Basics of Modeling, Specification, Verification in CafeOBJ

CafeOBJ Team of JAIST

Topics

- Basic concepts for modeling, specification, verification in CafeOBJ
- Basics of CafeOBJ language system: module, signature, equations, term, parsing, debugging, trace

Basics of
 Modeling/Specification/Verification

Modeling/Specifying and Verifying in CafeOBJ

1. By understanding a problem to be modeled/specified, determine several sorts of objects (entities, data, agents, states) and operations (functions, actions, events) over them for describing the problem
2. Define the meanings/functions of the operations by declaring equations over expressions/terms composed of the operations
3. Write proof scores for properties to be verified

Natural Number

-- Expressions/terms composed of operations --

```
mod! BASIC-NAT
    { [ Nat ] op 0: -> Nat op s_: Nat -> Nat }
```

1. 0 is a natural number
2. If n is natural number then (s n) is a natural number
3. An object which is to be a natural number by 1 and 2 is only a natural number
Peano's definition of natural numbers (1889), Giuseppe Peano (1858-1932)

$$
\begin{aligned}
& \text { Nat }=\{0, s(0), s(s(0)), s(s(s(0))), s(s(s(s(0)))) \ldots \\
& \hline \text { Nat }=\{0, s 0, s s 0, s s s 0, s s \operatorname{s} 0, \ldots\}
\end{aligned}
$$

Describe a problem in expressions/terms!

Mathematical Induction over Natural Numbers

The recursive definition of Nat induces the following induction scheme!

Goal: Prove that for any natural number $n \in\{0, s 0, s$ s $0, \ldots\} P(n)$ is true

Induction Scheme:

$$
P(0) \quad \forall n \in N .[P(n)=>P(s \quad n)]
$$

$\forall n \in N . P(n)$

Concrete Procedure: (induction with respect to n)

1. Prove $P(0)$ is true
2. Assume that $P(n)$ holds, and prove that $P(s n)$ is true

Natural numbers with addition operation

-- signature and expressions/terms --
-- sort
-- sort
[Nat]
[Nat]
-- operations
-- operations
op 0 : -> Nat
op 0 : -> Nat
op s_: Nat -> Nat
op s_: Nat -> Nat
op _+_: Nat Nat -> Nat
op _+_: Nat Nat -> Nat

$$
\begin{aligned}
& \text { Nat }=\{0\} \cup\{\sin \mid n \in \text { Nat }\} \\
& \cup\{n 1+n 2 \mid n 1 \in \operatorname{Nat} \wedge n 2 \in \operatorname{Nat}\}
\end{aligned}
$$

Natural numbers with addition

-- expressions/terms composed by operations --

```
op 0: -> Nat . op s_: Nat -> Nat . op _+_: Nat Nat -> Nat .
```

```
Nat \(=\) \{
0, s 0, s s \(0, ~ s ~ s ~ s ~ 0, ~ . . . ~, ~\)
0 + 0, 0 + (s 0), 0 + (s s 0), 0 + (s s s 0), ...
\((s 0)+0,(s 0)+(s 0),\binom{s}{s}+(s s 0)\),
                                    (s 0) + (s s s 0), ...,
```



```
                    (s s 0) \(+(\mathrm{s}\) s s 0), ...,
\(0+(0+0), 0+(0+(s 0)), \ldots\)
\((0+0)+0,(0+(s 0))+0, \ldots\)
. 3
```


Natural numbers with addition

-- equations defining meaning/function -- ${ }_{\text {natPlus.mod basicNatPlus.mod }}$

```
CafeOBJ module NAT+ defining
Natural numbers with addition
mod! NATplus {
-- sort
[ Nat ]
-- operations
op 0 : -> Nat {constr}
op s_: Nat -> Nat {constr}
op _+_: Nat Nat -> Nat
-- equations
eq 0 + N:Nat = N .
eq (s M:Nat) + N:Nat = s(M + N)
}
```


Proof Score

for the proof of associativity of addition (_+_)

```
- opening module NATplus and EQL
open (NATplus + EQL)
--> declaring constants for arbitrary values
ops i j k : -> Nat .
**> Prove associativity: (i + j) + k = i +(j + k)
**> by induction on i
**> base case proof for 0:
red 0 + (j + k) = (0 + j) + k .
**> induction hypothesis:
eq (i + J:Nat) + K:Nat = i + (J + K) .
**> induction step proof for (s k):
red ((s i) + J:Nat) + K:Nat = (s i) + (J + K) .
**> QED {end of proof for associativity of (_+_)}
close
```


module, signature, equation, term, order-sort

Three kinds of modules

CafeOBJ specification is composed of modules. There are three kinds of modules.

```
mod! <module_name> {
    <modlue_element> *
}
```

mod* <module_name> \{ <modlue_element> *
\}

```
mod <module_name> {
    <modlue_element>*
}
```

mod! declares that the module denotes tight denotatin mod* declares that the module denotes loose denotation mod does not declare any semantic denotationd
[Naming convention] module name starts with two successive upper case charactors (example:TEST, NAT, NATplus, ACCOUNT-SYS,...)

