ADAPTIVE MORPHOLOGICAL ANALYSIS
WITH A SMALL TAGGED CORPUS
Dooddoooooooooog

Dooooooooon

by

Jun’ichi KAZAMA
g gg

A Master Thesis
0000

Submitted to
the Graduate School of
the University of Tokyo
on January 30, 2001
in Partial Fulfillment of the Requirements

for the Degree of Master of Science
in Information Science

Thesis Supervisor: Jun’ichi TSUJIIO O O O
Professor of Information Science

ABSTRACT

This thesis describes a method for constructing a probabilistic Japanese morpho-

logical analyzer with a small amount of tagged corpus. Probabilistic models have
been applied to natural language processing successfully due to the existence of
large manually tagged corpus to estimate their parameters. However, for the real
world texts such as ones from the Internet, it is hard to prepare sufficiently large
tagged corpus for all text and task type pairs. We solve this dilemma by using a
small amount of tagged corpus and a large raw corpus. The idea is, if the hidden
states of the probabilistic model such as hidden Markov models (HMMs) trained
by unsupervised learning from a large raw corpus compactly contain sufficient in-
formation to determine tags, we can easily learn the mapping between states and
tags by viewing a few occurrences of each state in a small tagged corpus.

In our method, character-based HMMSs are employed to prevent the unknown
word problem, which is serious in Japanese because there is no word segmenta-
tion markers such as spaces. Given raw texts from a target domain, we train a
character-based HMM by the Baum-Welch algorithm, or a Gibbs sampling ver-
sion of the Baum-Welch algorithm when the number of states is large. Then, our
algorithm learns a tag emission model from a small tagged corpus by using the
maximum entropy (ME) method. The learned tag emission model emits a tag ap-
propriate for each character by viewing the Viterbi sequence of the HMM’s hidden
states. Experimental results are encouraging, showing that our method performs
better than existing methods when only 10-500 tagged sentences are available.

gooo

goboo,gbboboogbboogob,ggobboooobbooon
gbobooboobooboob. boob,o0boobboooboobooobn,n
gogbobobooobobb,ogbbob,gobbboodgbooboogoobbod
gbgobobg,bobgobobooboboobo.bobobobobon
gobodgbbogbooobuoobbooboo,bbodboobbuoaobbd
gboog,booboobboobgoboobbobbooboo.obo,d
gogobbobbbodooooooobbobbbooooooobobobbod
oo000. 00,000000000 (HMM)OO,00000000000DOO
goggobboobobooooooobbobboouooooobbooboboad
gobobgobo,0bobobgboooboobob,boobobobobooobaa,
ggbobobbooogbbbooooobboooonn.

gobgoboobo,boboboooboboboboboboboboboood
gobooboobbooboooboobooo,0boobbEMMODOO.
oboo,00b00b0000000b0obboboboob0n, Baum-Welch 00000
O,0000,00000000000,GibbsO0O0D0O00OODOOO Baum-Welch
gogoboboboboooooobb.ooo,bbbboooo,gobobobood
ggbbogodg,buogobobuooobbuooobbo.oobbooobobod
oo, HMMOD0O0O0OO0DO0O0OO0O0ODODO,00b0b00o0obo0obDbOoob. oo
gg,1ogscotbbbbuodoooobobobbooooog,obobogad
gogobobooooobobooooobobooa.

Acknowledgements

First of all, I would like to thank my supervisor, Prof. Jun’ichi Tsuijii, for his invaluable
advice and encouragement. This thesis could not have been completed without his intro-
duction to this exciting NLP research. | also owe much thanks to Dr. Kentaro Torisawa
for his invaluable suggestions during this research. He also gave me continuous instruc-
tion and encouragement during the writing of this thesis. | thank Mr. Takaki Makino
and Mr. Yusuke Miyao for reading and correcting my drafts. | also thank Dr. Edson T.
Miyamoto for checking English of my thesis. And | thank Mr. Takashi Ninomiya for
his continuous encouragement and tender care. Finally, | thank all members of Tsujii

laboratory for their helpful suggestions.

Contents

1

2

Introduction 7
Background 11
2.1 TheEMAIgorithm 11
2.2 HiddenMarkovModelso 13
2.2.1 Hidden MarkovModels 14
2.2.2 Forward-Backward Algorithm 16
2.2.3 \iterbi Algorithm L oo 18
2.2.4 Baum-Welch Algorithm 19
2.25 Implementationlssues 21
2.3 Maximum Entropy Framework 24
24 RelatedWork 26
Two-step Model for Morphological Analysis 28
3.1 Overview 28
3.2 Training of character-based HMM 30
3.2.1 Reducing OutputSymbols 31
3.2.2 Stopping Criterion 31
3.2.3 Augmenting Output Symbols with Character Types 32
3.3 TagEmissionModels 34

3.3.1 Frequency-basedModel 34

3.3.2 Incorporating Multiple Cues in the Maximum Entropy Framew®a8gk

3.4 Tagging Procedure 38
3.4.1 Character-basedtagging 38
3.4.2 TheViterbiSearch 39
343 TagEmission 42

Training of HMM with Large State Space 43

4.1 Number of States Needed for Morphological Analysis 43

4.2 Baum-Welch Algorithm via Gibbs Sampling 44
4.2.1 Approximation by Sampling 44
422 GibbsSampling. o 45
4.2.3 Gibbs Sampler for the Baum-Welch Algorithm 46

4.2.4 Timing Comparison with the standard Baum-Welch algorithm47

4.2.5 |Initial Sample Generation 47
Experiments 51
51 Evaluation 52
5.2 DataSet 53
5.3 Word Segmentation 53

5.3.1 BaselineMethod 53

5.3.2 UNIMAP EmissionModel 54

5.3.3 Augmenting Output Symbols with Character Types 57

5.3.4 Performance of HMMs trained using a Large Raw Corpus . 57

5.3.5 Accuracy of Maximum Entropy Tag Emission Models59

5.3.6 Accuracy vs. Amountof Tagged Corpus 61

5.3.7 Comparison with Other Character-based Methods 63.

5.4 Accuracy of Morphological Analysis

6 Conclusion and Future Work

List of Figures

2.1 Probabilistic structure of an hidden Markov model (state emission mddel)

3.1 How the state-tag relation can be estimated from a small corpus . 29.

3.2 Training curve of the Baum-Welch algorithm 32
3.3 UnigramFeatures 37
3.4 BigramFeatures. 37
3.5 CharacterFeatures 38

3.6 Word segmentation by an HMM whose states correspond to segmenta-
tiontags e e A0
3.7 Find the Viterbi path givenasentence 40

3.8 Therate of non-zero-(0.00001) elements in B during the Baum-Welch

training e 41
3.9 The Viterbi algorithm exploiting sparsenessofB 41
3.10 Emit tags according to the state in the Viterbipath 42

4.1 Time per iteration: Exact Baum-Welch algorithm vs. Gibbs sampling
Baum-Welch algorithm oL 48
4.2 Initial sample generation methods and cross entropy per symbol of the

trained HMMS 50

5.1 Accuracy vs. the number of states for the Kyoto corpis=(501, open

5.2

5.3
5.4
5.5
5.6

Comparison between the normal HMMs and the symbol-augmented

HMMs (trained using a largeraw corpus) 60
Accuracy vs. amountoftaggedcorpus, 64
Comparison with character trigram and bigram methods 66.
Comparison with the HMM-disabled model 67
Accuracy of morphological analysis (13 major POS) 69

List of Tables

3.1 CharactertypesinJapanese 33
5.1 Kyoto Universitytextcorpus 53
5.2 Alarge raw text from Mainichi shinbun 53
5.3 Word segmentation accuracy of for the Kyoto corpus by baseline mod&él
5.4 Word segmentation accuracy for the Kyoto corpus by the UNIMAP
emissionmodelf =501), 55
5.5 Word segmentation accuracy for the Kyoto corpus by the UNIMAP
emissionmodelf =1,001) 55
5.6 Word segmentation accuracy for the Kyoto corpus by the UNIMAP
emissionmodelf =4,001) 57
5.7 Word segmentation accuracy for the Kyoto corpus by the UNIMAP
model with symbol augmentatioh(=501x2) 58
5.8 Word segmentation accuracy with HMMs trained using a large raw cor-
pusM =4001) 58
5.9 Word segmentation accuracy with HMMs trained using a large raw cor-
pus and symbol augmentatioM(= 2001x2) 59
5.10 Accuracy of the maximum entropy tag emission models 62
5.11 Accuracy of morphological analysis 63

Chapter 1

Introduction

In this thesis, we propose a novel stochastic method for Japanese morphological analy-
sis. Our method consists of two parts, a tag-independent character-based hidden Markov
model (HMM) and a tag emission model which uses the maximum entropy method.

Morphological analysis identifiesiorphemesuch as words andfies in a sen-
tence, and assigns them a tag suchNasin Verb, and Adjective which is called a
part-of-speech (POS) tag. We refer to these processes as word segmentation and POS
tagging. Probabilistic models have been applied to morphological analysis successfully
since they can accurately extract statistical tendencies between the input surface data
and the hidden POS tags from a large corpus where POS tagsm@otatedor tagged
by human annotators. In order for these probabilistic models to be successfully applied,
a corpus must be annotated by human annotators with the tag set which other NLP sys-
tems require as input. Moreover, the annonated corpus must be of the same type of
which we are targeting.

We are interested in applying probabilistic methods to real-world texts from the In-
ternet. However, there are few tagged corpora for this type of texts, and the required tag
set varies depending on the situation. Therefore, the demands &mtagmivemethod
that requires only a small amount of tagged corpus are increasing. We define two types

of adaptabilities according to the above two requirements for tagged corpus — domain

adaptability and tag adaptability. Domain adaptability refers to the fitting of the model’s
parameters to the target text type. On the other hand, tag adaptability indicates the
method’s ability to handle any tag set when required by another natural language pro-
cessing system which comes after morphological analysis. The final goal of this study
is to achieve these two adaptabilities at the same time by using only a small amount of
Corpus.

In this thesis, domain adaptability is addressed by unsupervised learning of a character-
based tag-independent HMM from a large raw corpus of the domain using the well-
known Baum-Welch algorithm.

Arguments justifying the values of untagged raw corpus for achieving domain adapt-
ability follow those in [9, 26]. Namely, although an untagged corpus alone ifficisunt
to yield better-than-random tagging because the relation between the hidden states of
the HMM and tags is not known, untagged corpora contain information about the dis-
tribution over features, in our case, character cooccurrence. If we use this information
together with a sample of tagged data, we will increase the tagging accuracy.

For tag adaptability, we propose the following approach.

¢ Divide parameter estimation into the estimation of a character-based tag-independent
HMM and the estimation of a relation between an HMM'’s hidden states and the

part-of-speech tags.

¢ Employ an HMM which has a dficiently large state space to contain information

required for morphological analysis with any tag set.

After the HMM is trained so that it can capture the statistical characteristics of the
domain, thetag emission modgeivhich relates the hidden states of the trained HMM
and the part-of-speech tags, is estimated using a small amount of tagged corpus, uti-
lizing the trained HMM. The estimation of this relation is based on the cooccurrence

of the tags and the states in the Viterbi path which the trained HMM generates for a

8

sentence in a small tagged corpus. In this thesis, we propose a simple estimation based
on frequency counts and a more complex estimation based on the maximum entropy
framework. When we have to output another tag set, the same HMM can be used and
the only thing we have to do is to re-train a tag emission model using a small tagged
corpus in the given tag set.

Brants [8] proposed the use of twddirent tag sets in part-of-speech tagging, one
is the internal tag set for the underlying HMM and the other is the external tag set for
its output. The internal tag set is more fine-grained than the external tag set, and all
information contained in the internal tag set is used for tagging. Using a large HMM
as a tag-independent HMM is the extension of this idea to unsupervised learning of a
tag-independent HMM. To enable training of such HMMs with large state space, we
apply Gibbs sampling to the standard Baum-Welch algorithm.

