y) is denoted as

Ep[ fi] =
∑

x,y

p(x, y) fi(x, y).

The maximum entropy method requires thatEp[ fi] = Ep̃[ fi], i.e.,

∑

x,y

p(x, y) fi(x, y) =
∑

x,y

p̃(x, y) fi(x, y).

This requirement is called aconstraint equation, or aconstraint.

We define the subset ofP, which consists of distributions which satisfy the con-

straint equations, as follows.

C =
{

p ∈ P | Ep[ fi] = Ep̃[ fi] i ∈ {1,2, · · · ,n}
}
.
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The maximum entropy method selects the distribution which is most uniform among

the models inC. The uniformity is measured by the entropy defined as

H(p) = −
∑

x,y

p(x, y) log p(x, y).

Then, the maximum entropy method selects the modelp∗ with the maximum entropy:

p∗ = argmax
p∈C

H(p)

It can be proved that that there is always a unique modelp∗, andp∗ is in the form:

pΛ(x, y) =
1

ZΛ

exp


∑

i

λi fi(x, y)

 ,

whereλi is the weight for the featurefi andZΛ is a normalization constant such that

ZΛ =
∑

x,y

exp


∑

i

λi fi(x, y)

 .

The values forλi can be estimated by numerical methods such as the Improved Iterative

Scaling (IIS) algorithm [28].

2.4 Related Work

Cutting et al. [10] applied a word-based hidden Markov model and its unsupervised

learning, the Baum-Welch algorithm, to English POS tagging to achieve the same goal

as our domain adaptability. They used word dictionary to reduce the time complexity of

the training and achieved state-of-the-art accuracy for English POS tagging. Merialdo

[21] also applied the Baum-Welch algorithm to improve English POS tagging which

uses word-based hidden Markov models. However, they concluded that the Baum-

Welch algorithm does not improve the accuracy when we have sufficiently large tagged

corpus and can calculate good initial parameters for the Baum-Welch algorithm. We

believe that this is because the state-tag relation assumed at the estimation of initial

parameters changes as the Baum-Welch algorithm proceeds.
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In Japanese morphological analysis, it is harder to apply Baum-Welch type algo-

rithm in word-based approach because of the ambiguity in word boundaries. Yamamoto

[35] used word-based HMM and the Baum-Welch type unsupervised learning, utilizing

existing rule-based morphological analyzer, JUMAN[36], to generate the word network.

Character-based methods are proposed mainly for word segmentation in the lan-

guages such as Japanese and Chinese where there is no word segmentation marker

[37, 27, 22, 31].
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Chapter 3

Two-step Model for Morphological
Analysis

In this chapter, we describe our approach to morphological analysis which consists of

two parts, a tag-independent character-based HMM and a tag emission model.

3.1 Overview

Our goal is to achieve domain adaptability and tag adaptability defined as follows.

Domain adaptability The fitting of the probabilistic model’s parameters to the target

text type.

Tag adaptability The method’s ability to handle any tag set when required by another

NLP system which comes after morphological analysis.

To achieve domain adaptability and tag adaptability at the same time, we divide param-

eter estimation into the estimation of a character-based tag-independent HMM and the

estimation of a tag emission model. Domain adaptability is achieved by unsupervised

learning of a character-based tag-independent HMM. On the other hand, tag adaptability

is achieved by this division of parameter estimation and by the employment of an HMM
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Figure 3.1: How the state-tag relation can be estimated from a small corpus

with a sufficiently large state space to contain information required for morphological

analysis with any tag set.

An intuitive explanation for why unsupervised learning of a character-based HMM

has an effect on making the amount of required tagged corpus smaller is as follows.

HMMs have been successfully applied to morphological analysis, combined with the

Baum-Welch algorithm. We expect that, trained by the Baum-Welch algorithm from a

raw corpus large enough to capture the statistical tendencies, a character-based HMM

becomes to yield a certain fixed Viterbi state sequence for the character sequences which

must be equally tagged. In other words, we expect that the hidden states classify char-

acters according to their corresponding tags. When the number of states is less than the

number of output characters, it also can be said that the hidden states performsmoothing

of output characters. The ideal situation is illustrated in Figure 3.1. The figure shows

the case where the trained model is in stateS1 for 5 times as the most probable state for

input data, and for 4 times out of 5 times the correct tag the system must output isT1.

When we relateS1 toT1 by viewing one cooccurrence in the tagged corpus, the system

will achieve the accuracy (precision) of 0.8 (= 4/5) with respect to stateS1 and tagT1.

Our method for Japanese morphological analysis then consists of two estimation

phases and two runtime phases:

Estimation:
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1. Unsupervised estimation of a character-based HMM by the Baum-Welch

algorithm using an untagged corpus.

2. Supervised estimation of a tag emission model using a tagged corpus and the

trained character-based HMM.

Runtime:

1. Find the Viterbi path given a sentence.

2. Emit the most probable tags using the tag emission model.

In Section 3.2, we describe the unsupervised training of a character-based HMM by

the Baum-Welch algorithm. In Section 3.3, we describe tag emission models and their

estimation. In Section 3.4, we describe the runtime tagging procedures.

Although we want to train an HMM with a large state space in addition to the state-

tag separation to achieve tag adaptability, the Baum-Welch algorithm is not applicable

because it has the time complexity ofO(T N2). To enable training of an HMM with a

large state space, we apply Gibbs sampling to the standard Baum-Welch algorithm. We

leave the description of this Gibbs sampling version of the Baum-Welch algorithm for

the next Chapter.

3.2 Training of character-based HMM

To achieve tag adaptability, we have divided parameter estimation into the estimation

of a character-based tag-independent HMM and the estimation of a relation between

HMM’s hidden states and the part-of-speech tags. In this section, we describe the issues

of the first estimation, i.e., the estimation of a character-based tag-independent HMM.

The training of a character-based HMM is performed by the Baum-Welch algorithm

using an untagged raw corpus. Because our method does not assume prior relation be-

tween hidden states and tags, we can train an HMM with arbitrary number of states. On
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the other hand, since we cannot obtain tag-specific initial parameters, we start training

from such as random parameters. In the experiments, we usually trained each HMM

starting from random initial parameters. More uniform initial parameters might be de-

sirable in terms of preventing overfitting. However, it seems in our case that uniformity

leads to slower convergence and has not significant changes in the final accuracy of the

task. In the experiments, we train HMMs using two raw training data, a small (< 10,000

sentences) one and a large (> 100,000 sentences) one, and discuss the required amount

of the raw corpus to train a HMM.

3.2.1 Reducing Output Symbols

Since a Japanese character is usually represented in 2 bytes, which require 65536 array

indexes, it is not efficient to use character code itself as the output symbol. To reduce the

size of the output symbol set, i.e.M, we consider the most frequent characters as distinct

output symbols and other characters as the symbolUNK, which stands for unknown

characters. We varied the number of distinct symbols in the following experiments to

see the effect of the output symbol reduction.