Module NATplus

A module is composed of signature and axioms

Signature:
sort name, operator name, arity, co-arity, rank
A signature is a pair of a set of sorts and a set of operations.

[Convention] The first and second letter of a sort name is written in a upper case and lower case letter respectively. (E.g. Nat, Set)
[Convention] The first letter of an operation name is written in a lowerl case letter or a non-alphabet letter. (E.g. 0, s, +)

```
op _+_ : Nat Nat l> Nat 
```


Natural numbers with addition

-- order sorted signature and sorted terms -

```
-- signature
-- sort
[ Zero NzNat < Nat ]
-- operators
op 0 : -> Zero
op s_: Nat -> NzNat
op _+_: Nat Nat -> Nat
```

Sorted terms
Zero = \{ 0 \}
NzNat $=\{\sin \mid n \in$ Nat $\}$
Nat = Zero U NzNat U
$\{n 1+n 2 \mid n 1 \in$ Nat $\wedge n 2 \in$ Nat $\}$

Recursive Definition of Terms

For a given signature, t is a term of a sort S if and only if t is

- a variable X:S,
- a constant c declared by "op c : -> $s^{\prime \prime}$, or
- a term $f\left(t_{1}, t_{n}\right)$ for "op $f: s_{1} s_{n}$-> $s^{\prime \prime}$ and a term t_{i} of a sort $S_{i}(i=1, n)$.
- a term of a sort S^{\prime} which is a sub-sort of S (Example: Since Zero < Nat, a term 0:Zero is also a term of sort Nat)

Several forms of function application:
standard, prefix, infix, postfix, distfix

```
op f : Nat Nat -> Nat .
    f(2,3) standard
op (f_ _) : Nat Nat -> Nat . -- recommended
                                    -- for succesive
```

\qquad

```
    (f 2 3) prefix
op f__ : Nat Nat -> Nat .
    (f 2 3) prefix
op _+_ : Nat Nat -> Nat .
    (2 + 3) infix
op _! : Nat -> Nat .
    (5 !) postfix
op if_then_else_fi : Bool Nat Nat -> Nat .
    (if 2 < 3 then 4 else 5 fi) distfix
```

Term = Tree $=$ Expression
A tree data structure having operators as node and constants or variables as leaf is called a term. A term is also called an expression.

- (s 0) + 0 represents term/treelexpression

```
mod! NAT+ {
    [Zero NzNat < Nat]
    op 0 : -> Zero
    op s_ : Nat -> NzNat
    op _+_ : Nat Nat -> Nat
    ... }
```

 \((\mathrm{S} 0)+0\)

Parsing - precedence of operators-

```
s 0 + 0 represents (s 0) + 0, because the
operator (s _) has high precedence than the
operator (_ + _)
```

mod! NAT+ \{
[Zero NzNat < Nat]
op 0 : -> Zero
op s_ : Nat -> NzNat
op _+_ : Nat Nat -> Nat
. $\}$

Error handling with subsorts

RAT> parse 2 / 2 .
(2 / 2) : NzRat
RAT> reduce 2 / 2 .
1 : NzNat

RAT> parse 2 / 0 .
(2 / 0) : ?Rat

RAT> parse $2 /((3 / 2)+(1 / 2))$. (2 / ((3/2) + (1 / 2))) : ?Rat

RAT> red $2 /((3 / 2)+(1 / 2))$.
1 : NzNat

Equation

An equation is a pair of terms of a same sort, and written as:

$$
\text { eq } 1=r \text {. }
$$

in CafeOBJ. Where \mathbf{l} is called the left-hand side (LHS) of the equation and \mathbf{r} is the righthand side (RHS). An equation can have a condition (COND) c like:

$$
\text { ceq } l=r \text { if } c
$$

- Most important kind of axioms of CafeOBJ specification are equations
- Properties to be verified are also expressed as equations

Two way of declaring variables

- both should be used based on situations -

How to do verification with CafeOBJ specifications

- The basic mechanism of CafeOBJ verification is equational reasoning. Equational reasoning is to deduce an equation (a candidate of a theorem) from a given set of equations (axioms of a specification).
- The CafeOBJ system supports an automatic equational reasoning based on rewriting (or TRS: Term Rewriting System).
" "reduce" or "red" (reduction) command to do equational reasoning is provided by CafeOBJ System.