The reason for employing character-based HMM, which emits each character in
a sentence as output symbol, is to preventuhknown word problem Most exist-
ing morphological analysis methods use manually tailored word dictionaries. In word-
based methods, all the possible word candidates in a sentence are retrieved from a word
dictionary, then rules or probabilistic models select the most probable word sequence.
However, it is impossible to build a dictionary which contains all possible words. If the
identification of a word fails because of unknown words, the accuracy of POS tagging
greatly declines accordingly. On the other hand, character-based methods are said to be
robust against the unknown word problem because they do not require word dictionar-
ies, as they define probabilistic models on characters. In the domain we are targeting
such as the earlier, the rate of unknown words is high in addition to the lack of appro-
priate tagged corpora. Thus character-based methods are more suitable for our purpose.
In addition, character-based models are useful for both types of adaptabilities, since

domain adaptability often requires the solution of the unknown word problem and the

tag set adaptability may require the adaptation to a tag set in whitdrehices at the
word segmentation level cannot be solved by the word-based methods. We also propose
to augment the HMM’s output symbols with character type information to improve the
accuracy of Japanese morphological analysis.

In the experiments, we show that our method outperforms other charagtam
based methods in word segmentation when the amount of available tagged corpus is

less than 1000 sentences.

Structure of the Thesis

In Chapter 2, we describe the background topics of this thesis. We first describe the
Expectation-Maximization (EM) algorithm briefly. Next, we introduce hidden Markov
models. Finally, we describe the maximum entropy framework. In Chapter 3, we de-
scribe the division of model parameter estimation and the actual morphological analysis
using it. In Chapter 4, we describe the training of a large HMM using Gibbs sampling.
In Chapter 5, we report a series of experiments and analyze the results to confirm the
effectiveness of our approach. In Chapter 6, we conclude this thesis and discuss future

work.

10

Chapter 2

Background

In this chapter, we describe the background topics of this thesis. We first describe the
Expectation-Maximization (EM) algorithm briefly. This is the basis of the Baum-Welch
algorithm which we use in the unsupervised learning of a character-based HMM. Next,
we introduce hidden Markov models and their basic algorithms used in our approach for
morphological analysis. Then, we describe the maximum entropy framework which is
used in the estimation of tag emission model. Finally we describe existing unsupervised

approaches to morphological analysis.

2.1 The EM Algorithm

The Expectation-Maximization (EM) algorithm is a method for computing the maxi-
mum likelihood (ML) estimates from incomplete data iteratively [11].

LetY be a random vector corresponding to observed ylatdnich has a probability
density functionp(y; ¥) whereW = (y1, - - - ,¥q) IS a vector of model’'s parameters. And
let X be a random vector corresponding to complete gatehich include observed data
and hidden unobservable data with a probability density funggi¢a). For example,
in hidden Markov modelsy is the observed sequence, ang an observed sequence

and a state sequence.

11

The aim of the maximum likelihood estimation is to find the parametferthat

maximize the likelihood,
L('Y) = p(y; '¥),

or equivalently the log likelihood,

log L(¥) = log p(y; '¥).

We defineQ(Y, ‘?) as
Q(¥.¥) = Ey [log pe(X; ¥)ly| .

Here,Ey [#] denotes the expectation with respect to the distribution over the range of

given by
pe(X;)

k(Xly; ¥) = oy ®)

That is,
QP ¥) = f K(xly; *¥) log po(x; ¥)clx,
X(y)

whereX(y) denotes alk that yieldy.
Let ¥© be the some initial value foP. Then, the EM algorithm repeatedly alter-

nates the following two steps.

On thekth iteration,
E-Step: CalculateQ(¥®, ¥)

M-Step: ChooseP* b so that

D = argmaxQ(P®,),
b 4

12

that is,
Q(YX, wk+l) > Q(P®, w) for all .

Dempster et al. [11] showed that the log likelihood ld¥) does not decrease after an
EM iteration, i.e.,

log L(P*Y) > log L(¥X).

Therefore, for most models, the algorithm will monotonically converges to a local max-
imum of likelihood by iteratively applying these two steps.

The most important advantage is the simplicity of its implementation. An intuitive
interpretation of the EM algorithm is that predicting values for unobservable variables
depending on current parameters and observed variable&(x/g; ¥®) and consider-
ing that values as complete data, the computation of the maximum likelihood estimates
for complete data is performed. For most problems, the computation of maximum likeli-
hood estimates for complete data is very easy — in some cases, it falls into the calculation
of relative frequencies. Thus, the implementation of the EM algorithm tends to be easy.

There are some criticisms for the EM algorithm. The convergence of the EM al-
gorithm is slow in some cases. It is not a global optimization algorithm. For the first
problem, some methods are proposed to speed-up the convergence [17, 25, 20]. If the
application sffers from the second problem, i.e., local optima, we may need the meth-

ods such as [33] which utilize annealing.

2.2 Hidden Markov Models

In this section we describe hidden Markov models and basic algorithms for them. Be-
cause of their simplicity andfiéciency, hidden Markov models are used to model a

time series data in various applications in natural language processing such as speech

13

recognition [19, 29], part-of-speech tagging [10, 21], named-entity extraction [5], and
information extraction [13].

First, we introduce building blocks of HMMs and two algorithms, the forward-
backward algorithm and the Viterbi algorithm. Next, we describe the Baum-Welch
algorithm, which is used to estimate parameters of HMMs from incomplete (untagged)
date. Finally, we note some issues to be cautious of when we implement Baum-Welch

algorithm in the following section.

2.2.1 Hidden Markov Models

Let X; € {S1, S, -+ , Sy} denote a discrete random variable that takgsossible values
at timet. A series of random variabld%;} is said to be theth order Markov process

whenX; depends only on the previongandom variablesMarkov property. Formally,
POKIXG) = POGXi - %),

In general, amth order Markov process can be transformed to first order Markov pro-
cess by introducing new random variaMe= {X,--- , Xi;n_1}. Thus, we assume first
order Markov process in the following explanation. The Markov process is also said to

be stationaryif P(X|X;_1) does not depend on the time:
P(Xt = sXi-1 = 7)) = p(sis;).

A stationary Markov process can be specified\by 1 initial probabilities7 andN x N

transition probabilitiesA{a;; }:

P(X; = s),

P(X; = s|Xi-1 =).

T

aj

An hidden Markov model (HMM) is a stochastic process whose hidden Spates

{01, 02, - - - , On} fOorm a stationary Markov process and emit observations {0, 0,, - - - , Om}

14

oL L

Figure 2.1: Probabilistic structure of an hidden Markov model (state emission model)

stochastically. Throughout this thesis we use state emission type HMMs where each
state emits one observation symbol with probabiR(®; = 0|Q; = q;) (Figure 2.1).
In addition to initial probabilities and transition probabilities, we néeg M emission

probabilitiesB{b;;} to specify an HMM. Then an HMM can be specified by

i = P(Q =),
gj = P(Q=0jQ-1=0q),
bj = PO =0jQ =)

We denote this whole set of parameterstas (r, A, B). Then the probability that the
HMM specified bya generates the observatiofl (We write a sequend@, 0;.1, - - - , 0j-1, Oj}

asoij) with the state transitiongy, i.e., the joint probabilityP(o], g} |2) is calculated as

T-1
P(0, A1) = w(u)b(a, 0n) | | {alck, Gea)o(cher, O}
t=1
By summing this probability over all possible state transitions naively, the probability
that the HMM specified byt generates the observatiof , i.e., thelikelihood P(0] |1)

can be calculated as

P(o]14) =) P(o], {1).
H
However this calculation is clearly intractable even for HMMs with snill Fortu-
nately, there is anf@cient dynamic programming algorithm which utilizes Markov
property and calculateB(o]|1) in time O(TN?). We describe this algorithm — the

forward-backward algorithm — in the next section.

15

2.2.2 Forward-Backward Algorithm

We defineforward probabilitiesandbackward probabilitiess follows.

Forward Probability a4(i): The probability that the model generates the observa-

tionsoj and is in statey at timet, i.e., P(0}, Q; = qlA).

Backward Probability g(i): The probability that the modal generates the rest of the

observation®), , starting from state; at timet, i.e., P(of,,|Q; = ¢}, 4).

The forward and backward probabilities are used extensively in applications of HMMs.
For instance, the forward and backward probabilities can be used to calculate the likeli-
hoodP(o] 1), which is one of the measurements for model goodness. Also, the forward
and backward probabilities are used at the first step of the Baum-Welch algorithm which
estimates model parameters from incomplete data. This extensive use of the forward and
backward probabilities is due to théieient algorithm — the forward-backward algo-

rithm. The forward-backward algorithm calculates these probabilities by the following

16

procedures.

Forward Procedure:

Initialization:
a1(i) = mibi(0y),

Recursion:
N

o)) = [Z a(i)a(a, q,-)} (g} 01.).

i-1
Backward Procedure:

Initialization:
pr(i) =1,
Recursion:
N
Bi(i) = a(a, 0;)b(q;, 01)Be1(]),
=1

The forward-backward algorithm has the time complexityQgr N?). After the

calculation of the forward and backward probabilities finished, we can cald®(a}et)

by summing up the forward probabilities at tinieas

N
P(o112) =) e(i),
i=1

or summing up the backward probabilities at time 1 as

N
P(0]14) =) Ba(i)mibl(ci, 0a).
i=1

More generallyP(o; |1) can be calculated as

PO]1D) = > > ex(i)a(a, q)b(g;, 0)Bra(j) ¥t 1<t<T-1
i

= > a()Bi()

17

1<t<T-1

2.2.3 Viterbi Algorithm

We are also interested in finding the most probable state transitions given the obser-
vations. The Viterbi algorithm computes the most probable state transitions through a
procedure similar to forward procedure in the forward-backward algorithm [34]. The
difference is that at each time step the Viterbi algorithm memorize the best probability
and the previous state that yields it for each state. Backtracking the stored previous
states recovers the most probable state transitions. Before we describe the Viterbi algo-

rithm we definebest probabilitiesandbest previous statess follows.

Best Probabilitiesd;(i): The highest probability of being in statat timet among all

state transitions, i.e., maxP(Q; = g;, 0l |1).
01,02, .01

Best Previous Stateg(i): The state at timé— 1 of the state transition that yieldgi).

Now, we describe the Viterbi algorithm:

Initialization:
61(1) = mib(q;, 01), 1<i<N
Ya(i) =0 1<i<N.
Recursion:

6(j) = max|a(Da(@. a)|baj.0). 2<t<T.1<j<N

Yi(i) = argmaxse_1(i)a(a;, g;), 2<t<T,1<j<N.
1<i<N
Termination:
p= {“g"é‘%éT(')’
gr = argmaxst(i).
1<i<N
Backtracking:
G = Yee1(0r1)s T-1>t>1

18

Although the Viterbi algorithm has the same time complexit@¢f N?) as the forward-
backward algorithm, we can compute the most probable transitions by add operations

of floating point numbers since if we hold probabilities as logarithm, we obtain
logi(j) = max|logsi-1(i) + loga(a. oj)| + log b(g;. 0).

2.2.4 Baum-Welch Algorithm

In the context of HMM, the EM algorithm had been known as the Baum-Welch algo-
rithm [3] before Dempster et al. formulated the EM algorithm generally. The reestima-
tion formulas in the Baum-Welch algorithm can be easily derived from the definition
of Q(P, ‘I_’) for an HMM by using the Lagrange multiplier method. We show only the
result here.

To describe the reestimation formulas, we first defit{g, the probability of being

statei at timet, given the model and the observationy , i.e.,

(i) = P(Q = gilog,).

By using Bayes’ rule, we can writg(i) as follows using forward and backward proba-
bilities.
(i) =

P(o]12)

_a(i)Be(i)
~ PO]1A)

We next defing(i, j), the probability of being in statg at timet and in statey; at time

t + 1, given the model and the observationy , i.e.,

&(0,]) =P(Q =0, Qu1 = qj|0]_—7/l)'

19

By the same argument fo4(i), we can write& (i, j) as

P(Q: = g, Qu1 =00l |4

ft(i, J) _ (Qt qp%ﬂl/l) qJ 01|)
_ a’t(i)a(qi’ qj)b(Qj, 0t+1),8t+l(j)
B P(0} 1) '

By summingy.(i) and& (i, j) over the timet except fort = T, we obtain two quantities

which can be interpreted as follows.