3.2.2 Stopping Criterion

In the Baum-Welch algorithm, the likelihood is exactly obtained in the forward-backward

probability calculation. Therefore, we can use the change in the likelihood as a stop-

ping criterion. In our experiments, however, we force the training to stop at the 100th

iteration, rather than check convergence at each iteration. This is because the likelihood

slightly increases even at the iteration such as 100 or 200, and the amount of this in-

crease cannot be distinguished from the amount of the slight increase in the initial stage

of the training. Figure 3.2 shows the training curves of the Baum-Welch algorithm

applied to Part 1 of the Kyoto corpus (M = 501) described in Chapter 5.
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Figure 3.2: Training curve of the Baum-Welch algorithm

-1.1e+06

-1.05e+06

-1e+06

-950000

-900000

-850000

-800000

-750000

-700000

-650000

-600000

0 20 40 60 80 100

Lo
g 

Li
ke

lih
oo

d

Iteration

N=40, Exact
N=80, Exact

N=160, Exact

3.2.3 Augmenting Output Symbols with Character Types

Here, we describe the augmentation of the HMM’s output symbols with character type

information. In Japanese, there are several distinct character types such askanji, hi-

ragana, katakana, alphabet, number, andspecial. Examples of these character types

are shown in Table 3.1. Each character type has its own role, as hiraganas are often

used to write functional words or verb conjugation suffixes, katakanas are used for the

words from foreign languages. Therefore, the changes in character types are significant

clues to find the word boundary. To incorporate this significant clues into the character-

based HMMs, we tried augmenting the symbols which the HMMs output. For each

output symboloi, we assign one of two new output symbols, represented as〈oi ,0〉 and

〈oi ,1〉, where 0 and 1 are determined by the change in character type which is defined
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Kanji 日木川走上人動来行犬海山言 · · ·
Hiragana あいうえおかきくけこさしす · · ·
Katakana アイウエオカキクケコサシス · · ·
Alphabet ＡＢＣＤＥＦＧＨＩＪＫＬＭ · · ·
Number １２３〇一二三十千万億兆京 · · ·
Special 。、？！（）「」％＝・●◇ · · ·

Table 3.1: Character types in Japanese

as follows.

type-change(ot) =


1 if char-type(ot) , char-type(ot+1)

0 otherwise,

where, char-type(oT+1) is defined as the type which is not equal to any character type.

As a result, the size of the new symbol set becomesM × 2.

For example, suppose that we have a symbol set{0,1, · · · ,99} and a set of char-

acter types{C(kanji),H(hiragana),K(katakana),A(alphabet),N(number),S(special)}.
We assign a new symbol codeonew

t ∈ {0,1, · · · ,199} to each symbolot in a sentence. In

this case,onew
t is calculated as

onew
t = type-change(ot) × 100+ ot.

The following illustrates this assignment process.

1 人 の 男 が ガ ン ジ ス 川 を 渡 っ て い る 。
Symbol code 50 2 11 5 13 27 21 22 28 6 17 6 15 19 12 18 61

Character type N C H C H K K K K C H C H H H H S
Change in type 1 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1

New code 150 102 111 105 113 27 21 22 128 106 117 106 15 19 12 118 161

We consider the sentence as a sequence of these new codes when we train or use

character-based HMM. We found that this symbol augmentation significantly improve

the accuracy of word segmentation. Details of the effect of this symbol augmentation

are shown in the experiments chapter.
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3.3 Tag Emission Models

This section describes the details of tag emission models. Tag emission models are es-

timated using a tagged corpus and a character-based HMM estimated from an untagged

corpus. For each character, a tag emission model determines which tag is the most prob-

able tag in the task’s tag set,T = {τ1, τ2, · · · , τ|T |}, by viewing the most probable state

transitions for the character sequence, and some other contexts. We investigated two

types of emission models. The first is a simple frequency-based model, and the second

is a more complicated model based on the maximum entropy framework.

3.3.1 Frequency-based Model

UNIMAP

UNIMAP is the most simple tag emission model that emits a tag which is determined

only by a state at the character position in a Viterbi path. That is each state is mapped

to a unique tag. We estimate the most probable tag for each stateqi by counting the

cooccurrence of the state and the tag in a training tagged corpus. We denote a training

tagged corpus as
{
〈o(1), τ(1)〉, 〈o(2), τ(2)〉, · · · , 〈o(K), τ(K)〉

}
,

whereτ(k) is a tag sequence annotated to for akth sentenceo(k). We also denote the

Viterbi path for thekth sentence asv(k). By using these notations, we can write the

estimation of the state-to-tag mapping,unimap(qi), as follows.

unimap(qi) = argmax
τ j∈T

P(τ j |qi)

= argmax
τ j∈T

∑K
k=1

∑Tk
t=1 δ(qi , v

(k)
t )δ(τ j , τ

(k)
t )

∑K
k=1

∑Tk
t=1 δ(qi , v

(k)
t )

Since the estimation of the UNIMAP model relies on the conditional probability

of only one state, statistically reliable estimation can be achieved with a small amount
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of corpus. Therefore, for our final goal of minimizing the amount of tagged corpora

needed to construct a probabilistic model, the most ideal case is that each hidden state

of the trained HMM deterministically corresponds to a certain tag. In this case, we can

estimate that relation from a very small tagged corpus where each state occurs only few

times.

However, there is no guarantee that an HMM is trained as such, because we decided

to have no constraint which leads to such training, in order to keep the training inde-

pendent of a task or a tag set as far as possible. Therefore, we propose another model

to incorporate multiple cues to help the model determining appropriate tags by viewing

other contexts rather than one state in a Viterbi path.

BIMAP

In natural language processing, using higher ordern-grams such asbigram andtrigram

is a straightforward and well-known way to incorporate multiple cues. In the same way,

we can extend a UNIMAP model to determine a tag at timet by viewing states at time

t − 1 and timet. We call this model BIMAP. Then the mappingbimap(qi ,qj) becomes

bimap(qi ,qj) = argmax
τ j∈T

P(τ j |qi1,qi2)

= argmax
τ j∈T

∑K
k=1

∑Tk
t=1 δ(qi1, v

(k)
t−1)δ(qi2, v

(k)
t )δ(τ j , τ

(k)
t )

∑K
k=1

∑Tk
t=1 δ(qi1, v

(k)
t−1)δ(qi2, v

(k)
t )

.