Reduction command:
 Equational reasoning by rewritings

There are two ways to do equational reasoning in CafeOBJ by rewritings: red <term>. and red <term> = <term>.

```
NAT+> red +(0, s(0))
```

-- reduce in NAT+ : $+(0, s(0))$
s(0) : NzNat
(0.000 sec for parse, 1 rewrites $(0.000 \mathrm{sec}), 1$ matches)

This means that the input term is equivalent to the output term.

```
NAT+> open (NAT+ + EQL) -- for using equality predicate (_=_)
NAT+ + EQL%> red +(0, s(0)) = +(s(0), 0)
-- reduce in NAT+ : +(0,s(0)) = +(s(0),0)
true : Bool
(0.000 sec for parse, 4 rewrites(0.000 sec), 5 matches)
```

This means that the one side is equivalent to the other side.

What can be done with red (reduction) command?

A reduction command of CafeOBJ:
MODULE> red inputTerm .
returns a most simplified term of the given term inputTerm by using all equations of the module MODULE as rewriting rules from LHS to RHS. For any context,
any-module> red in MODULE : red inputTerm . returns the same result.

```
Let us fix a context M (a module M in CafeOBJ), and let (t1 =*M> t2)
denote that t1 is reduced to t2 in the context. That is, (red in
M : t1 .) returns t2 . Let ( t1 =m t2) denote that t1 is equal to
t2 in the context M. It is important to notice:
    (t1 =*M> t2) implies(t1 =M t2)
but
    (t1 =M t2) does not implies(t1 =*M> t2)
```

```
Assume that (t1 =*> t1') and(t2 =*> t2') in any context
    then
    if (t1' and t2' are the same term )
        then (red t1 = t2 .) returns true
            and
            (red t1 == t2 .) returns true
    if (t1' and t2' are different terms)
        then(red t1 = t2 .) returns(t1' = t2')
            but
            (red t1 == t2 .) returns false
```

Soundness of _=_ and _==_
$=$ and $==$

- The result of "red <term1> == <term2> ." is sound but not complete, that is:
- If it returns true, then the two terms <term1> and <term2> is proved to be equal.
- But if it returns false, then the two terms may equal or not equal.
- The reduction of Boolean term involving _==_ may return true even if it is not true w.r.t. the set of axioms (or the specification). That is, $===$ may not be sound.
- If the reduction of Boolean term involving only _=_ returns true, then it is true w.r.t. the set of axioms (or the specification).

Proof scores in a wide sense

* A fragment proof score begins at "open" command which opens a module, and ends with "close" command.
- While a module is opened (between open and close), we can declare operations and equations for doing verification.

```
NAT+> open (NAT+ + EQL)
-- opening module NAT+.. done.
%NAT+ + EQL> op n : -> Nat .
%NAT+ + EQL> eq n = 0 .
%NAT+ + EQL> red +(n, n) = 0.
*
-- reduce in %NAT+ + EQL : +(n,n) = 0
true : Bool
(0.000 sec for parse, 4 rewrites(0.000 sec), 4 matches)
%NAT+ + EQL> close
NAT+>
```


Arbitrary element

- After opening a module, a declared constant operation op e : -> S .
stands for an arbitrary element of the sort S whose scope is from its declaration to the end of a proof score (i.e. close).

```
NAT+> open (NAT+ + EQL)
-- opening module NAT+.. done.
%NAT+ + EQL> op n : -> Nat .
%NAT+ + EQL> red + (0, n) = n .
-- reduce in %NAT+ : +(0,n) = n
true : Bool
(0.000 sec for parse, 2 rewrites(0.000 sec), 2 matches)
%NAT+ + EQL> close
NAT+>
```

This is a proof score for the claim that $+\mathbf{(0 , N} \boldsymbol{N}=\boldsymbol{N}$ for any natural number \boldsymbol{N}. Since the reduction returns "true", it holds.

- While a module is opening, a declared equation represents an assumption of the proof score.