—

-1
v:(i) = expected number of transitions from stgte

—
=

T-

[aEy

&(i, J) = expected number of transitions from stet¢o stateq;.
t=1

Using thesey(i) and&(i, j), the reestimation formulas of the Baum-Welch algorithm

are written as

ni = expected number of transitions fragnat time 1

= 71(i)
_ a(Ba()
Zi,\il Q’T(i)

_ expected number of transitions framto q;
&= expected number of transitions fragn
_ X &)
ZtT:_ll (i)
S adi)alg, a;)b(g, o)Bria(i)
ZtT:_ll ar(i)B(i)
— expected number of emissions of symbpin stateg

by = expected number of times being in state
_ Zthl 6(Or, 0))1(i)
- ZtT=1 20
_ S16(0y, 0))a(i)B:(i)
- Zthl ar(1)B(i)

20

whereé is Kronecker’s delta, i.e.,

l Ot:Oj

5(Ot, OJ) = .
0 otherwise.

In the Baum-Welch algorithm, the calculation of the forward and backward probabili-
ties,y andé corresponds to the E-Step of the EM algorithm, and this reestimation of the
parameters corresponds to the M-Step. Most of the time of one iteration is consumed at
the calculation of the forward and backward probabilities. Therefore, the Baum-Welch

algorithm also has the time complexity ©f T N?).

2.2.5 Implementation Issues

Scaling

As described in Section 2.2.2, the calculation of the forward and backward probabilities
involves a number of multiplications of small numbers in the range pf]jOwhich

can easily lead to underflow to zero. To prevent this, segaingtechniques must

be applied [19, 29, 10]. By scaling the probabilities at each time step by some scaling
factor to make them fall into a constant range, we can prevent underflow. The technique

described here [10] scales the forward probabilitig€g to a;(i) so that

N
> &i)=1 forallt
i=1

21

The modified forward-backward algorithm is as follows.

Forward Procedure:
Initialization:
a1(i) = a1(i) 1<i<N
N -1
¢ = [Z al(i)]
i=1
Recursion: 1kt<T-1
ai(i) = (i) 1<i<N

r N
1)) = Z&t(i)aij] bj(0t+1) 1<j<N
=1

- IN
=), C~¥t+1(i)]

Li=1

-1

Backward Procedure:

Initialization:
Br(i) = Br() =1 1<i<N
Br(i) = Br (i) 1<i<N

Recursion: T-1>t>1
N
B(i) = D agbjon)Biali) 1<i<N.
=1
Bi(i) = cfi(i) 1<i<N

Note thatei(i) = Clax(i) andpg;(i) = B(i)CT , where

t+1

P(o]|1) can not be calculated directly since it would be out of the machine precision

(that is the reason why we introduced the scaling). By using scaling fagtakculated

22

in the modified forward-backward algorithm, I&go] 1) can be calculated as follows.

N
log) ar()
i=1

1 N
log = ()
1 =1

=1

T
= - Z logc.
t=1

When the scaling is used at the forward-backward probability calculation of the Baum-

log P(01|2)

Welch algorithm, the reestimation formulas need to be modified. However, the modifi-
cation is simple as follows, just replacing(i) with & (i), andg(i) with (i), except for
the addition of the terna,, in the reestimation formula faa;.
_ a(i)Ba)
[~ .
Sy (i)
= a1(i)Ba(0)
a? _ Z;r:_ll &t(i)a(qi’ qj)b(qjv 0t+l)ﬁt+1(j)ct+l
‘ S5 a0
— > 16(0 0))ax(i)Bi()
1 — A D . .
‘ S &) (0)

Multiple Observations

When we apply the Baum-Welch algorithm to the training of a character-based HMM
in our approach, we consider eakth sentenc&, = 0®}* in the texts is independently

generated by the HMM. Then the probability to be maximized is as follows.
K

P(Text) = [|P(Sda) 2.1)
k=1
K

= []P¥;). 2.2)
k=1

This situation is calledhultiple observationsThe modification to the single observation

Baum-Welch algorithm is straightforward. In the numerator and the denominator of the

23

reestimation formulas, we sum the statistics for each sentence as

= Zan’0)
K
_ T X &0 0)
IS I0)
b = Zia 21000, 0)ai A7)

Tier Tt ' MB0)

We can easily introduce the scaling to the multiple observation Baum-Welch algorithm

in the same way we introduced it to the single observation Baum-Welch algorithm.
Decomposing training data into independent multiple sequences will make it easy

to apply some techniques for faster training such as incremental estimation [17] and

parallelization. In addition, in the case where word-based HMMs are trained, we might

not need to perform the scaling since each observation is not long.

2.3 Maximum Entropy Framework

In this section, we describe the maximum entropy framework. Recently, the maximum
entropy framework has been successfully applied to many natural language processing
tasks such as machine translation, part-of-speech tagging, and named entity recognition
[4, 30, 6]. One of the most important advantages of the maximum entropy framework is
that it can combine diverse forms of cues, knowfeaguresin a principled manner, and
does not assume any condition on their distributions such as the independence of each
feature. Therefore, we can automatically obtain the sdfieeteas backid or smoothing
by introducing a bag of overlapping features at ease.

The maximum entropy method estimates a probability distribytioty) € £ given
training data{(xy, Y1), (X2, ¥2), - - - », (Xn, Yn)}- In our estimation of a tag emission model,
X corresponds to a tag agatorresponds to the contexts that the tag emission model can

access to determine output the tag at each time step. To focus on a certain part of the

24

contexts, we define a binary-valued function, callddature functionand denote a set

of feature functions as

F={fi:(xy)~{0,1},ie{1,2,---,n}}.

As mentioned above, these feature functions do not need to be independent of each

other. For example, in a tag emission model which we describe in Chapter 3.3, feature

functions look like as follows.

1 Xx=tsA current-state() = g3
0 otherwise

fl(x’ y) = {

1 x=t5A current-statgf) = gz A previous-statef) = g,
0 otherwise

fZ(X’ y) = {

We define arempirical distributionas

_ Countx,y)
-—x

(X y)
whereCoun(x, y) counts the number of times that,) appeared in the training data
andN is the traing data size. Then, we denote the empirical expectatiGrasf

Eslfi] = > Bl) fi(xy).

Xy

Similarly, the expectation of; with respect to the distributiop(x, y) is denoted as

Eolfil = D pO6Y)fi(xY).

Xy
The maximum entropy method requires tBgf fi] = Eg[f], i.e.,

DY hiy) = > BOCYfixy).

Xy Xy
This requirement is called@nstraint equationor aconstraint

We define the subset @?, which consists of distributions which satisfy the con-

straint equations, as follows.
C={pePIElfl=Eglf] ie{Ll2--.n}.

25

The maximum entropy method selects the distribution which is most uniform among
the models irC. The uniformity is measured by the entropy defined as

H(p) = - > p(x.y)log p(x.).

Xy

Then, the maximum entropy method selects the mpdalith the maximum entropy:

p* = argmaxtH(p)
peC

It can be proved that that there is always a unique mptedndp* is in the form:

PA(X.Y) = Z—lA eXp[Z A fi(x, y)] ,

whereJ; is the weight for the featurg andZ, is a normalization constant such that

Z) = Z exp(z Ai fi(x, y)] .
Xy i

The values for; can be estimated by numerical methods such as the Improved Iterative

Scaling (11S) algorithm [28].

2.4 Related Work

Cutting et al. [10] applied a word-based hidden Markov model and its unsupervised
learning, the Baum-Welch algorithm, to English POS tagging to achieve the same goal
as our domain adaptability. They used word dictionary to reduce the time complexity of
the training and achieved state-of-the-art accuracy for English POS tagging. Merialdo
[21] also applied the Baum-Welch algorithm to improve English POS tagging which
uses word-based hidden Markov models. However, they concluded that the Baum-
Welch algorithm does not improve the accuracy when we haffeuntly large tagged
corpus and can calculate good initial parameters for the Baum-Welch algorithm. We
believe that this is because the state-tag relation assumed at the estimation of initial

parameters changes as the Baum-Welch algorithm proceeds.

26

In Japanese morphological analysis, it is harder to apply Baum-Welch type algo-
rithm in word-based approach because of the ambiguity in word boundaries. Yamamoto
[35] used word-based HMM and the Baum-Welch type unsupervised learning, utilizing
existing rule-based morphological analyzer, JUMANI[36], to generate the word network.

Character-based methods are proposed mainly for word segmentation in the lan-
guages such as Japanese and Chinese where there is no word segmentation marker

[37, 27, 22, 31].

27

Chapter 3

Two-step Model for Morphological
Analysis

In this chapter, we describe our approach to morphological analysis which consists of

two parts, a tag-independent character-based HMM and a tag emission model.

3.1 Overview

Our goal is to achieve domain adaptability and tag adaptability defined as follows.

Domain adaptability The fitting of the probabilistic model’'s parameters to the target

text type.

Tag adaptability The method’s ability to handle any tag set when required by another

NLP system which comes after morphological analysis.

To achieve domain adaptability and tag adaptability at the same time, we divide param-
eter estimation into the estimation of a character-based tag-independent HMM and the
estimation of a tag emission model. Domain adaptability is achieved by unsupervised
learning of a character-based tag-independent HMM. On the other hand, tag adaptability

is achieved by this division of parameter estimation and by the employment of an HMM

28

Tagged Corpus

—

correct tag T1 T1 T2 T1 T1 T1
observable data

most probable state S S1 S1 S1 S1 S1

Figure 3.1: How the state-tag relation can be estimated from a small corpus

with a suficiently large state space to contain information required for morphological
analysis with any tag set.

An intuitive explanation for why unsupervised learning of a character-based HMM
has an &ect on making the amount of required tagged corpus smaller is as follows.
HMMs have been successfully applied to morphological analysis, combined with the
Baum-Welch algorithm. We expect that, trained by the Baum-Welch algorithm from a
raw corpus large enough to capture the statistical tendencies, a character-based HMM
becomes to yield a certain fixed Viterbi state sequence for the character sequences which
must be equally tagged. In other words, we expect that the hidden states classify char-
acters according to their corresponding tags. When the number of states is less than the
number of output characters, it also can be said that the hidden states pa&rfoaotiing
of output characters. The ideal situation is illustrated in Figure 3.1. The figure shows
the case where the trained model is in stidor 5 times as the most probable state for
input data, and for 4 times out of 5 times the correct tag the system must oufplit is
When we relat&1 to T1 by viewing one cooccurrence in the tagged corpus, the system

will achieve the accuracy (precision) oB0= 4/5) with respect to stat81 and tagr 1.

Our method for Japanese morphological analysis then consists of two estimation

phases and two runtime phases:

Estimation:

29

1. Unsupervised estimation of a character-based HMM by the Baum-Welch

algorithm using an untagged corpus.

2. Supervised estimation of a tag emission model using a tagged corpus and the

trained character-based HMM.
Runtime:

1. Find the Viterbi path given a sentence.

2. Emit the most probable tags using the tag emission model.

In Section 3.2, we describe the unsupervised training of a character-based HMM by
the Baum-Welch algorithm. In Section 3.3, we describe tag emission models and their
estimation. In Section 3.4, we describe the runtime tagging procedures.

Although we want to train an HMM with a large state space in addition to the state-
tag separation to achieve tag adaptability, the Baum-Welch algorithm is not applicable
because it has the time complexity ©(T N?). To enable training of an HMM with a
large state space, we apply Gibbs sampling to the standard Baum-Welch algorithm. We
leave the description of this Gibbs sampling version of the Baum-Welch algorithm for

the next Chapter.

3.2 Training of character-based HMM

To achieve tag adaptability, we have divided parameter estimation into the estimation
of a character-based tag-independent HMM and the estimation of a relation between
HMM'’s hidden states and the part-of-speech tags. In this section, we describe the issues
of the first estimation, i.e., the estimation of a character-based tag-independent HMM.
The training of a character-based HMM is performed by the Baum-Welch algorithm
using an untagged raw corpus. Because our method does not assume prior relation be-

tween hidden states and tags, we can train an HMM with arbitrary number of states. On

30

the other hand, since we cannot obtain tag-specific initial parameters, we start training
from such as random parameters. In the experiments, we usually trained each HMM
starting from random initial parameters. More uniform initial parameters might be de-
sirable in terms of preventing overfitting. However, it seems in our case that uniformity
leads to slower convergence and has not significant changes in the final accuracy of the
task. In the experiments, we train HMMs using two raw training data, a seal(000
sentences) one and a largeX00, 000 sentences) one, and discuss the required amount

of the raw corpus to train a HMM.