3.3.2 Incorporating Multiple Cues in the Maximum Entropy Frame-

work

Using many cues to determine tags as in the BIMAP model increases the data sparse-

ness. That is, more tagged corpora are needed for statistically reliable estimation, and

therefore it seems to conflict with our aim of minimizing the amount of tagged corpora

needed to construct a probabilistic model. However, by employing the maximum en-

tropy framework to combine various cues, we can balance the two demands, the same
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performance as the UNIMAP model when the available tagged corpus is small, and

more accurate model when a large tagged corpus is available. We can see in the experi-

ments that the maximum entropy method increase the accuracy even when only a small

tagged corpus is available.

Features for a Maximum Entropy Tag Emission Model

In this thesis, we use the following four types of features for the maximum entropy tag

emission model.

Unigram Features:

vt = qi ∧ τt = τ j ∀qi , τ j (always used)
(3.1)

vt−b = qi ∧ τt = τ j ∀qi , τ j 1 ≤ b ≤ UB

(3.2)

vt+ f = qi ∧ τt = τ j ∀qi , τ j 1 ≤ f ≤ UF

(3.3)

Bigram Features:

vt−1 = qi1 ∧ vt = qi2 ∧ τt = τ j ∀qi1,qi2, τ j (3.4)

vt−b−1 = qi1 ∧ vt−b = qi2 ∧ τt = τ j ∀qi1,qi2, τ j 1 ≤ b ≤ BB

(3.5)

vt+ f−1 = qi1 ∧ vt+ f = qi2 ∧ τt = τ j ∀qi1,qi2, τ j 1 ≤ f ≤ BF
(3.6)

Trigram Features:

vt−2 = qi1 ∧ vt−1 = qi2 ∧ vt = qi3 ∧ τt = τ j ∀qi1,qi2,qi3, τ j (3.7)

Character Features:

ot = oi ∧ τt = τ j ∀oi , τ j (3.8)

wheret denotes the current position.UB, UF, BB, andBF are constants which control

the scope of the features. The feature set 3.1 is equivalent to the UNIMAP model. The
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feature set 3.2 and 3.3 slide this one-to-one relation backward and forward respectively

to take the effect of distant states into account. The feature set 3.4 corresponds to the

BIMAP model, which views two consecutive states in the Viterbi path. The feature

set 3.5 and 3.6 slide their scope in the same way as the unigram features. The trigram

feature set 3.7 views three consecutive states. The character feature set views the output

symbol at that position. Figure 3.3, 3.4, and 3.5 illustrate how these feature types access

the contexts.

1 1 2 1 1

� � � � �

0

�

V i t e r b i  p a t h

� ?�t a g
/

U F = 2U B = 1

c u r r e n t  p o s i t i o n

Figure 3.3: Unigram Features

1 1 2 1 1
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�

V i t e r b i  p a t h

� ?�t a g
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B F = 2B B = 1

c u r r e n t  p o s i t i o n

Figure 3.4: Bigram Features

To construct a maximum entropy tag emission model, we first define the feature
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Figure 3.5: Character Features

set. Next, we calculate the empirical distributions of the features, using a tagged corpus

and the Viterbi paths for the sentences in that corpus. Then, maximum entropy method

estimates the weights for the features according to these empirical distributions. In this

study, we used for this estimation the ChoiceMaker Maximum Entropy Estimator [7],

which implements the IIS algorithm.

For the maximum entropy tag emission model, the most probable tag at positiont is

determined as

τ∗t = argmax
τ j∈T

1
ZΛ

exp


∑

i

λi fi(t j , 〈{· · · , vt−1, vt, vt+1, · · · },ot〉)
 .

3.4 Tagging Procedure

In this section, we describe the runtime tagging procedure in our two-step model ap-

proach. The tagging procedure consists of the Viterbi search using the character-based

HMM and the tag emission using the tag emission model.

3.4.1 Character-based tagging

Here, we first describe how to perform word level tagging with a character-based method.

In a character-based method, we can perform word segmentation by assigning tagtend,
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which is for instance represented as”1”, to the last character of each word, and tag

tother represented as “0” to the other characters. Similarly, morphological analysis (word

segmentation+ part-of-speech tagging) can be performed by assigning a tag such as

end-of-Yto the last character of a word which has part-of-speech tag Y. Precisely, we

employ the tag schemes which is similar to those employed in [37, 22]. When our task

is only the word segmentation, we use the following tag scheme:

tend for the last character of a word

tother for other characters.

When our task is the segmentation and the part-of-speech tagging, we use the following

tag scheme:

tendi for the last character of a word which has POSpi

tother for other characters.

3.4.2 The Viterbi Search

Most supervised methods that employ an HMM for morphological analysis consider

that an hidden state relates to an unique part-of-speech tag deterministically. Then the

parameters of an HMM is estimated using a tagged corpus. To tag a sentence, they

deterministically output the most probable tag sequence according to the most probable

state sequence which can be computed efficiently by the Viterbi algorithm. Figure 3.6

illustrates the segmentation of a Japanese sentence “かわを渡る。(kawa-wo wataru .)”

performed by a character-based HMM whose hidden states correspond to the segmen-

tation tags uniquely. The emphasized state sequence in the figure is the Viterbi path.

In our approach, we first find the most probable state sequence by the Viterbi al-

gorithm as illustrated in Figure 3.7 to tag a sentence by using a trained character-based

HMM. This is the same step with a state-tag coupled method. We have mentioned that in

the initial stages of the training we can not exploit the sparseness because the emission
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Figure 3.7: Find the Viterbi path given a sentence

probability matrix, i.e.,B, is dense. Fortunately, after the training, most of the emission

probabilities are close to zero. Figure 3.8 shows the rate of non-zero (> 0.00001) prob-

abilities in B during the Baum-Welch training using the training data with 4,577,956

characters. Therefore, we can use the Viterbi algorithm which exploits the sparse-

ness to find the Viterbi path. We store for each symboloj all possible states, i.e.,
{
qi ∈ {q1, · · · ,qN} | B(qi ,oj) > threshold

}
, where threshold is set to some small value,

for example 0.00001. Because a path which hasqi such thatB(qi ,ot) ≈ 0 can not be the

Viterbi path, we can restrict the max and argmax operation in the Viterbi algorithm to

the possible state combinations. Figure 3.4.2 illustrates this algorithm.

After the Viterbi search, we must determine the most probable tag sequence because

there is no deterministic mapping between states and tags. For this purpose, we estimate

a tag emission modelbeforehand by using a tagged corpus and the trained HMM.
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Figure 3.10: Emit tags according to the state in the Viterbi path

3.4.3 Tag Emission

The tag emission model emits tags stochastically according to the contexts such as the

Viterbi path and the characters in a sentence. At each character position, the most

probable tagt∗ is determined by

t∗ = argmax
t

P(t|context information).

The forms ofP(t|context information) depend on the tag emission models.