NAT+> open (NAT+ + EQL)
-- opening module NAT+.. done.
\%NAT+ + EQL> op n : -> Nat .
$\% N A T++E Q L>e q+(n, 0)=n$.
\%NAT+ + EQL> red +(s(n), 0) =s(n).
*
-- reduce in \%NAT+ : +(s(n),0) = s(n)
true : Bool
(0.000 sec for parse, 3 rewrites(0.000 sec), 5 matches)

This is a proof for " $\mathbf{+}(\boldsymbol{N}, 0)=\boldsymbol{N}$ implies $\mathbf{+}(\mathbf{s}(\boldsymbol{N}), 0)=\mathbf{s}(\boldsymbol{N})$ for any natural number $\boldsymbol{N} "$ (it holds).

- Using a variable in an equation instead of a constant makes a drastic change of meaning of the proof score. Be careful!
- The scope of a constant is to the end of a open-close session assuming that the declared constants are fresh.
- The scope of a variable is inside of the equation.

```
open (NAT+ + EQL)
op n : -> Nat .
eq +(n, 0) = n .
red +(s(n), 0) = s(n).
close
```

open (NAT+ + EQL)
var N : Nat .
$\mathrm{eq}+(\mathrm{N}, 0)=\mathrm{N}$
red $+(s(N), 0)=s(N)$.
close

Constant: ${ }^{\forall} \boldsymbol{N}$:Nat. $[+(N, 0)=N \Rightarrow+(\mathrm{s}(N), \mathbf{0})=\mathrm{s}(N)]$
Variable: ${ }^{\forall} N: N a t .[+(N, 0)=N] \Rightarrow{ }^{\forall} N: N a t .[+(s(N), 0)=s(N)]$

Mathematical Induction over Natural Numbers

```
Goal: Prove that for any natural number \(n \in\{0, s 0\),
    s s 0,...\} \(P(n)\) is true
```


Induction Scheme:

$P(0) \quad \forall n \in N .[P(n) \Rightarrow P(s n)]$

$$
\forall n \in N . P(n)
$$

Concrete Procedure: (induction with respect to n)

1. Prove $P(0)$ is true
2. Assume that $P(n)$ holds, and prove that $P(s n)$ is true

Induction

- The following is a proof score of " ${ }^{\forall} \mathrm{n}$: Nat. $+(\mathrm{n}, 0)=\mathrm{n}^{\prime \prime}$:

```
open (NAT+ + EQL)
red +(0, 0) = 0
op n : -> Nat .
eq +(n, 0)= n . Induction step
red +(s(n), 0) = s(n)
close
```

```
-- opening module (NAT+ + EQL).. done
%NAT+ + EQL> -- reduce in %NAT+ + EQL : +(0,0) = 0
true : Bool
(0.000 sec for parse, 2 rewrites(0.000 sec), 2 matches)
-- reduce in %NAT+ + EQL : +(s(n),0) = s(n)
true : Bool
(0.000 sec for parse, 3 rewrites(0.000 sec), 5 matches)
%NAT+ + EQL>
NAT+>
```


Complete proof score

```
-> This is a proof of +(N, 0) = N
open (NAT+ + EQL)
-> Base case
red +(0, 0) = 0 .
--> Induction step
op n : -> Nat
eq +(n, 0) = n . .- I.H.
red +(s(n), 0) = s(n).
close
```

NAT+>

```
```

NAT+> in nat+ps.mod

```
NAT+> in nat+ps.mod
processing input : /.../proof.mod
processing input : /.../proof.mod
--> This is a proof of +(N, 0) = N
--> This is a proof of +(N, 0) = N
-- opening module NAT+ + EQL .. done.
-- opening module NAT+ + EQL .. done.
-> Base case
-> Base case
-- reduce in %NAT+ + EQL : +(0,0) = 0
-- reduce in %NAT+ + EQL : +(0,0) = 0
true : Bool
true : Bool
(0.000 sec for parse, 2 rewrites(0.000 sec), 2 matches)
(0.000 sec for parse, 2 rewrites(0.000 sec), 2 matches)
-> Induction step_*
-> Induction step_*
-- reduce in %NAT+ + EQL : +(s(n),0) = s(n)
-- reduce in %NAT+ + EQL : +(s(n),0) = s(n)
true : Bool
true : Bool
(0.000 sec for parse, 3 rewrites(0.000 sec), 5 matches)
```

(0.000 sec for parse, 3 rewrites(0.000 sec), 5 matches)

```
```