3.2.1 Reducing Output Symbols

Since a Japanese character is usually represented in 2 bytes, which require 65536 array
indexes, it is not #icient to use character code itself as the output symbol. To reduce the
size of the output symbol set, i.M, we consider the most frequent characters as distinct
output symbols and other characters as the syrdd, which stands for unknown
characters. We varied the number of distinct symbols in the following experiments to

see the ffect of the output symbol reduction.

3.2.2 Stopping Criterion

In the Baum-Welch algorithm, the likelihood is exactly obtained in the forward-backward
probability calculation. Therefore, we can use the change in the likelihood as a stop-
ping criterion. In our experiments, however, we force the training to stop at the 100th
iteration, rather than check convergence at each iteration. This is because the likelihood
slightly increases even at the iteration such as 100 or 200, and the amount of this in-
crease cannot be distinguished from the amount of the slight increase in the initial stage
of the training. Figure 3.2 shows the training curves of the Baum-Welch algorithm

applied to Part 1 of the Kyoto corpubl(= 501) described in Chapter 5.

31

Figure 3.2: Training curve of the Baum-Welch algorithm
-600000 T T T T

-650000 |- |

700000 |- —

-750000

-800000

-850000

Log Likelihood

-900000
-950000
-1le+06

-1.05e+06 N=40, Exact 7]
N=80, Exact -------

N:16|0, Exact --------

-1.1e+06

60 80 100
Iteration

3.2.3 Augmenting Output Symbols with Character Types

Here, we describe the augmentation of the HMM'’s output symbols with character type
information. In Japanese, there are several distinct character types skahjiasi-

ragana katakana alphabef number andspecial Examples of these character types

are shown in Table 3.1. Each character type has its own role, as hiraganas are often
used to write functional words or verb conjugatiorfsies, katakanas are used for the
words from foreign languages. Therefore, the changes in character types are significant
clues to find the word boundary. To incorporate this significant clues into the character-
based HMMs, we tried augmenting the symbols which the HMMs output. For each
output symbolby;, we assign one of two new output symbols, representéd, &% and

(05, 1), where 0 and 1 are determined by the change in character type which is defined

32

Kaniji
Hiragana
Katakana
Alphabet
Number
Special

O 0Oo0Ooo0ooOo-d
I O R I B
I Y O R B
O 0Oo0oo0ooOod
N Y I B
N N B I By I
N B I B
N Y O B
O 0Oo0oo0ooOod
N R I B
e [OO 0O
N B I B

Table 3.1: Character types in Japanese

as follows.

opecrangy - {1 12 0o st
where, char-typet.,) is defined as the type which is not equal to any character type.
As a result, the size of the new symbol set becoMes 2.

For example, suppose that we have a symbolGet, - - - , 99} and a set of char-
acter typegC(kaniji), H(hiragang, K (katakand, A(alphabe}, N(numbe), S(specia)}.
We assign a new symbol codg" € {0, 1,-- - ,199 to each symbab; in a sentence. In

this casep®"is calculated as

new

0" = type-changet) x 100+ o.

The following illustrates this assignment process.

1 0O OO0 OoObobob o o o oboobo o o
Symbolcode 50 2 11 5 13 272122 28 6 17 6 1519 12 18 61
CharactertypeN C H C H KKK K C H C HHH H S
Changeintype 1. 1 1 1 1 0 0 0 1 1 1 1 0 0 O 1 1
New code 150 102 111 105 113 27 21 22 128 106 117 106 15 19 12 118 161

We consider the sentence as a sequence of these new codes when we train or use
character-based HMM. We found that this symbol augmentation significantly improve
the accuracy of word segmentation. Details of thea of this symbol augmentation

are shown in the experiments chapter.

33

3.3 Tag Emission Models

This section describes the details of tag emission models. Tag emission models are es-
timated using a tagged corpus and a character-based HMM estimated from an untagged
corpus. For each character, a tag emission model determines which tag is the most prob-
able tag in the task’s tag seéf, = {11, 72, -+ , 77}, DY viewing the most probable state

transitions for the character sequence, and some other contexts. We investigated two
types of emission models. The first is a simple frequency-based model, and the second

is a more complicated model based on the maximum entropy framework.

3.3.1 Frequency-based Model
UNIMAP

UNIMAP is the most simple tag emission model that emits a tag which is determined
only by a state at the character position in a Viterbi path. That is each state is mapped
to a unigue tag. We estimate the most probable tag for eachgsthyecounting the
cooccurrence of the state and the tag in a training tagged corpus. We denote a training
tagged corpus as

(0D, 7M), (0@, 7). ., (o), 70},

wheret® is a tag sequence annotated to fokta sentence®. We also denote the
Viterbi path for thekth sentence ag®. By using these notations, we can write the

estimation of the state-to-tag mappimgimagq;), as follows.

unimagq) argmaxP(z;|q;)

Ti€T
Y S 6(a, W)o(r,)
argmax = yo
el Dot 2teg 000, V)

Since the estimation of the UNIMAP model relies on the conditional probability

of only one state, statistically reliable estimation can be achieved with a small amount

34

of corpus. Therefore, for our final goal of minimizing the amount of tagged corpora
needed to construct a probabilistic model, the most ideal case is that each hidden state
of the trained HMM deterministically corresponds to a certain tag. In this case, we can
estimate that relation from a very small tagged corpus where each state occurs only few
times.

However, there is no guarantee that an HMM is trained as such, because we decided
to have no constraint which leads to such training, in order to keep the training inde-
pendent of a task or a tag set as far as possible. Therefore, we propose another model
to incorporate multiple cues to help the model determining appropriate tags by viewing

other contexts rather than one state in a Viterbi path.

BIMAP

In natural language processing, using higher ordgrams such alsigram andrigram
is a straightforward and well-known way to incorporate multiple cues. In the same way,
we can extend a UNIMAP model to determine a tag at tirhg viewing states at time

t — 1 and timet. We call this model BIMAP. Then the mappitgnapn(q;, d;) becomes

bimagg;, q;) = argmaxP(;lq;,, Gi,)

TieT
K T K K K
_ argmapeiet Zet 00)0,)0l . 7i%)

rer SRS T 80, V)(a,, V)

3.3.2 Incorporating Multiple Cues in the Maximum Entropy Frame-
work

Using many cues to determine tags as in the BIMAP model increases the data sparse-
ness. That is, more tagged corpora are needed for statistically reliable estimation, and
therefore it seems to conflict with our aim of minimizing the amount of tagged corpora
needed to construct a probabilistic model. However, by employing the maximum en-

tropy framework to combine various cues, we can balance the two demands, the same

35

performance as the UNIMAP model when the available tagged corpus is small, and
more accurate model when a large tagged corpus is available. We can see in the experi-
ments that the maximum entropy method increase the accuracy even when only a small

tagged corpus is available.

Features for a Maximum Entropy Tag Emission Model

In this thesis, we use the following four types of features for the maximum entropy tag

emission model.

Unigram Features:

Vi =0 ATt =Tj Yq;, 7j (always used)
(3.2)

Vieb = O A Tt = T Yg,7; 1<b<UB
(3.2)

Vief = O0i ATy = T Yg.7j 1<f<UF
(3.3)

Bigram Features:

Vier =0, AVi =i, A Ty = Tj Y0i;, iy, T (3.4)
Vieb-1 = Oy AVi-b = Qi ATt =T VG, 0,, 7] 1<b<BB
(3.5)
Vit f-1 = Oig A Vit = Qi ATt = T Y0, 0, 7; 1< f<BF
(3.6)

Trigram Features:
Vieg = Oy AVier = Qi AV =iy ATt =T Y0y, Gy, Ois, T (3.7)

Character Features:
O = 0 A Tt = Tj Y0, 7] (3.8)

wheret denotes the current positiob.B, UF, BB, andBF are constants which control

the scope of the features. The feature set 3.1 is equivalent to the UNIMAP model. The

36

feature set 3.2 and 3.3 slide this one-to-one relation backward and forward respectively
to take the #&ect of distant states into account. The feature set 3.4 corresponds to the
BIMAP model, which views two consecutive states in the Viterbi path. The feature
set 3.5 and 3.6 slide their scope in the same way as the unigram features. The trigram
feature set 3.7 views three consecutive states. The character feature set views the output

symbol at that position. Figure 3.3, 3.4, and 3.5 illustrate how these feature types access

the contexts.

™ b % & % 0

tag O 7 ?
/P
Viterbi path ‘—»H—».—»'—»‘
UB=1 I UF=2

current position

Figure 3.3: Unigram Features

N b % g % 0

tag O 7 ?
Ml
Viterbi path ‘—»‘—»‘—»‘—»‘—»‘
BB=1 I BF=2
current position

Figure 3.4: Bigram Features

To construct a maximum entropy tag emission model, we first define the feature

37

nob B OE B o

Y
tag O 7 ?

Viterbi path ‘—»H—»‘—»H

current position

Figure 3.5: Character Features

set. Next, we calculate the empirical distributions of the features, using a tagged corpus
and the Viterbi paths for the sentences in that corpus. Then, maximum entropy method
estimates the weights for the features according to these empirical distributions. In this
study, we used for this estimation the ChoiceMaker Maximum Entropy Estimator [7],
which implements the IS algorithm.

For the maximum entropy tag emission model, the most probable tag at pdsgion
determined as

1
T: = argT_aXZ_A exp Z /ll fl (tjv <{' T Vt—l’ Vt’ Vt+l9 e }a 0t>) .
TjE i

3.4 Tagging Procedure

In this section, we describe the runtime tagging procedure in our two-step model ap-
proach. The tagging procedure consists of the Viterbi search using the character-based

HMM and the tag emission using the tag emission model.

3.4.1 Character-based tagging

Here, we first describe how to perform word level tagging with a character-based method.

In a character-based method, we can perform word segmentation by assigning tag

38

which is for instance represented as”l1”, to the last character of each word, and tag
tother represented as “0” to the other characters. Similarly, morphological analysis (word
segmentation+ part-of-speech tagging) can be performed by assigning a tag such as
end-of-Yto the last character of a word which has part-of-speech tag Y. Precisely, we
employ the tag schemes which is similar to those employed in [37, 22]. When our task
is only the word segmentation, we use the following tag scheme:
teng for the last character of a word

{tother for other characters
When our task is the segmentation and the part-of-speech tagging, we use the following
tag scheme:

teng for the last character of a word which has P@S
tother fOr other characters

3.4.2 The Viterbi Search

Most supervised methods that employ an HMM for morphological analysis consider
that an hidden state relates to an unique part-of-speech tag deterministically. Then the
parameters of an HMM is estimated using a tagged corpus. To tag a sentence, they
deterministically output the most probable tag sequence according to the most probable
state sequence which can be computédiently by the Viterbi algorithm. Figure 3.6
illustrates the segmentation of a Japanese sentéhcel [0 (I [1 (kawa-wo wataru).
performed by a character-based HMM whose hidden states correspond to the segmen-

tation tags uniquely. The emphasized state sequence in the figure is the Viterbi path.

In our approach, we first find the most probable state sequence by the Viterbi al-
gorithm as illustrated in Figure 3.7 to tag a sentence by using a trained character-based
HMM. This is the same step with a state-tag coupled method. We have mentioned that in

the initial stages of the training we can not exploit the sparseness because the emission

39

kawa wo wataru o

sentence= Hh B OE 5/ o

N\ N\ N\
hidden states O
= tag
/

Figure 3.6: Word segmentation by an HMM whose states correspond to segmentation
tags

kawa wo wataru o

sentence=)\ H #*

;,v\a
O IL“}'{“}'{ O X

hidden states y' V‘V V‘(

Figure 3.7: Find the Viterbi path given a sentence

probability matrix, i.e. B, is dense. Fortunately, after the training, most of the emission
probabilities are close to zero. Figure 3.8 shows the rate of non-2e€0®0Q001) prob-
abilities in B during the Baum-Welch training using the training data with7Z, 956
characters. Therefore, we can use the Viterbi algorithm which exploits the sparse-
ness to find the Viterbi path. We store for each symiyohll possible states, i.e.,
{qi € {0, --,an} | B(g;, 05) > threshoI(}L where threshold is set to some small value,
for example 0001. Because a path which lpsuch thaB(q;, o;) ~ 0 can not be the
Viterbi path, we can restrict the max and argmax operation in the Viterbi algorithm to
the possible state combinations. Figure 3.4.2 illustrates this algorithm.