Figure 3.10 illustrate this process. In this case, the tag emission model is illustrated

as it can access only the state at the current character position, i.e., UNIMAP. The most

probable tag for state 0 and 2 is “0”, and “1” for state 1.
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Chapter 4

Training of HMM with Large State
Space

In this chapter, we introduce Gibbs sampling to the standard Baum-Welch algorithm to

enable the training of an HMM with a large state space.

4.1 Number of States Needed for Morphological Analy-

sis

The number of distinct POS tags varies according to annotation schemes. For example,

the EDR corpus [12] has 31 POS tags. On the other hand, the Kyodai text corpus [18]

has hierarchical POS tags, 13 major POS tags at the top level, 109 minor POS tags at the

next level, and for each POS which conjugates, it has conjugation types and conjugation

forms. Combination of all level tags results in about 1,500 distinct tags. When we

assume a one-to-one mapping between hidden states and tags, we need at least the same

number of hidden states as the number of the POS tags. Therefore, to make a model

adaptive to any tag set, we require a method which can train an HMM with up to few

thousands of states in a practical time.

The standard Baum-Welch algorithm can not be used to train an HMM with large

state space because it has the time complexityO(T N2), whereT is the size of the training
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data, andN is the number of states of the HMM. In addition, since we do not have strong

assumption about the structure of the HMM, the initial parameters that give the sparse

probability matrix, will not be given at the beginning of the training. Therefore, the

technique which reduces the time complexity of the standard Baum-Welch algorithm by

exploiting the sparseness of the emission probability matrix [10] cannot be applied. As

a solution of this problem, we introduce Gibbs sampling to the Baum-Welch algorithm.

4.2 Baum-Welch Algorithm via Gibbs Sampling

This section describes a variant of the Baum-Welch algorithm which utilizes Gibbs sam-

pling in the forward-backward calculation to reduce the training time complexity [16].

Since the most of the time is consumed in the forward-backward probability calcula-

tion, we try to reduce the time complexity of this step by using some approximated

calculation rather than the exact calculation at some, not so large, cost in accuracy.

4.2.1 Approximation by Sampling

Samplingis a method to generate realizations of random variablesX = {X1,X2, · · · ,Xn}
according to the probability distributionP(X). Using a sufficient number of such sam-

ples {x(1), x(2), · · · , x(K)}, we can approximate the expectation of a functiona(X) with

respect to the distributionX as

EP[a(X)] =
∑

x1,x2,··· ,xn

a(x1, x2, · · · , xn)P(X1 = x1,X2 = x2, · · · ,Xn = xn)

≈ 1
K

K∑

k=1

a(x(k)
1 , x

(k)
2 , · · · , x(k)

n ).

In our case, we want to obtain the samples of the state sequence drawn according to the

distribution given the observations and the current model parameters, i.e.,P(Q1,Q2, · · · ,QT |oT
1 , λ).
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Given a number of the samples of the state sequence for the observations, we can cal-

culate the statistics needed to reestimate the model’s parameters by counting the state

transitions and symbol emissions. Then the reestimation formulas using samples be-

come

π̄i =

∑K
k=1

∑T(k)

t=1 δ(q
(k)
1 ,qi)

K

āi j =

∑K
k=1

∑T(k)−1
t=1 δ(q(k)

t ,qi)δ(q
(k)
t+1,qj)∑K

k=1

∑T(k)−1
t=1 δ(q(k)

t ,qi)

b̄i j =

∑K
k=1

∑T(k)

t=1 δ(q
(k)
t ,qi)δ(o

(k)
t ,oj)∑K

k=1

∑T(k)

t=1 δ(q
(k)
t ,qi)

where{q(k)
1 ,q

(k)
2 , · · · ,q(k)

T } is thekth sample for the random variables{Q1,Q2, · · · ,QT}
which correspond to the state sequence, andK is the total number of generated samples.

4.2.2 Gibbs Sampling

Among the various sampling methods,Gibbs samplingis one of the simplest meth-

ods. Gibbs sampling is a Monte Carlo Markov Chain (MCMC) sampling method. This

means that each sample is generated by the Markov chain according to the previous

sample. Under the suitable conditions, the distribution of the samples converges to the

stationary distribution which is equal to the desired distribution from which we want to

draw samples [15, 24].

Starting from some initial sample{x(1)
1 , x(1)

2 , · · · , x(1)
n }, Gibbs sampler generates the

next sample repeatedly. To generate the (k + 1)th sample from thekth sample, Gibbs

sampler updates one component of the vector at a time as follows.

Draw x(k+1)
1 from P(X1|{X}\X1) given x(k)

2 , x
(k)
3 , · · · , x(k)

n .

Draw x(k+1)
2 from P(X2|{X}\X2) given x(k+1)

1 , x(k)
3 , · · · , x(k)

n .

...

Draw x(k+1)
n from P(Xn|{X}\Xn) given x(k+1)

1 , x(k+1)
2 , · · · , x(k+1)

n−1 .

45



Note that the new value forXi is used immediately to draw the next value forXi+1. After

some long time steps, we can use the generated samples to calculate statistics of the

desired distribution.

Gibbs sampling requires three parameters to be decided:

1. The number of samples discarded until the algorithm reaches the stationary dis-

tribution.

2. The number of samples collected after reaching the stationary distribution.

3. The number of runs of above cycle.

However there is no definite method to decide them.

4.2.3 Gibbs Sampler for the Baum-Welch Algorithm

An HMM is considered as a graphical model [14] written as in Figure 2.1. In general,

each node in a graphical model is conditionally independent from other nodes given its

Markov blanket, defined as the children of a node, parents, and parents of the children.

Therefore, for an HMM we get

P(Qt|{Q}\Qt,O
T
1 ) = P(Qt|Qt−1,Qt−1,Ot)

∝ P(Qt|Qt−1)P(Ot|Qt)P(Qt+1|Qt).

