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Verification in CafeOBJ
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Topics

♦ Basic concepts for modeling, specification, 
verification in CafeOBJ

♦ Basics of CafeOBJ language system: module, 
signature, equations, term, parsing, debugging, 
trace
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Basics of 
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Modeling/Specifying and Verifying in CafeOBJ

1. By understanding a problem to be 
modeled/specified, determine several sorts of 
objects (entities, data, agents, states) and 
operations (functions, actions, events) over 
them for describing the problem

2. Define the meanings/functions of the 
operations by declaring equations over 
expressions/terms composed of the operations

3. Write proof scores for properties to be verified
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Natural Numbers   -- Signature --

objects: Nat
operations: 0 :  returns zero without arguments

s :  given a natural number n returns the 
next natural number (s n) of n

-- sort
[ Nat ]
-- operations
op 0 :  -> Nat
op s_:  Nat -> Nat

0  0+1  0+1+1  0+1+1+1  0+1+1+1+1 …

0  s(0)  s(s(0))  s(s(s(0)))  s(s(s(s(0)))) …

Nat
0

S_
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1. 0 is a natural number
2. If n is natural number then (s n) is a natural 

number
3. An object which is to be a natural number by 1 and 2 

is only a natural number

Natural Number           
-- Expressions/terms composed of operations --

mod! BASIC-NAT 
{ [ Nat ] op 0: -> Nat op s_: Nat -> Nat }

Nat = {0, s(0), s(s(0)), s(s(s(0))), s(s(s(s(0)))) … }

Nat = {0, s 0, s s 0, s s s 0, s s s s 0, … } 

Describe a problem in expressions/terms!

Peano’s definition of natural numbers （１８８９）, Giuseppe Peano (1858-1932)
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Mathematical Induction over Natural Numbers 

Goal: Prove that for any natural number n ∈ {0, s 0, s s 
0,…} P(n) is true

Induction Scheme:

P(0)  ∀n∈N.[P(n) => P(s n)] 

∀n∈N.P(n)

Concrete Procedure: (induction with respect to n)
1. Prove P(0) is true
2. Assume that P(n) holds, and prove that P(s n) is 

true

The recursive definition of Nat induces the following induction scheme!
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Natural numbers with addition operation
-- signature and expressions/terms --

-- sort
[ Nat ]
-- operations
op 0 :  -> Nat
op s_:  Nat -> Nat
op _+_: Nat Nat -> Nat

Nat
0

S_

_+_

Nat = { 0 } ∪ { s n | n ∈ Nat }
∪ { n1 + n2 | n1 ∈ Nat ∧ n2 ∈ Nat }



5

LectureNote1, Sinai School, 03-10 March 2008 9

Natural numbers with addition
-- expressions/terms composed by operations --

op 0: -> Nat . op s_:  Nat -> Nat . op _+_: Nat Nat -> Nat .

Nat = {
0, s 0, s s 0, s s s 0, ... ,
0 + 0, 0 + (s 0), 0 + (s s 0), 0 + (s s s 0), ..., 
(s 0) + 0, (s 0) + (s 0), (s 0) + (s s 0), 

(s 0) + (s s s 0), ..., 
(s s 0) + 0, (s s 0) + (s 0), (s s 0) + (s s 0), 

(s s 0) + (s s s 0), ..., 
... ...
0 + (0 + 0), 0 + (0 + (s 0)), ...
...
(0 + 0) + 0, (0 + (s 0)) + 0, ...
...
. }
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Natural numbers with addition
-- equations defining meaning/function --

CafeOBJ module NAT+ defining 
Natural numbers with addition

mod! NATplus {
-- sort
[ Nat ]
-- operations
op 0 :  -> Nat {constr}
op s_:  Nat -> Nat {constr}
op _+_: Nat Nat -> Nat
-- equations
eq         0 + N:Nat = N .
eq (s M:Nat) + N:Nat = s(M + N) .
}

Inference/Computation 
with the equations

(s s 0) + (s 0) 
= s((s 0) + (s 0)) 
= s s(0 + (s 0)) 
= s s s 0

natPlus.mod basicNatPlus.mod

…> select NATplus
NATplus> red s s 0 + s 0 .
NATplus> -- reduce in NAT+ 
: ((s (s 0)) + (s 0)):Nat
(s (s (s 0))):NzNat
(0.000 sec for parse, 
3 rewrites(0.000 sec), 
5 matches)
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Proof Score  
for the proof of associativity of addition (_+_)

-- opening module NATplus and EQL
open (NATplus + EQL)
--> declaring constants for arbitrary values
ops i j k : -> Nat .

**> Prove associativity: (i + j) + k = i +(j + k)
**> by induction on i

**> base case proof for 0:
red 0 + (j + k) = (0 + j) + k .
**> induction hypothesis:
eq (i + J:Nat) + K:Nat = i + (J + K) .
**> induction step proof for (s k):
red ((s i) + J:Nat) + K:Nat = (s i) + (J + K) .
**> QED {end of proof for associativity of (_+_)}
close

natPlusAssocPS.mod

module, signature, equation, 
term, order-sort



7

LectureNote1, Sinai School, 03-10 March 2008 13

CafeOBJ specification is composed of modules.  There are 
three kinds of modules. 