After the Viterbi search, we must determine the most probable tag sequence because
there is no deterministic mapping between states and tags. For this purpose, we estimate

atag emission moddleforehand by using a tagged corpus and the trained HMM.

40

100

N=160 Gibbs ——
N=320 Gibbs -
90 | N=640 Gibbs ---*--- |

80 |
70 |
60 |
50 |
40

30 |

Non-Zero Elements (>0.00001) in B (%)

20

10

Yoottt $ooTToonToooTIioo FoTTTTTIIIITIIIII
0 1 1 1 1
0 20 40 60 80 100

Iteration

Figure 3.8: The rate of non-zere (0.00001) elements in B during the Baum-Welch
training M = 4,002, T = 4,577,956)

0, 0, 0 Or_, Ory Or
o O O
O O /O\ O
O O O/0O\0O
O O O/ O \O
o O O O

Figure 3.9: The Viterbi algorithm exploiting sparseness of B

41

kawa wo wataru o

n bh % i3 5 o/
tag O 7 7 0 7 7
A A A A A A

tag emzsszon

Viterbi path ‘_’. " " " "

Figure 3.10: Emit tags according to the state in the Viterbi path

3.4.3 Tag Emission

The tag emission model emits tags stochastically according to the contexts such as the
Viterbi path and the characters in a sentence. At each character position, the most

probable tag* is determined by
t* = argmaxPticontext information)
t

The forms ofPtjcontext information) depend on the tag emission models.
Figure 3.10 illustrate this process. In this case, the tag emission model is illustrated
as it can access only the state at the current character position, i.e., UNIMAP. The most

probable tag for state 0 and 2 is “0”, and “1” for state 1.

42

Chapter 4

Training of HMM with Large State
Space

In this chapter, we introduce Gibbs sampling to the standard Baum-Welch algorithm to

enable the training of an HMM with a large state space.

4.1 Number of States Needed for Morphological Analy-
SIS

The number of distinct POS tags varies according to annotation schemes. For example,
the EDR corpus [12] has 31 POS tags. On the other hand, the Kyodai text corpus [18]
has hierarchical POS tags, 13 major POS tags at the top level, 109 minor POS tags at the
next level, and for each POS which conjugates, it has conjugation types and conjugation
forms. Combination of all level tags results in aboubQ0 distinct tags. When we
assume a one-to-one mapping between hidden states and tags, we need at least the same
number of hidden states as the number of the POS tags. Therefore, to make a model
adaptive to any tag set, we require a method which can train an HMM with up to few
thousands of states in a practical time.

The standard Baum-Welch algorithm can not be used to train an HMM with large

state space because it has the time compl©@TyN?), whereT is the size of the training

43

data, andN is the number of states of the HMM. In addition, since we do not have strong
assumption about the structure of the HMM, the initial parameters that give the sparse
probability matrix, will not be given at the beginning of the training. Therefore, the
technique which reduces the time complexity of the standard Baum-Welch algorithm by
exploiting the sparseness of the emission probability matrix [10] cannot be applied. As

a solution of this problem, we introduce Gibbs sampling to the Baum-Welch algorithm.

4.2 Baum-Welch Algorithm via Gibbs Sampling

This section describes a variant of the Baum-Welch algorithm which utilizes Gibbs sam-
pling in the forward-backward calculation to reduce the training time complexity [16].

Since the most of the time is consumed in the forward-backward probability calcula-
tion, we try to reduce the time complexity of this step by using some approximated

calculation rather than the exact calculation at some, not so large, cost in accuracy.

4.2.1 Approximation by Sampling

Samplings a method to generate realizations of random variables{ Xy, X,, - - - , Xy}
according to the probability distributioR(X). Using a stficient number of such sam-
ples {(x®,x@, ... xK)} we can approximate the expectation of a functgX) with

respect to the distributiok as

Ep[a(X)]

DAl X, Xa)P(X = X, Xo = X, 0+, Xa = X))

X1,X2,, Xn

1 K
LS5t 1A
k=1

Q

In our case, we want to obtain the samples of the state sequence drawn according to the

distribution given the observations and the current model parameterB(Q, Q. - - - , Qrlo!, 2).

44

Given a number of the samples of the state sequence for the observations, we can cal-
culate the statistics needed to reestimate the model’'s parameters by counting the state

transitions and symbol emissions. Then the reestimation formulas using samples be-

come
E:ZLll%mﬁq)
K
R 35> S RINCOR
Tk ZtT:(;)_l 5o,)
&:zéﬁﬂ%m&qm@@q)

i 2 oo, o)
where{q,q¥, .- ,q¥} is thekth sample for the random variablé®:, Qz, - - , Qr)

which correspond to the state sequence,lamglthe total number of generated samples.

4.2.2 Gibbs Sampling

Among the various sampling methodSjbbs samplings one of the simplest meth-
ods. Gibbs sampling is a Monte Carlo Markov Chain (MCMC) sampling method. This
means that each sample is generated by the Markov chain according to the previous
sample. Under the suitable conditions, the distribution of the samples converges to the
stationary distribution which is equal to the desired distribution from which we want to
draw samples [15, 24].

Starting from some initial sample”, X, - .-, X"}, Gibbs sampler generates the
next sample repeatedly. To generate the (L)th sample from thé&th sample, Gibbs

sampler updates one component of the vector at a time as follows.

Draw X" from P(X(|(X}\X;) given X X,

Draw x¥* from POGIXN\X) given A x80... xW,

Draw x¥*D from P(Xa[(X)\X,) given (¢ xe b o xlah

45

Note that the new value fof; is used immediately to draw the next value ¥or,. After
some long time steps, we can use the generated samples to calculate statistics of the
desired distribution.

Gibbs sampling requires three parameters to be decided:

1. The number of samples discarded until the algorithm reaches the stationary dis-

tribution.
2. The number of samples collected after reaching the stationary distribution.

3. The number of runs of above cycle.

However there is no definite method to decide them.

4.2.3 Gibbs Sampler for the Baum-Welch Algorithm

An HMM is considered as a graphical model [14] written as in Figure 2.1. In general,
each node in a graphical model is conditionally independent from other nodes given its
Markov blanket, defined as the children of a node, parents, and parents of the children.

Therefore, for an HMM we get

P(QtHQ}\Qt, OI) = P(Qt|Qt71» Qtfl’ Ot)
oc P(Qt|Qe-1) P(Or| Q) P(Qt41/Qy).

The pseudo-code for generatiqb”) becomes as Program 1. As we can see, the gen-
eration of the next value for one component of the vector cOéh), whereN is the
number of states of an HMM. If we generafesamples per each observation symbol

to collect statistics, the total time complexity of the Baum-Welch algorithm via Gibbs
sampling become®(KNT). If we can collect reliable statistics by generatidf N)
samples, Gibbs sampling can be used to accelerate reestimation. In our experiments,
the settings such as 1 cycle of 20 discarded and 20 collected was found to be enough

and thus Gibbs sampling is practical.

46

pstate= q.";

nstate= q'%;;

sym= o;
acc= 0.0,
r =0.0;
for(i=0;i < N; i+ +){
acc+= a(pstateq) x b(qg;, sym) x a(q;, nstate;

r = random number in [AL];
r X = acg
acc=0.0;
for(i = 0;i < N; i++){
acc+= a(pstateq) x b(qg;, sym x a(qg;, nstate;
if (r < acof
) ='g;
break;

}
}

Program 1: Pseudo code for generatinff*™

4.2.4 Timing Comparison with the standard Baum-Welch algorithm

Figure 4.1 shows the timing comparison between the Gibbs sampling version of the
Baum-Welch algorithm and the standard Baum-Welch algorithm. The plot is for the
training data of 402295 output symbols in the symbol set with size 501. The sampling
strategy is 1 cycle of 20 discarded and 20 collected (1-20-20). We can see that the Gibbs
sampling version significantly reduces the time complexity to the linear. In Chapter
5, we show that while there is the penalty according to the approximation by Gibbs
sampling, this 1-20-20 setting actually has the benefit which exceeds the penalty when

a large raw corpus is used to train an HMM.

4.2.5 Initial Sample Generation

One remaining question in the Gibbs sampling Baum-Welch algorithm is how to gener-
ate the initial sample. The simplest method is to generate the initial sample by assigning

each component at random. In addition to that, we tested two initialization methods

47

1600 T T T T T T

1400

1200

1000 |

800

Time / Iteration (sec)

600 -
400 -

200

Exact Baum-Welch —+—
Glibbs Baum-WleIch —-X---

1 1 1
200 300 400 500 600 700
Number of States

Figure 4.1: Time per iteration: Exact Baum-Welch algorithm vs. Gibbs sampling Baum-
Welch algorithm

48

which intend to make the sampler reach the stationary distribution earlier.
The first method generates the each component of the initial sample greedily ac-

cording to the conditional probability given the previous component as follows.

Generatay.” according tor(g) x b(q;, 01)

Giveng® andoy,1, generate(?, according to the distribution:

P(Qt1/Qt, Or) o P(Qts11Q)P(Or11|Qti1) = a(qgl), ai) x b(c}, Ot41).

We call this method aSREEDY. Note that, the cost of this generation of initial sample
is less than one full generation of Gibbs sampling.

The second method, call®BEST, uses the sample that yielded the greatest joint
probability, i.e.,P(o], q7), at the last Baum-Welch iteration as the initial sample of the
current iteration. This method is also not so costly since we only need to compare and
store the the sample.

Figure 4.2 shows the comparison between these three initialization methods. Here,
we show the goodness of the trained models measured by the (test-set) cross entropy

per symbolHS, defined as follows.
1
HS = T log P(T exta)

K
]
> logP(o¥,'14),

k=1

=l

whereT is the total number of symbols in the text, akds the total number of sentences

in the text. Small values indicate good models and roughly indicate good accuracy
in morphological analysis. The models are trained using the tedt ef 402 295
andM = 501 from newspapers with 100 Baum-Welch iteratio@$osedmeans that

we calculated cross entropy using the training text apenmeans that we calculated
cross entropy using the text which is not used for training, in this tase372 373

(the number of sentences is same as the training text). The figures are the averaged

49

5.5
545
°
Q
€ 54]
f W 1-20-20 (closed)
§ 535 L [01-40-40 (closed)
2 01-20-20 (open)
= [1-40-40 (open)
w 53
)]
o
(@]
525
5.2
RANDOM GREEDY PBEST

Figure 4.2: Initial sample generation methods and cross entropy per symbol of the
trained HMMs

values over 4 runs for the sample generation strategies of 1 cycle of 20 discarded and
20 collected, written as 1-20-20, and 1 cycle of 40 discarded and 40 collected, written
as 1-40-40, respectively. We can see tBREEDY andPBEST perform better than the
simpleRANDOM. In our later experiments, we use the setting of 1-20-20GREEDY

initialization which marked the highest performance for the open test.

50

Chapter 5

Experiments

Our final goal is to achieve domain adaptability and tag adaptability. We expect that
domain adaptability with only a small tagged corpus is achieved by unsupervised learn-
ing of a character-based tag-independent HMM. On the other hand, we expect that tag
adaptability is achieved by the division of parameter estimation and by the employment
of an HMM with a suficiently large state space to contain information required for
morphological analysis with any tag set. To enable training of an HMM with a large
state space, we have introduced Gibbs sampling to the Baum-Welch algorithm. We also
proposed symbol augmentation to improve the accuracy of morphological analysis. In
this chapter, we show a series of experiments conducted to seffébveness of our
approach. In particular, we show that our approacHfiscéive for domain adaptability

in the sense that we can robustly estimate probabilistic parameters from a small amount
of corpus.