The pseudo-code for generatingq(k+1)
t becomes as Program 1. As we can see, the gen-

eration of the next value for one component of the vector costsO(N), whereN is the

number of states of an HMM. If we generateK samples per each observation symbol

to collect statistics, the total time complexity of the Baum-Welch algorithm via Gibbs

sampling becomesO(KNT). If we can collect reliable statistics by generatingK(� N)

samples, Gibbs sampling can be used to accelerate reestimation. In our experiments,

the settings such as 1 cycle of 20 discarded and 20 collected was found to be enough

and thus Gibbs sampling is practical.
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pstate= q(k+1)
t−1 ;

nstate= q(k)
t+1;

sym= ot;
acc= 0.0;
r = 0.0;
for (i = 0; i < N; i + +){

acc+= a(pstate,qi) × b(qi , sym) × a(qi ,nstate);
}
r = random number in [0,1];
r × = acc;
acc= 0.0;
for (i = 0; i < N; i++){

acc+= a(pstate,qi) × b(qi , sym) × a(qi ,nstate);
if (r ≤ acc){

q(k+1)
t = qi;

break;
}

}
Program 1: Pseudo code for generatingq(k+1)

t

4.2.4 Timing Comparison with the standard Baum-Welch algorithm

Figure 4.1 shows the timing comparison between the Gibbs sampling version of the

Baum-Welch algorithm and the standard Baum-Welch algorithm. The plot is for the

training data of 402,295 output symbols in the symbol set with size 501. The sampling

strategy is 1 cycle of 20 discarded and 20 collected (1-20-20). We can see that the Gibbs

sampling version significantly reduces the time complexity to the linear. In Chapter

5, we show that while there is the penalty according to the approximation by Gibbs

sampling, this 1-20-20 setting actually has the benefit which exceeds the penalty when

a large raw corpus is used to train an HMM.

4.2.5 Initial Sample Generation

One remaining question in the Gibbs sampling Baum-Welch algorithm is how to gener-

ate the initial sample. The simplest method is to generate the initial sample by assigning

each component at random. In addition to that, we tested two initialization methods
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which intend to make the sampler reach the stationary distribution earlier.

The first method generates the each component of the initial sample greedily ac-

cording to the conditional probability given the previous component as follows.

Generateq(1)
1 according toπ(qi) × b(qi ,o1)

Givenq(1)
t andot+1, generateq(1)

t+1 according to the distribution:

P(Qt+1|Qt,Ot) ∝ P(Qt+1|Qt)P(Ot+1|Qt+1) = a(q(1)
t ,qi) × b(qi ,ot+1).

We call this method asGREEDY. Note that, the cost of this generation of initial sample

is less than one full generation of Gibbs sampling.

The second method, calledPBEST, uses the sample that yielded the greatest joint

probability, i.e.,P(oT
1 ,q

T
1 ), at the last Baum-Welch iteration as the initial sample of the

current iteration. This method is also not so costly since we only need to compare and

store the the sample.

Figure 4.2 shows the comparison between these three initialization methods. Here,

we show the goodness of the trained models measured by the (test-set) cross entropy

per symbol,HS, defined as follows.

HS = − 1
T

logP(Text|λ)

= − 1
T

K∑

k=1

logP(o(k)Tk

1 |λ),

whereT is the total number of symbols in the text, andK is the total number of sentences

in the text. Small values indicate good models and roughly indicate good accuracy

in morphological analysis. The models are trained using the text ofT = 402,295

and M = 501 from newspapers with 100 Baum-Welch iterations.Closedmeans that

we calculated cross entropy using the training text andopenmeans that we calculated

cross entropy using the text which is not used for training, in this caseT = 372,373

(the number of sentences is same as the training text). The figures are the averaged
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Figure 4.2: Initial sample generation methods and cross entropy per symbol of the
trained HMMs

values over 4 runs for the sample generation strategies of 1 cycle of 20 discarded and

20 collected, written as 1-20-20, and 1 cycle of 40 discarded and 40 collected, written

as 1-40-40, respectively. We can see thatGREEDY andPBEST perform better than the

simpleRANDOM. In our later experiments, we use the setting of 1-20-20 andGREEDY

initialization which marked the highest performance for the open test.
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Chapter 5

Experiments

Our final goal is to achieve domain adaptability and tag adaptability. We expect that

domain adaptability with only a small tagged corpus is achieved by unsupervised learn-

ing of a character-based tag-independent HMM. On the other hand, we expect that tag

adaptability is achieved by the division of parameter estimation and by the employment

of an HMM with a sufficiently large state space to contain information required for

morphological analysis with any tag set. To enable training of an HMM with a large

state space, we have introduced Gibbs sampling to the Baum-Welch algorithm. We also

proposed symbol augmentation to improve the accuracy of morphological analysis. In

this chapter, we show a series of experiments conducted to see the effectiveness of our

approach. In particular, we show that our approach is effective for domain adaptability

in the sense that we can robustly estimate probabilistic parameters from a small amount

of corpus.

In Section 5.3.2, we show the experimental results on word segmentation using the

UNIMAP tag emission model and a small raw corpus. Here, we show the relation

between the penalty of the Gibbs sampling and the its benefit. When the raw corpus

used to train an HMM is small, the benefit of Gibbs sampling is not significant.

In Section 5.3.3, we show the experimental results on word segmentation using sym-

bol augmentation. In this experiment, we show that symbol augmentation greatly im-
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proves the accuracy of word segmentation.

In Section 5.3.4, we show the experimental results on word segmentation using an

HMM trained with a large raw corpus. Here, we show that when the raw corpus used to

train an HMM is sufficiently large, the benefit of a large state space enabled by Gibbs

sampling exceeds the penalty according to the approximation by Gibbs sampling.

In Section 5.3.5, we show a series of feature tests for the maximum entropy tag

emission model. We show that the maximum entropy tag emission model significantly

improves the word segmentation accuracy when the available tagged corpus is large.

In Section 5.3.6, we vary the amount of tagged corpus used to train a tag emission

model to see the effect of unsupervised learning of a character-based HMM for domain

adaptability.

In Section 5.3.7, we compare the results in Section 5.3.6 with the accuracy of other

character-based methods, and show that our method achieves higher accuracy when the

available tagged corpus is small.

In Section 5.4, we show the experimental results on morphological analysis briefly.

5.1 Evaluation

The accuracy of morphological analysis is evaluated by using three measures,character

accuracy, word recall, andword precision. Character accuracy is defined as

character accuracy=
number of correctly tagged characters
number of characters in the test corpus

.

Word recall and word precision [23] are well-known measures for morphological anal-

ysis, which are defined as follows.

word recall=
number of correctly tagged (segmented) words

number of words in the test corpus
,

word precision=
number of correctly tagged (segmented) words

number of words the which system outputs
.

Note that character accuracy is an easier measure than word recall and word precision.
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number of sentencesnumber of words number of characters

Part 1 (for the closed test) 8,973 228,027 402,295

Part 2 (for the open test) 8,973 210,639 372,373

Table 5.1: Kyoto University text corpus divided into two parts

number of sentencesnumber of characters

112,429 4,577,956

Table 5.2: A large raw text from Mainichi shinbun

5.2 Data Set

To conduct experiments, we used the Kyoto University text corpus (the Kyoto corpus)

[18]. The Kyoto corpus consists of about 20,000 annotated sentences from news articles

of Mainichi shinbun, one of the major newspapers in Japan. We divided this corpus into

two parts as shown in Table 5.1, one is for the training of an HMM and a tag emission

model, and the other is for the open test. We also prepared a large raw text corpus for the

training of an HMM, which consists of about 100,000 sentences from Mainichi shinbun

[1]. The details are shown in Table 5.2.