In Section 5.3.2, we show the experimental results on word segmentation using the
UNIMAP tag emission model and a small raw corpus. Here, we show the relation
between the penalty of the Gibbs sampling and the its benefit. When the raw corpus
used to train an HMM is small, the benefit of Gibbs sampling is not significant.

In Section 5.3.3, we show the experimental results on word segmentation using sym-

bol augmentation. In this experiment, we show that symbol augmentation greatly im-

51

proves the accuracy of word segmentation.

In Section 5.3.4, we show the experimental results on word segmentation using an
HMM trained with a large raw corpus. Here, we show that when the raw corpus used to
train an HMM is stficiently large, the benefit of a large state space enabled by Gibbs
sampling exceeds the penalty according to the approximation by Gibbs sampling.

In Section 5.3.5, we show a series of feature tests for the maximum entropy tag
emission model. We show that the maximum entropy tag emission model significantly
improves the word segmentation accuracy when the available tagged corpus is large.

In Section 5.3.6, we vary the amount of tagged corpus used to train a tag emission
model to see theffect of unsupervised learning of a character-based HMM for domain
adaptability.

In Section 5.3.7, we compare the results in Section 5.3.6 with the accuracy of other
character-based methods, and show that our method achieves higher accuracy when the
available tagged corpus is small.

In Section 5.4, we show the experimental results on morphological analysis briefly.

5.1 Evaluation

The accuracy of morphological analysis is evaluated by using three meahaester

accuracy word recall andword precision Character accuracy is defined as

number of correctly tagged characters
number of characters in the test corpus

character accu racy

Word recall and word precision [23] are well-known measures for morphological anal-

ysis, which are defined as follows.

number of correctly tagged (segmented) words
number of words in the test corpus
number of correctly tagged (segmented) words
number of words the which system outputs

word recall=

word precision=

Note that character accuracy is an easier measure than word recall and word precision.

52

number of sentencasnumber of words number of characters
Part 1 (for the closed test) 8,973 228,027 402,295
Part 2 (for the open test 8,973 210,639 372,373

Table 5.1: Kyoto University text corpus divided into two parts

\ number of sentencgsnumber of character#
| 112,429 4,577,956 |

Table 5.2: A large raw text from Mainichi shinbun
5.2 Data Set

To conduct experiments, we used the Kyoto University text corpus (the Kyoto corpus)
[18]. The Kyoto corpus consists of about, P00 annotated sentences from news articles

of Mainichi shinbun, one of the major newspapers in Japan. We divided this corpus into
two parts as shown in Table 5.1, one is for the training of an HMM and a tag emission
model, and the other is for the open test. We also prepared a large raw text corpus for the
training of an HMM, which consists of about 1L@D0 sentences from Mainichi shinbun

[1]. The details are shown in Table 5.2.

5.3 Word Segmentation

Morphological analysis involves word segmentation and part-of-speech tagging. In this

section, we show the experimental results on word segmentation.

5.3.1 Baseline Method

To see whether the training of an HMM from raw texts is really significant, we prepare
a simple baseline method based on heuristics. This baseline method segments words

where the character type changes. Table 5.3 shows the accuracy of this baseline method

53

For Part 1 For Part 2
CA WR WP CA WR WP
79.51| 52.91|61.81| 77.53| 48.75| 58.01

Table 5.3: Word segmentation accuracy for the Kyoto corpus by baseline method us-
ing character types. CA, WR, WP means character accuracy, word recall, and word
precision respectively.

for the Kyoto corpus. At least our methods must outperform this baseline method.

5.3.2 UNIMAP Emission Model

Tables 5.4, 5.5, and 5.6 show the accuracy of word segmentation by the UNIMAP emis-
sion models. To see théfect of the number of staté¢$, the number of symbolst, and

the method of the E-Step, exact or Gibbs sampling, we varied these parameters in the
experiments. We trained each HMM starting from random initial parameters using Part
1 of the Kyoto corpus as training data. Each emission model is also estimated using all
of Part 1 of the Kyoto corpus. As described in Section 3.2.2, we forced the training to
stop at the 100th iteration.

From Tables 5.4, 5.5, and 5.6, we can observe a tendency that the accuracy becomes
higher as the number of states becomes greater. Tables 5.4, 5.5, and 5.6 also show that
the Gibbs sampling E-step has some penalty in accuracy compared with the exact E-
step. We display the figures in Table 5.4 as a graph in Figure 5.1 to see more clearly
that withM = 501 the #ect of the larger state space exceeds the penalty of the Gibbs
sampling E-Step. However, with other settinyy$,= 1001 andM = 4001, we cannot
observe this tendency clearly. In particular, whidn= 4001, the accuracy of the HMM
(N = 640) trained by the Gibbs sampling Baum-Welch extremely decreases. It should

be because of the data sparseness problem.

54

(M =501)
N, E-Step| For Part 1 (closed) For Part 2 (open)
CA | WR | WP | CA | WR | WP
40 Exact | 87.21| 74.38| 71.91| 87.92| 76.13| 72.01
80 Exact | 86.70| 73.55| 69.19| 87.49| 75.36| 70.05
160 Exact| 88.65| 76.18| 73.83| 89.22| 77.48| 74.57
80 Gibbs | 86.14| 71.37| 70.04| 86.14| 73.02| 69.33
160 Gibbs| 88.13| 75.15| 72.88| 88.32| 76.86| 72.75
320 Gibbs| 88.90| 75.95| 75.10| 89.65| 77.41| 76.00
640 Gibbs| 88.86| 74.49| 74.69| 89.78| 76.84| 75.85

Table 5.4: Word segmentation accuracy for the Kyoto corpus by the UNIMAP emission
model M = 501)

(M =1,001)
N, E-Step| For Part 1 (closed) For Part 2 (open)
CA | WR | WP | CA | WR | WP
40 Exact | 88.03| 72.18| 74.05| 88.70| 75.79| 74.14
80 Exact | 87.94| 71.47| 74.17| 88.45| 74.67| 73.89
160 Exact| 89.66| 77.85| 75.71| 89.48| 77.97| 74.52
160 Gibbs| 88.22| 75.23| 72.84| 88.47| 76.47| 72.92
320 Gibbs| 88.67| 75.49| 73.32| 89.11| 77.24| 73.80
640 Gibbs| 89.54| 77.22| 75.76| 89.65| 78.10| 75.44

Table 5.5: Word segmentation accuracy for the Kyoto corpu®/K¥MAP emission
model M = 1,001)

55

Figure 5.1: Accuracy vs. the number of states for the Kyoto corplis=(501, open

test)

Accuracy

Word Recall

Word Precision

90
,,,,,,,,,,,,,,,,,,,,,,,,,,,, X
e
89.5 " B
89 B
88.5 i
88 B
87.5 B
87 4
86.5 |
M=501 Exact ——
X M=501 Gibbs ---x---
86 I I I I I |
100 200 300 400 500 600 700
Number of States (N)
78
76 |- B
74 + |
72 B
70 | B
M=500 Exact —+—
M=501 Gibbs ---x---
68 | | | | | f
0 100 200 300 400 500 600 700
Number of States (N)
78
76 | T x 1
74 B
72 B
70 + E
M=500 Exact —+—
M=501 Gibbs ---x---
68 | | | | | f
0 100 200 300 400 500 600 700

Number of States (N)

56

(M =4,001)
N, E-Step| For Part 1 (closed) For Part 2 (open)
CA WR | WP CA WR | WP
40 Exact | 87.50| 70.30| 72.65| 88.12| 74.02| 73.04
80 Exact | 87.46| 73.09| 72.13| 87.24| 73.63| 71.29
160 Exact| 89.95| 78.58| 75.95| 89.30| 78.39| 74.12
160 Gibbs| 88.28| 75.65| 72.44| 88.37| 76.78| 72.09
320 Gibbs| 89.36| 77.56| 75.25| 89.28| 78.12| 74.27
640 Gibbs| 87.75| 73.90| 71.51| 87.70| 74.10| 71.01

Table 5.6: Word segmentation accuracy for the Kyoto corpus by the UNIMAP emission
model M = 4,001)

5.3.3 Augmenting Output Symbols with Character Types

In this section, we show that the symbol augmentation described in Section 3.2.3 greatly
improves the accuracy of word segmentation. Table 5.7 shows the performance of the
HMMs trained using Part 1 of the Kyoto corpus where symbols are augmented. Com-
pared with the performance of the HMMs trained using the Kyoto corpus encoded in
1001 symbols (Table 5.5), the augmented version marks about 2 points higher accuracy
with almost the same size of the symbol set. Therefore, we focus on the models using

this symbol augmentation in the following experiments.

5.3.4 Performance of HMMs trained using a Large Raw Corpus

In Section 5.3.2, we mentioned that the data sparseness problem interfere improvement
of accuracy in the case &fi = 1001 andM = 4001. Table 5.8 shows the accuracy of

the HMM s trained using the large raw corpus described in Section 5.2, which consists
of about 100000 sentences. In this case, the accuracy incread¢dasomes greater.

From this result, we conclude that the data sparseness problem can be solved by using a

suficiently large raw corpus such as the raw corpus with @00 sentences. Combined

57

(M =501x 2)
N, E-Step | For Part 1 (closed) For Part 2 (open)
CA | WR | WP | CA | WR | WP
40 Exact | 88.86| 77.16| 74.47| 88.27| 76.90| 72.80
80 Exact | 88.64| 77.59| 72.70| 87.85| 76.19| 70.84
160 Exact | 91.59| 82.09| 80.88| 91.12| 81.75| 78.92

160 Gibbs | 91.24| 82.43| 78.86| 90.87| 81.85| 77.69
320 Gibbs | 92.26| 83.45| 82.18| 91.62| 82.33| 80.23
640 Gibbs | 92.21| 83.15| 82.10| 91.77| 82.02| 80.73
1280 Gibbs| 92.36| 82.73| 82.52| 91.96| 82.05| 81.18

Table 5.7: Word segmentation accuracy for the Kyoto corpus by the UNIMAP model
with symbol augmentation = 501x 2)

(M =4001)
N, E-Step| For Part 1 (closed) For Part 2 (open)
CA | WR | WP | CA | WR | WP
40 Exact | 86.04| 71.54| 69.56| 86.35| 72.49| 70.06
160 Gibbs| 88.95| 76.51| 74.35| 89.17| 78.02| 74.08
320 Gibbs| 89.96| 78.43| 76.18| 90.35| 79.25| 76.98
640 Gibbs| 90.35| 79.27| 76.75| 90.73| 80.32| 76.99

Table 5.8: Word segmentation accuracy with HMMs trained using a large raw corpus
(M =4001)

with the symbol augmentation, the training using a large raw corpus marks the highest
accuracy at this point as shown in Table 5.9.

We display the figures in Tables 5.8 and 5.9 as a graph in Figure 5.1 to see more
clearly the &ect of symbol augmentation when HMMs are trained using a large raw
corpus. We can also observe, from the smooth increase in accuracy along with the num-
ber of states, that the data sparseness problem is solved by using a large raw corpus for
the training. Though there is only one data pot£ 40) for the exact E-Step because
of the lack of time (it will take approximately 18 days to train an HMM with= 160

58

(M =2001x 2)
N, E-Step| For Part 1 (closed) For Part 2 (open)
CA WR | WP CA WR | WP
40 Exact | 89.39| 78.55| 75.98| 88.32| 76.92| 73.43
160 Gibbs| 92.02| 84.18| 80.38| 91.06| 82.46| 77.96
320 Gibbs| 92.83| 84.59| 82.68| 92.06 | 83.83| 80.42
640 Gibbs| 93.42| 85.47| 84.08| 92.93| 84.78| 82.32

Table 5.9: Word segmentation accuracy with HMMs trained using a large raw corpus
and symbol augmentatiohA = 2001x 2)

by the exact Baum-Welch algorithm), the Gibbs sampling Baum-Welch algorithm out-
performs the exact Baum-Welch algorithnNat 40. To find the reason why the Gibbs

algorithm outperforms the exact version, we will need further investigations.