5.3 Word Segmentation

Morphological analysis involves word segmentation and part-of-speech tagging. In this

section, we show the experimental results on word segmentation.

5.3.1 Baseline Method

To see whether the training of an HMM from raw texts is really significant, we prepare

a simple baseline method based on heuristics. This baseline method segments words

where the character type changes. Table 5.3 shows the accuracy of this baseline method
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For Part 1 For Part 2

CA WR WP CA WR WP

79.51 52.91 61.81 77.53 48.75 58.01

Table 5.3: Word segmentation accuracy for the Kyoto corpus by baseline method us-
ing character types. CA, WR, WP means character accuracy, word recall, and word
precision respectively.

for the Kyoto corpus. At least our methods must outperform this baseline method.

5.3.2 UNIMAP Emission Model

Tables 5.4, 5.5, and 5.6 show the accuracy of word segmentation by the UNIMAP emis-

sion models. To see the effect of the number of statesN, the number of symbolsM, and

the method of the E-Step, exact or Gibbs sampling, we varied these parameters in the

experiments. We trained each HMM starting from random initial parameters using Part

1 of the Kyoto corpus as training data. Each emission model is also estimated using all

of Part 1 of the Kyoto corpus. As described in Section 3.2.2, we forced the training to

stop at the 100th iteration.

From Tables 5.4, 5.5, and 5.6, we can observe a tendency that the accuracy becomes

higher as the number of states becomes greater. Tables 5.4, 5.5, and 5.6 also show that

the Gibbs sampling E-step has some penalty in accuracy compared with the exact E-

step. We display the figures in Table 5.4 as a graph in Figure 5.1 to see more clearly

that with M = 501 the effect of the larger state space exceeds the penalty of the Gibbs

sampling E-Step. However, with other settings,M = 1001 andM = 4001, we cannot

observe this tendency clearly. In particular, whenM = 4001, the accuracy of the HMM

(N = 640) trained by the Gibbs sampling Baum-Welch extremely decreases. It should

be because of the data sparseness problem.
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(M = 501)
N, E-Step For Part 1 (closed) For Part 2 (open)

CA WR WP CA WR WP

40 Exact 87.21 74.38 71.91 87.92 76.13 72.01

80 Exact 86.70 73.55 69.19 87.49 75.36 70.05

160 Exact 88.65 76.18 73.83 89.22 77.48 74.57

80 Gibbs 86.14 71.37 70.04 86.14 73.02 69.33

160 Gibbs 88.13 75.15 72.88 88.32 76.86 72.75

320 Gibbs 88.90 75.95 75.10 89.65 77.41 76.00
640 Gibbs 88.86 74.49 74.69 89.78 76.84 75.85

Table 5.4: Word segmentation accuracy for the Kyoto corpus by the UNIMAP emission
model (M = 501)

(M = 1,001)
N, E-Step For Part 1 (closed) For Part 2 (open)

CA WR WP CA WR WP

40 Exact 88.03 72.18 74.05 88.70 75.79 74.14

80 Exact 87.94 71.47 74.17 88.45 74.67 73.89

160 Exact 89.66 77.85 75.71 89.48 77.97 74.52

160 Gibbs 88.22 75.23 72.84 88.47 76.47 72.92

320 Gibbs 88.67 75.49 73.32 89.11 77.24 73.80

640 Gibbs 89.54 77.22 75.76 89.65 78.10 75.44

Table 5.5: Word segmentation accuracy for the Kyoto corpus byUNIMAP emission
model (M = 1,001)
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Figure 5.1: Accuracy vs. the number of states for the Kyoto corpus (M = 501, open
test)
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(M = 4,001)
N, E-Step For Part 1 (closed) For Part 2 (open)

CA WR WP CA WR WP

40 Exact 87.50 70.30 72.65 88.12 74.02 73.04

80 Exact 87.46 73.09 72.13 87.24 73.63 71.29

160 Exact 89.95 78.58 75.95 89.30 78.39 74.12

160 Gibbs 88.28 75.65 72.44 88.37 76.78 72.09

320 Gibbs 89.36 77.56 75.25 89.28 78.12 74.27
640 Gibbs 87.75 73.90 71.51 87.70 74.10 71.01

Table 5.6: Word segmentation accuracy for the Kyoto corpus by the UNIMAP emission
model (M = 4,001)

5.3.3 Augmenting Output Symbols with Character Types

In this section, we show that the symbol augmentation described in Section 3.2.3 greatly

improves the accuracy of word segmentation. Table 5.7 shows the performance of the

HMMs trained using Part 1 of the Kyoto corpus where symbols are augmented. Com-

pared with the performance of the HMMs trained using the Kyoto corpus encoded in

1001 symbols (Table 5.5), the augmented version marks about 2 points higher accuracy

with almost the same size of the symbol set. Therefore, we focus on the models using

this symbol augmentation in the following experiments.

5.3.4 Performance of HMMs trained using a Large Raw Corpus

In Section 5.3.2, we mentioned that the data sparseness problem interfere improvement

of accuracy in the case ofM = 1001 andM = 4001. Table 5.8 shows the accuracy of

the HMMs trained using the large raw corpus described in Section 5.2, which consists

of about 100,000 sentences. In this case, the accuracy increases asN becomes greater.

From this result, we conclude that the data sparseness problem can be solved by using a

sufficiently large raw corpus such as the raw corpus with 100,000 sentences. Combined
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(M = 501× 2)
N, E-Step For Part 1 (closed) For Part 2 (open)

CA WR WP CA WR WP

40 Exact 88.86 77.16 74.47 88.27 76.90 72.80

80 Exact 88.64 77.59 72.70 87.85 76.19 70.84

160 Exact 91.59 82.09 80.88 91.12 81.75 78.92

160 Gibbs 91.24 82.43 78.86 90.87 81.85 77.69

320 Gibbs 92.26 83.45 82.18 91.62 82.33 80.23

640 Gibbs 92.21 83.15 82.10 91.77 82.02 80.73

1280 Gibbs 92.36 82.73 82.52 91.96 82.05 81.18

Table 5.7: Word segmentation accuracy for the Kyoto corpus by the UNIMAP model
with symbol augmentation (M = 501× 2)

(M = 4001)
N, E-Step For Part 1 (closed) For Part 2 (open)

CA WR WP CA WR WP

40 Exact 86.04 71.54 69.56 86.35 72.49 70.06

160 Gibbs 88.95 76.51 74.35 89.17 78.02 74.08

320 Gibbs 89.96 78.43 76.18 90.35 79.25 76.98

640 Gibbs 90.35 79.27 76.75 90.73 80.32 76.99

Table 5.8: Word segmentation accuracy with HMMs trained using a large raw corpus
(M = 4001)

with the symbol augmentation, the training using a large raw corpus marks the highest

accuracy at this point as shown in Table 5.9.

We display the figures in Tables 5.8 and 5.9 as a graph in Figure 5.1 to see more

clearly the effect of symbol augmentation when HMMs are trained using a large raw

corpus. We can also observe, from the smooth increase in accuracy along with the num-

ber of states, that the data sparseness problem is solved by using a large raw corpus for

the training. Though there is only one data point (N = 40) for the exact E-Step because

of the lack of time (it will take approximately 18 days to train an HMM withN = 160
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(M = 2001× 2)
N, E-Step For Part 1 (closed) For Part 2 (open)

CA WR WP CA WR WP

40 Exact 89.39 78.55 75.98 88.32 76.92 73.43

160 Gibbs 92.02 84.18 80.38 91.06 82.46 77.96

320 Gibbs 92.83 84.59 82.68 92.06 83.83 80.42

640 Gibbs 93.42 85.47 84.08 92.93 84.78 82.32

Table 5.9: Word segmentation accuracy with HMMs trained using a large raw corpus
and symbol augmentation (M = 2001× 2)

by the exact Baum-Welch algorithm), the Gibbs sampling Baum-Welch algorithm out-

performs the exact Baum-Welch algorithm atN = 40. To find the reason why the Gibbs

algorithm outperforms the exact version, we will need further investigations.

5.3.5 Accuracy of Maximum Entropy Tag Emission Models

In this section, we show the accuracy of the maximum entropy tag emission models. As

described in Chapter 3.3.2, we use unigram features, bigram features, trigram features,

and character features. Table 5.10 shows the results of the experiment where we tried

various feature sets. In this experiment, we used the HMMs which are written as “320

Gibbs” and “640 Gibbs” in Table 5.9. Unigram features that view only the current state

are always used. UB, UF, BB, and BF in the table have the same meanings as in the

definition of the features in Section 3.3.2. Bullets in the “bi”, “tri” and “ch” columns

indicate that we used bigram features, trigram features, character features, respectively.

Note that, by definition,UB > 0 does not indicate that we used bigram features defined

by equation 3.4 (in page 36). We estimated a maximum entropy tag emission model for

each feature set by using Part 1 of the Kyoto corpus. As in the previous experiments,

the accuracy was measured for Part 1 and Part 2 of the Kyoto corpus.

We can see that even simple features such as forward unigram features greatly im-
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Figure 5.2: Comparison between the normal HMMs and the symbol-augmented HMMs
(trained using a large raw corpus)
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prove the accuracy (see the rows No. 3 – 7). Comparing the row No. 3 with No. 4, or

No. 12 with No. 13, we can see that the effect of the forward features exceeds that of the

backward features. The effect of the character features is also significant (see the row

No. 10 and No. 18). As a result of these feature tests, we obtained the feature set in the

row No. 18 and No. 21 that marks the highest accuracy of 96.67% character accuracy,

92.26% word recall, and 91.84% word precision in the open test.

5.3.6 Accuracy vs. Amount of Tagged Corpus

Figure 5.3 shows the relation between the open test accuracy of word segmentation and

the amount of the tagged corpus used to train a tag emission model. In the experiments,

we varied the amount of tagged corpus as “10”, “50”, “100”, “500”, “1000”, “5000”,

and “all(8973)” sentences. To make clear the differences in the small amount of corpus,

the logarithmic scale is used in the x-axis. The HMMs trained from a large raw corpus

with symbol augmentation, which were described in Section 5.3.4 are used to conduct

this experiments. The setting for the maximum entropy tag emission model, denoted as

“MEMAP”, is same as the feature set in the rows No. 18 and No. 21 in Table 5.10 that

marked the highest accuracy in the feature tests.

We can observe the followings from the experiments.

1. When the available tagged corpus is large, i.e., 500–10,000 sentences, the accu-

racy of UNIMAP model becomes greater as the state space becomes large.

2. On the other hand, when the available tagged corpus is small, i.e., 10–100, the

accuracy of UNIMAP model becomes greater as the state space becomes small.

3. The maximum entropy tag emission model greatly improves the accuracy, partic-

ularly the word precision, when the tagged corpus is large.
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No. N, E-Step Features For Part 1 (closed) For Part 2 (open)
UB UF bi BB BF tri ch CA WR WP CA WR WP

1 320 Gibbs UNIMAP 92.83 84.59 82.68 92.06 83.83 80.42

2 320 Gibbs BIMAP 93.38 85.35 83.94 92.48 84.11 81.51

3 320 Gibbs 1 0 - 0 0 - - 92.95 84.90 82.86 92.34 84.41 80.99

4 320 Gibbs 0 1 - 0 0 - - 94.79 88.00 87.37 94.52 87.83 86.23

5 320 Gibbs 1 1 - 0 0 - - 95.08 88.81 88.01 94.78 88.49 86.88

6 320 Gibbs 2 2 - 0 0 - - 95.18 89.08 88.25 94.91 88.95 87.13

7 320 Gibbs 4 4 - 0 0 - - 95.27 89.26 88.49 94.89 88.80 87.16

8 320 Gibbs 0 0 • 0 0 - - 93.60 86.11 84.37 92.76 85.15 81.93

9 320 Gibbs 0 0 - 0 0 • - 94.57 88.09 86.54 92.77 84.81 82.06

10 320 Gibbs 0 0 - 0 0 - • 94.21 86.95 85.96 93.27 85.12 83.63

11 320 Gibbs 0 0 • 0 0 • - 94.62 88.24 86.56 92.96 85.39 82.40

12 320 Gibbs 1 0 • 0 0 • - 94.61 88.21 86.57 92.94 85.33 82.35

13 320 Gibbs 0 1 • 0 0 • - 96.39 91.64 91.00 94.96 88.77 87.38

14 320 Gibbs 0 2 • 0 0 • - 96.54 92.04 91.36 95.09 89.12 87.70

15 320 Gibbs 0 3 • 0 0 • - 96.57 92.09 91.44 95.11 89.17 87.77

16 320 Gibbs 0 3 • 0 1 • - 97.05 93.02 92.78 95.48 89.77 88.87

17 320 Gibbs 0 3 • 0 2 • - 97.39 93.79 93.60 95.54 89.91 89.00

18 320 Gibbs 0 3 • 0 2 • • 98.26 95.85 95.75 96.38 91.64 91.25

19 640 Gibbs UNIMAP 93.42 85.47 84.08 92.93 84.78 82.32

20 640 Gibbs 2 2 - 0 0 - - 96.09 91.30 90.45 95.85 90.88 89.56

21 640 Gibbs 0 3 • 0 2 • • 98.96 97.49 97.43 96.67 92.26 91.84

Table 5.10: Accuracy of the maximum entropy tag emission model: Results are for
HMMs trained using a large raw corpus encoded by symbol augmentation
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4. In addition, the maximum entropy tag emission model also lifts up the accuracy

when the tagged corpus is small.