5.3.5 Accuracy of Maximum Entropy Tag Emission Models

In this section, we show the accuracy of the maximum entropy tag emission models. As
described in Chapter 3.3.2, we use unigram features, bigram features, trigram features,
and character features. Table 5.10 shows the results of the experiment where we tried
various feature sets. In this experiment, we used the HMMs which are written as “320
Gibbs” and “640 Gibbs” in Table 5.9. Unigram features that view only the current state
are always used. UB, UF, BB, and BF in the table have the same meanings as in the
definition of the features in Section 3.3.2. Bullets in the “bi”, “tri” and “ch” columns
indicate that we used bigram features, trigram features, character features, respectively.
Note that, by definitionl B > 0 does not indicate that we used bigram features defined
by equation 3.4 (in page 36). We estimated a maximum entropy tag emission model for
each feature set by using Part 1 of the Kyoto corpus. As in the previous experiments,

the accuracy was measured for Part 1 and Part 2 of the Kyoto corpus.

We can see that even simple features such as forward unigram features greatly im-

59

93 —
92 |- & 4
91 | = -
77777 R
xemm ST -

.. 90 J

3 .

© o -

5

8 ; -

; *

RN i
88 4
87 i

M94.T4000 Exact —+—
M94.T4000 Gibbs
M94.T2000+BL Exact ---%---
M94.T2000+BL Gibbs &
86 I I I I f |
0 100 200 300 400 500 600 700
Number of States (N)
o
84 o . - |
i
82 | g E
¥‘ - X
80 —— — e - 4
; I

_ s e |

© ;

o {

@ *

el L e |

s 6

= .

74 | 4

72 + 4

70 | M94.T4000 Exact —+— 4

M94.T4000 Gibbs ---x---

M94.T2000+BL Exact ---*---
M94.T2000+BL Gibbs &

68 | | | | f f

0 100 200 300 400 500 600 700
Number of States (N)
84 |- 4
82 |) S i
&

80 |- e |

s 78| .8 i

@

S

£ ¥ e

T 3

° 76 oo L 4

5 ; =
2N o]
72 4
70 b M94.T4000 Exact —+— |

M94.T4000 Gibbs ---x---
M94.T2000+BL Exact ---*---
68)))) MQA.TZOOO+BL qibbs a

0 100 200 300 400 500 600 700
Number of States (N)

Figure 5.2: Comparison between the normal HMMs and the symbol-augmented HMMs
(trained using a large raw corpus)
60

prove the accuracy (see the rows No. 3 — 7). Comparing the row No. 3 with No. 4, or
No. 12 with No. 13, we can see that théeet of the forward features exceeds that of the
backward features. Thedtect of the character features is also significant (see the row
No. 10 and No. 18). As a result of these feature tests, we obtained the feature set in the
row No. 18 and No. 21 that marks the highest accuracy @™ character accuracy,

92.26% word recall, and 984% word precision in the open test.

5.3.6 Accuracy vs. Amount of Tagged Corpus

Figure 5.3 shows the relation between the open test accuracy of word segmentation and
the amount of the tagged corpus used to train a tag emission model. In the experiments,
we varied the amount of tagged corpus as “10”, “50”, “100”, “500”, “1000”, “5000",

and “all(8973)” sentences. To make clear th@atences in the small amount of corpus,

the logarithmic scale is used in the x-axis. The HMMs trained from a large raw corpus
with symbol augmentation, which were described in Section 5.3.4 are used to conduct
this experiments. The setting for the maximum entropy tag emission model, denoted as
“MEMAP”, is same as the feature set in the rows No. 18 and No. 21 in Table 5.10 that
marked the highest accuracy in the feature tests.

We can observe the followings from the experiments.

1. When the available tagged corpus is large, i.e., 500000 sentences, the accu-

racy of UNIMAP model becomes greater as the state space becomes large.

2. On the other hand, when the available tagged corpus is small, i.e., 10-100, the

accuracy of UNIMAP model becomes greater as the state space becomes small.

3. The maximum entropy tag emission model greatly improves the accuracy, partic-

ularly the word precision, when the tagged corpus is large.

61

No. | N, E-Step Features For Part 1 (closed) For Part 2 (open)

UB | UF | bi |BB|BF|ti|ch| CA [WR | WP | CA | WR | WP
1 | 320 Gibbs UNIMAP 92.83| 84.59| 82.68| 92.06| 83.83| 80.42
2 | 320 Gibbs BIMAP 93.38| 85.35| 83.94| 92.48| 84.11| 81.51
3 | 320Gibbs| 1 | O |- | O | O | -] -]9295|84.90| 82.86| 92.34| 84.41| 80.99
4 | 320Gibbs| O | 2 | -] O | O | - | - |94.79| 88.00| 87.37| 94.52| 87.83| 86.23
5 | 320Gibbs| 1 | 1 |-| 0| O | - | -]95.08|88.81| 88.01| 94.78| 88.49| 86.88
6 | 320Gibbs| 2 | 2 | -| O | O | - | - |95.18|89.08| 88.25| 94.91| 88.95| 87.13
7 | 320Gibbs| 4 | 4 | -| O | O | - | - |9527|89.26| 88.49| 94.89| 88.80| 87.16
8 | 320Gibbs| O | O |e| O | O | - | - | 93.60| 86.11| 84.37| 92.76| 85.15| 81.93
9 | 320Gibbs| O | O | -| O | O | e | - | 9457|88.09| 86.54| 92.77| 84.81| 82.06
10 | 320Gibbs| O | O | - | O | O | - | e | 94.21| 86.95| 85.96| 93.27| 85.12| 83.63
11 | 320Gibbs| O | O | e | O | O | e | - | 94.62| 88.24| 86.56| 92.96| 85.39| 82.40
12 | 320Gibbs| 1 | O | e | O | O | e | - | 94.61| 88.21| 86.57| 92.94| 85.33| 82.35
13 | 320Gibbs| O | 1 | e | O | O | e | - | 96.39| 91.64| 91.00| 94.96| 88.77| 87.38
14 | 320Gibbs| O | 2 | e | O | O | e | - | 96.54| 92.04| 91.36| 95.09| 89.12| 87.70
15| 320Gibbs| O | 3 | e | O | O | ¢ | - | 96.57| 92.09| 91.44| 95.11| 89.17| 87.77
16 | 320Gibbs| O | 3 | e | O | 1 | e | - | 97.05| 93.02| 92.78| 95.48| 89.77| 88.87
17 | 320Gibbs| O | 3 | e | O | 2 | e | - | 97.39| 93.79| 93.60| 95.54| 89.91| 89.00
18 | 320Gibbs| O | 3 | e | O | 2 | e | o | 98.26| 95.85| 95.75| 96.38| 91.64| 91.25
19 | 640 Gibbs UNIMAP 93.42| 85.47| 84.08| 92.93| 84.78| 82.32
20 | 640 Gibbs 2| -0] 0] -]-196.0991.30|90.45| 95.85| 90.88| 89.56
21 | 640Gibbs| O | 3 |e | O | 2 | o | o | 98.96| 97.49| 97.43| 96.67| 92.26| 91.84

Table 5.10: Accuracy of the maximum entropy tag emission model: Results are for
HMMs trained using a large raw corpus encoded by symbol augmentation

62

4. In addition, the maximum entropy tag emission model also lifts up the accuracy

when the tagged corpus is small.

1. and 2. mean there is a tradfi4o the setting of the HMM'’s number of states between
the accuracy with a large tagged corpus and the accuracy with a very small tagged
corpus. This can be predicted to some extent from our design of tag emission models.
3. isthe same as the expectdidet of the maximum entropy emission model. 4. implies
that we need careful smoothing or badktechniques when the available tagged corpus

is very small. The maximum entropy framework seems to have the aeiect and

lifts up the accuracy when only 10 sentences are available.

5.3.7 Comparison with Other Character-based Methods

We compared our method, which is displayed in the previous graph (Figure 5.3), with
the method which is almost equivalent to the charantgram based method as de-
scribed in [27, 37]. In this method [32], a word boundary is represented by a special
character, for instance<d >". We estimate charactéigram ortrigram from a corpus
where boundaries are encoded in this way. Then for each character position in a raw
sentence we assume two hidden states, “1” for word boundaries, “0” for the others. The

probability of being in statg at timet, P;(c}), can be calculated as

Po(cy) =Po(c;) p(cilCi-2, Ci-1)
+ Py(cihp(cl < d > ¢iy)
Py(c}) =Po(ci *p(< d > [ci2Ci1)p(c] < d >)

+ Po(c;)p(< d > | < d > cg)p(c] < d >).

We used SRILM (The SRI Language Modeling Toolkit) [2] to estimate this model and
to segment a sentence. The most probable state sequence can be estimated by the Viterbi

algorithm.

63

Accuracy

Word Recall

Word Precision

100

95

90

85

80

T
—+— 160 Gibbs UNIMAP
--- 320 Gibbs UNIMAP
---%--- 640 Gibbs UNIMAP

&~ 320 Gibbs MEMAP -
--m— 640 Gibbs MEMAP _oo BT
------- baseline o i

o

3 !

75 ;
1 10 100 1000 10000
Sentences

100 ;
—— 160 Gibbs UNIMAP
- 320 Gibbs UNIMAP
~-%--- 640 Gibbs UNIMAP

90 | - 320 Gibbs MEMAP It

--m— 540 Gibbs MEMAP g
------ baseline B

80

70

60

50

40 + < |
30 I I L
1 10 100 1000 10000
Sentences
95 .
—+— 160 Gibbs UNIMAP
- 320 Gibbs UNIMAP
- - 640 Gibbs UNIMAP P o)
90 | 8- 320 Gibbs MEMAP e i
--®- 640 Gibbs MEMAP e
------- baseline e
85 -
80 |-
75
70
65 / i
Y
60 * R
55 I I I
1 10 100 1000 10000

Figure 5.3: Accuracy vs. amount of tagged corpus

Sentences

64

Figure 5.4 shows the results. We can see that the decline of the accuracy of our
method is not severe compared with the charatigrambigram methods, denoted
as “Ext-Char Tri”, “Ext-Char Bi” respectively, though the charadiegram method
outperforms our method when a large tagged corpu$@00) is available. The plot
denoted as “Ext-Char Tr BL’ indicates that we trained charactergram using the
Part 1 of the Kyoto corpus augmented by symbol augmentation. This plot is to show
that symbol augmentation is not the main reason for our method’s slow declining.

We also compare our method with HMM-disabled version of our method. We let
the HMM return input symbols as the Viterbi sequence. Then we estimate the maxi-
mum entropy tag emission model with the setting suci8s= 2,UF = 2. That is,
these alternatives are the maximum entropy tagging methods with only character fea-
tures. Figure 5.5 show the results. “Sym ME” indicates that the model views only the
current character. “Sym ME 2-2” indicatedB = 2, UF = 2. While we can see that the
HMM-enabled versions with the maximum entropy tag emission model mark signifi-
cantly higher accuracies than the HMM-disabled versions, the accuracies of “Sym ME
2-2" at 10 sentences and 5000 sentences indicate that the character features which
view characters other than the current character are filsctige. Note that the HMM-
enabled versions with the maximum entropy tag emission model include the character

features equivalent to “Sym ME”, and they show the accuracies in similar curves.