1. and 2. mean there is a trade-off in the setting of the HMM’s number of states between

the accuracy with a large tagged corpus and the accuracy with a very small tagged

corpus. This can be predicted to some extent from our design of tag emission models.

3. is the same as the expected effect of the maximum entropy emission model. 4. implies

that we need careful smoothing or back-off techniques when the available tagged corpus

is very small. The maximum entropy framework seems to have the back-off effect and

lifts up the accuracy when only 10 sentences are available.

5.3.7 Comparison with Other Character-based Methods

We compared our method, which is displayed in the previous graph (Figure 5.3), with

the method which is almost equivalent to the charactern-gram based method as de-

scribed in [27, 37]. In this method [32], a word boundary is represented by a special

character, for instance, “< d >”. We estimate characterbigram ortrigram from a corpus

where boundaries are encoded in this way. Then for each character position in a raw

sentence we assume two hidden states, “1” for word boundaries, “0” for the others. The

probability of being in statej at timet, Pj(ct
1), can be calculated as

P0(c
t
1) =P0(c

t−1
1 )p(ct|ct−2, ct−1)

+ P1(c
t−1
1 )p(ct| < d > ct−1)

P1(c
t
1) =P0(c

t−1
1 p(< d > |ct−2ct−1)p(ct| < d >)

+ P0(c
t−1
1 )p(< d > | < d > ct−1)p(ct| < d >).

We used SRILM (The SRI Language Modeling Toolkit) [2] to estimate this model and

to segment a sentence. The most probable state sequence can be estimated by the Viterbi

algorithm.
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Figure 5.3: Accuracy vs. amount of tagged corpus
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Figure 5.4 shows the results. We can see that the decline of the accuracy of our

method is not severe compared with the charactertrigram/bigram methods, denoted

as “Ext-Char Tri”, “Ext-Char Bi” respectively, though the charactertrigram method

outperforms our method when a large tagged corpus (> 5000) is available. The plot

denoted as “Ext-Char Tri+ BL” indicates that we trained charactertrigram using the

Part 1 of the Kyoto corpus augmented by symbol augmentation. This plot is to show

that symbol augmentation is not the main reason for our method’s slow declining.

We also compare our method with HMM-disabled version of our method. We let

the HMM return input symbols as the Viterbi sequence. Then we estimate the maxi-

mum entropy tag emission model with the setting such asUB = 2,UF = 2. That is,

these alternatives are the maximum entropy tagging methods with only character fea-

tures. Figure 5.5 show the results. “Sym ME” indicates that the model views only the

current character. “Sym ME 2-2” indicatesUB = 2,UF = 2. While we can see that the

HMM-enabled versions with the maximum entropy tag emission model mark signifi-

cantly higher accuracies than the HMM-disabled versions, the accuracies of “Sym ME

2-2” at 10 sentences and> 5000 sentences indicate that the character features which

view characters other than the current character are also effective. Note that the HMM-

enabled versions with the maximum entropy tag emission model include the character

features equivalent to “Sym ME”, and they show the accuracies in similar curves.

5.4 Accuracy of Morphological Analysis

In this section, we show the experimental results on morphological analysis, i.e., word

segmentation and POS tagging. The experiments were conducted using the Kyoto cor-

pus. We also used the HMMs trained using a large raw corpus, i.e., “320 Gibbs” in Table

5.9. In the experiments, we used only the major 13 POS tags. That is, the accuracy is

for the tagging of the major POS tags. We trained a UNIMAP tag emission model and a
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Figure 5.4: Comparison with character trigram and bigram methods
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N, E-Step For Part 1 (closed) For Part 2 (open)
CA WR WP CA WR WP

320 Gibbs UNIMAP 86.26 76.01 75.19 84.86 74.63 72.75

320 Gibbs MEMAP 97.57 95.05 95.01 93.42 87.60 87.64

Table 5.11: Accuracy of morphological analysis

maximum entropy tag emission model for this tag set. The feature set for the maximum

entropy model is same as the row No. 18 in Table 5.10. Table 5.11 shows the results.

Although the accuracy of morphological analysis is clearly lower than that of word seg-

mentation, there are the same tendencies with the accuracy of word segmentation.
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Chapter 6

Conclusion and Future Work

To achieve adaptive morphological analysis, we proposed a novel stochastic method for

Japanese morphological analysis, which consists of a character-based tag-independent

HMM and a tag emission model based on the maximum entropy framework. For domain

adaptability, we used unsupervised learning of a character-based HMM from a large

raw corpus of the domain. For tag adaptability, we proposed a division of the model

into a tag-independent HMM and a tag emission model which relates HMM’s hidden

states to the tags. We also proposed the use of an HMM with a large state space as a

tag-independent HMM, and enabled it by applying Gibbs sampling to the Baum-Welch

algorithm.

The results of the experiments which compared our method with other character-

based method showed that unsupervised learning using the Baum-Welch algorithm

greatly improves the accuracy when the available tagged corpus is small. The exper-

imental results also showed that the symbol augmentation with character type and the

maximum entropy tag emission model greatly improve the word segmentation accu-

racy. We also found that while Gibbs sampling Baum-Welch algorithm has the penalty

in accuracy compared with the exact Baum-Welch algorithm, the benefit of a large state

space enabled by Gibbs sampling can exceed the penalty when a large raw corpus is

used to train a character-based HMM. However, there is a trade-off with respect to the
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number of states when the available tagged corpus is very small.

This thesis proved that the unsupervised learning for character-based HMMs using

the Baum-Welch algorithm is useful for domain adaptability. However, the accuracy

achieved by our method is not yet practical. To achieve more practical adaptive mor-

phological analysis, we are planning the following directions of the future research.

• Combination with word-based methods.

• More sophisticated symbol augmentation model or symbol emission model.

• More features in the maximum entropy framework.

Although word-based methods rely on word dictionaries, and therefore on tag sets, there

is an obvious advantage that they reduce the ambiguities about word boundaries signifi-

cantly. Since the maximum entropy framework proved to be robust and successful in the

experiments, we should improve the accuracy of morphological analysis without loss of

adaptability by introducing the features from word dictionaries in a tag-independent

way, and introducing more features from output symbols.

In addition, to achieve more robust estimation with very small tagged corpus, we

must explore more appropriate structure of the probabilistic model which is closer to

the true distribution. We also require faster algorithm for parameter estimation, since

the learning with a large raw corpus becomes very time consuming even though we use

Gibbs sampling.
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