5.4 Accuracy of Morphological Analysis

In this section, we show the experimental results on morphological analysis, i.e., word
segmentation and POS tagging. The experiments were conducted using the Kyoto cor-
pus. We also used the HMMs trained using a large raw corpus, i.e., “320 Gibbs” in Table
5.9. In the experiments, we used only the major 13 POS tags. That is, the accuracy is

for the tagging of the major POS tags. We trained a UNIMAP tag emission model and a

65

100 T
160 Gibbs UNIMAP
320 Gibbs UNIMAP
640 Gibbs UNIMAP -8
320 Gibbs MEMAP g
o5 |- 640 Gibbs MEMAP
Ext-Char Tri
Ext-Char Bi
Ext-Char Tri + BL
baseline
90
3
g
5 8
8
<
80
75 ;
£
70 I I I
1 10 100 1000 10000
Sentences
100 T
—+— 160 Gibbs UNIMAP
---%--- 320 Gibbs UNIMAP
---%--- 640 Gibbs UNIMAP
90 | @ 320 Gibbs MEMAP
---m— 640 Gibbs MEMAP -
-o-- Ext-Char Tri
Ext-Char Bi
Ext-Char Tri + BL
80 | baseline
3 70
S
Q
o
B2
=}
2 60
B0
40 ;,g' b
;
30 I I I
1 10 100 1000 10000
Sentences
95 T
160 Gibbs UNIMAP
320 Gibbs UNIMAP
- 640 Gibbs UNIMAP
90 320 Gibbs MEMAP
640 Gibbs MEMAP
Ext-Char Tri
Ext-Char Bi
85 |- Ext-Char Tri + BL
- - baseline
80
<
o
@
8
g5
°
S
=
70
65
60
55 I I I
1 10 100 1000 10000

Sentences

Figure 5.4: Comparison with character trigram and bigram methods

66

100

—— 160 Gibbs UNIMAP
---x--- 320 Gibbs UNIMAP
---%--- 640 Gibbs UNIMAP
- 320 Gibbs MEMAP e
| --=- 640 Gibbs MEMAP g B}
9B o SymME 2-2 e °l
Sym ME
- baseline
90
oy
s
5 8
8
<
80 -
75 * E
I
70 ! . .
1 10 100 1000 10000
Sentences
100 T
160 Gibbs UNIMAP
320 Gibbs UNIMAP
640 Gibbs UNIMAP
90 320 Gibbs MEMAP
640 Gibbs MEMAP
Sym ME 2-2
Sym ME
80 - baseline
70
=
8
(7]
X g0 |
e
o
2
50 |-
.' o
40 %]
30 g
.
20 X . .
1 10 100 1000 10000
Sentences
100 ;
160 Gibbs UNIMAP
320 Gibbs UNIMAP
640 Gibbs UNIMAP
320 Gibbs MEMAP -
90 L 640 Gibbs MEMAP BT
Sym ME 2-2 g o
Sym ME . -
- baseline
80 -
c
S
0
8
£ 0
-
S
2
60 -
50 g
0 2 ! !
1 10 100 1000 10000

Sentences

Figure 5.5: Comparison with the HMM-disabled model

67

N, E-Step For Part 1 (closed) For Part 2 (open)
CA | WR | WP | CA | WR | WP

320 Gibbs UNIMAP| 86.26| 76.01| 75.19| 84.86| 74.63| 72.75
320 Gibbs MEMAP | 97.57| 95.05| 95.01| 93.42| 87.60| 87.64

Table 5.11: Accuracy of morphological analysis

maximum entropy tag emission model for this tag set. The feature set for the maximum
entropy model is same as the row No. 18 in Table 5.10. Table 5.11 shows the results.
Although the accuracy of morphological analysis is clearly lower than that of word seg-

mentation, there are the same tendencies with the accuracy of word segmentation.

68

95

920

85

Accuracy

80

75

70

90

85

80

75

70

65

Word Recall

60

55

50

45

40

920

85

80

75

70

Word Precision

65

60

55

320 Gibbs UNIMAP —+—

L \ 320‘G|hbs MEMAP ---x---

10 100 1000 10000
Sentences

320 Gibbs UNIMAP —+—
320 Gibbs MEMAP ——-—

10 100 1000 10000
Sentences

320 Gibbs UNIMAP —+—

i) 320 Gibbs MEMAP ——-—

0 100 1000 10000
Sentences

Figure 5.6: Accuracy of morphological analysis (13 major POS)

69

Chapter 6

Conclusion and Future Work

To achieve adaptive morphological analysis, we proposed a novel stochastic method for
Japanese morphological analysis, which consists of a character-based tag-independent
HMM and a tag emission model based on the maximum entropy framework. For domain
adaptability, we used unsupervised learning of a character-based HMM from a large
raw corpus of the domain. For tag adaptability, we proposed a division of the model
into a tag-independent HMM and a tag emission model which relates HMM'’s hidden
states to the tags. We also proposed the use of an HMM with a large state space as a
tag-independent HMM, and enabled it by applying Gibbs sampling to the Baum-Welch
algorithm.

The results of the experiments which compared our method with other character-
based method showed that unsupervised learning using the Baum-Welch algorithm
greatly improves the accuracy when the available tagged corpus is small. The exper-
imental results also showed that the symbol augmentation with character type and the
maximum entropy tag emission model greatly improve the word segmentation accu-
racy. We also found that while Gibbs sampling Baum-Welch algorithm has the penalty
in accuracy compared with the exact Baum-Welch algorithm, the benefit of a large state
space enabled by Gibbs sampling can exceed the penalty when a large raw corpus is

used to train a character-based HMM. However, there is a trédeit respect to the

70

number of states when the available tagged corpus is very small.

This thesis proved that the unsupervised learning for character-based HMMs using
the Baum-Welch algorithm is useful for domain adaptability. However, the accuracy
achieved by our method is not yet practical. To achieve more practical adaptive mor-

phological analysis, we are planning the following directions of the future research.
e Combination with word-based methods.
e More sophisticated symbol augmentation model or symbol emission model.
e More features in the maximum entropy framework.

Although word-based methods rely on word dictionaries, and therefore on tag sets, there
is an obvious advantage that they reduce the ambiguities about word boundaries signifi-
cantly. Since the maximum entropy framework proved to be robust and successful in the
experiments, we should improve the accuracy of morphological analysis without loss of
adaptability by introducing the features from word dictionaries in a tag-independent
way, and introducing more features from output symbols.

In addition, to achieve more robust estimation with very small tagged corpus, we
must explore more appropriate structure of the probabilistic model which is closer to
the true distribution. We also require faster algorithm for parameter estimation, since
the learning with a large raw corpus becomes very time consuming even though we use

Gibbs sampling.

71

References

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

CD-O000ODO'94. http://www.nichigai.co. jp.

SRILM — The SRI Language Modeling Toolkit. Available via

http://www.speech.sri.com/projects/srilm/.

L. E. Baum and J. A. Eagon. An inequality with applications to statistical esti-
mation for probabilistic functions of Markov processes and to a model of ecology.

Bull. Amer. Math. So¢.73:360-363, 1967.

Adam L. Berger, Stephen A. Della Pietra, and Vincent J. Della Pietra. A maxi-
mum entropy approach to natural language procesSiamputational Linguistics

22(1):39-71, 1996.

D. Bikel, S. Miller, R. Schwartz, and R. Weischedel. Nymble: a high-performance
learning name-finder. IRroceedings of the Fifth Conference on Applied Natural

Language Processingages 194-201, 1997.

Andrew Borthwick. A Ph.D. dissertation, submitted to Computer Science Depart-

ment, New York University, 1999.

Andrew Borthwick. ChoiceMaker Maximum Entropy Estimator, 1999. Choice-

Maker Technologies, Inc. Email: borthwic@cs.nyu.edu for information.

Thorsten Brants. Internal and external tagsets in part-of-speech taggiRgodn

Eurospeech '97pages 2787-2790, Rhodes, Greece, September 1997.

72

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

V. Castelliand T. M. Cover. On the exponential value of labeled samphesern

Recognition Lettersl6(1):105-111.

Doug Cutting, Julian Kupiec, Jan Pedersen, and Penelope Sibun. A practical part-
of-speech tagger. IRroceedings of the Third Conference on Applied Language

Processingpages 133-140, 1992.

A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from incom-

plete data via the EM algorithnd. R. Statist. Soc.,B89:185-197, 1977.

EDR. EDR (Japan Electronic Dictionary Research Institute, Ltd.) elec-
tronic dictionary version 1.5 technical guide. Second edition is available via

http://www.iijnet.or.jp/edr/E_TG.htm.

D. Freitag and A. McCallum. Information extraction with HMMs and shrinkage.
In Proceedings of the Sixteenth National Conference on Artificial Intelligence:

Workshop on Machine Learning for Information Extractipages 31-36, 1999.

Brendan J. FreyGraphical Models for Machine Learning and Digital Communi-

cation The MIT Press, 1998.

S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the
Bayesian restoration of imagelEEE Transactions on Pattern Analysis and Ma-

chine Intelligence(6):721-741, 1984.

Zoubin Ghahramani and Michael |. Jordan. Factorial hidden Markov moklials.

chine Learning29:245-273, 1997.

Yoshihiko Gotoh, Michael M. Hochberg, and Harvey F. Silvermaffictent train-
ing algorithms for HMMs using incremental estimatiofEEE Transactions on

Speech and Audio Processjrgf6):539—548, November 1998.

73

[18] Sadao Kurohashi and Makoto Nagao. Kyoto University text corpus project. In
3rd Annual Meeting of Natural Language Processipgges 115-118, 1997. (in

Japanese).

[19] S. E. Levinson, L. R. Rabiner, and M. M. Sondhi. An introduction to the appli-
cation of the theory of probabilistic functions of a Markov process to automatic

speech recognitionlhe Bell System Technical JournéR(4):1035-1074, 1983.

[20] Gedtrey McLachlan and Thriyambakam Krishnaithe EM Algorithm and Ex-
tensions Wiley & Sons, Inc, 1997.

[21] Bernard Merialdo. Tagging English text with a probablistic mo@amputational
Linguistics 20(2):155-171, 1994.

[22] Kenji Nagamatsu and Hidehiko Tanaka. A stochastic morphological analysis for
Japanese employing charaategram andk-nn method. INNLPRS’97 pages 23—
28, 1997.

[23] Masaaki Nagata. A stochastic Japanese morphological analyzer using a forward-
DP backwardA* N-best search algorithm. Proceedings of the 15th International

Conference on Computational Linguistigages 201-207, 1994.

[24] Radford M. Neal. Probabilistic inference using Markov Chain Monte Carlo meth-

ods. Technical Report CRG-TR-93-1, September 1993.

[25] Radford M. Neal and Getrey E. Hinton. A view of the EM algorithm that justifies
incremental, sparse, and other variah&sarning in Graphical Modelgpages 205—

225, 1998.

[26] K. Nigam, A. McCallum, S. Thrun, and T. Mitchell. Text classification from la-
beled and unlabeled documents using BWachine Learning39:103-134, 2000.

74

[27] H. Oda and K. Kita. A character-based Japanese word segmenter using a PPM*-
based language model. Iroceedings of the 18th International Conference
on Computer Processing of Oriented Languages (ICCPOL’'papes 527-532,
1999.

[28] S. Pietra, V. Pietra, and J. ffarty. Inducing features of random field$EEE
Transactions on Pattern Analysis and Machine Intelligeri®$4):380-393, 1997.

[29] Lawrence. R. Rabiner. A tutorial on hidden Markov models and selected appli-
cations in speech recognitioRroceedings of the IEEE7(2):257-285, February
1989.

[30] Adwait Ratnaparkhi. A maximum entropy model for part-of-speech tagging. In
Eric Brill and Kenneth Church, editor®roceedings of the Conference on Em-
pirical Methods in Natural Language Processjiges 133—-142. Association for

Computational Linguistics, Somerset, New Jersey, 1996.

[31] Richard Sproad, Chilin Shih, William Gale, and Nancy Chang. A stochastic
finite-state word-segmentation algorithm for ChineSemputational Linguistics

22(3):377-404, 1996.

[32] A. Stolcke and E. Shriberg. Automatic linguistic segmentation of conversational

speech. IProc. ICSLP '96 volume 2, pages 1005-1008, Philadelphia, PA, 1996.

[33] N.Udeaand R. Nakano. Deterministic annealing EM algoritNeural Networks

11:271-282, 1998.

[34] Andrew J. Viterbi. Error bounds for convolutional codes and an asymptotically op-
timum decoding algorithmEEE Transactions on Information TheqilyJ-13:260—
267, 1967.

75

[35] OO O0O. Untagged-corpus O 0 OO0 0000 ODHMMODOOOOODOO
O.InO00000 020000000000, pages 61-64, 1996.

[36] 00 OO0 andd O O.00000O0O0O00OOODO JUMAN version 3.5, 1998.

371700 00,000,and0 OO.00CO00O0OODOOOOOODOOOOO.
Oooooo,e,1999.

76