Three kinds of modules

mod! <module_name> {
<modlue_element> *

}

[Naming convention] module name starts with 
two successive upper case charactors
(example：TEST, NAT, NATplus，ACCOUNT-SYS,…)

mod* <module_name> {
<modlue_element> *

}

mod! declares that the module denotes tight denotatin
mod* declares that the module denotes loose denotation
mod  does not declare any semantic denotationd

mod <module_name> {
<modlue_element>*

}
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Module NATplus

A module is composed of signature and axioms

axioms/equations

signature

mod! NATplus {
[Nat]
op 0 : -> Nat
op s_ : Nat -> Nat
op _+_ : Nat Nat -> Nat

vars M N : Nat
eq 0  + N = N .
eq (s M) + N = s(M + N) .

}
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rank

Signature: 
sort name, operator name, arity, co-arity, rank

A signature is a pair of  a set of sorts and a set of  operations.

Signature

mod! NATplus {

[Nat]

op 0 : -> Nat

op s : Nat -> Nat

op _+_ : Nat Nat -> Nat

... }

sorts

operations

op _+_ : Nat Nat -> Nat

arity co-arity (rang)

[Convention] The first and second letter of a sort name is written in a 
upper case and lower case letter respectively. (E.g. Nat, Set)

[Convention] The first letter of  an operation name is written in a 
lowerl case letter or a non-alphabet letter. (E.g. 0, s, + )
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Natural numbers with addition
-- order sorted signature and sorted terms –

-- signature
-- sort
[ Zero NzNat < Nat ]
-- operators
op 0 :  -> Zero
op s_:  Nat -> NzNat
op _+_: Nat Nat -> Nat

Sorted terms
Zero = { 0 }
NzNat = { s n | n ∈ Nat }
Nat = Zero ∪ NzNat ∪

{ n1 + n2 | n1 ∈ Nat ∧ n2 ∈ Nat }

S_

Nat

0
NzNatZero

_+_
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Recursive Definition of Terms

For a given signature, t is a term of a sort S if 
and only if t is  
• a variable X:S,
• a constant c declared by “op c : -> S”, or 
• a term f(t1,,tn) for “op f : S1 Sn -> S”

and    a term ti of a sort Si (i =1, ,n).
• a term of a sort S’ which is a sub-sort of S

(Example: Since Zero < Nat, a term 0:Zero is also 
a term of sort Nat)
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Several forms of function application:
standard, prefix, infix, postfix, distfix

op f : Nat Nat -> Nat .        
f(2,3)  standard

op (f_ _) : Nat Nat -> Nat .  -- recommended           
-- for succesive __

(f 2 3) prefix
op f__ : Nat Nat -> Nat .     

(f 2 3) prefix
op _+_ : Nat Nat -> Nat .     

(2 + 3) infix
op  _! : Nat -> Nat .

(5 !)   postfix
op if_then_else_fi : Bool Nat Nat -> Nat . 

(if 2 < 3 then 4 else 5 fi)  distfix
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Term = Tree = Expression 

A tree data structure having operators as node and constants 
or variables as leaf is called a term. A term is also called an 
expression.

• (s 0) + 0 represents term/tree/expression

mod! NAT+ {
[Zero NzNat < Nat]
op 0 : -> Zero
op s_ : Nat -> NzNat
op _+_ : Nat Nat -> Nat
… }

_+_

s_ 0

0

(S 0) + 0

nat+.mod
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Parsing  – precedence of operators-

s 0 + 0 represents (s 0) + 0, because the 
operator (s _) has high precedence than the 
operator (_ + _)

mod! NAT+ {
[Zero NzNat < Nat]
op 0 : -> Zero
op s_ : Nat -> NzNat
op _+_ : Nat Nat -> Nat
… }

_+_

s_ 0

0

s_

0

_+_

0

s 0 + 0

nat+.mod

(s 0) + 0 s(0 + 0)
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Error handling with subsorts

RAT> parse 2 / 2 . 
(2 / 2) : NzRat

RAT> reduce 2 / 2 . 
1 : NzNat

RAT> parse 2 / 0 . 
(2 / 0) : ?Rat

RAT> parse 2 / ((3 / 2) + (1 / 2)) . 
(2 / ((3 / 2) + (1 / 2))) : ?Rat 

RAT> red 2 / ((3 / 2) + (1 / 2)) . 
1 : NzNat

ratDiv.mod
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Equation

♦ Most important kind of axioms of CafeOBJ specification are 
equations

♦ Properties to be verified are also expressed as equations

An equation is a pair of terms of a same sort, and  
written as:

eq l = r .
in CafeOBJ.  Where l is called  the left-hand 
side (LHS) of the equation and r is the right-
hand side (RHS). An equation can have a 
condition (COND) c like:

ceq l = r if c .
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axioms

Two way of declaring variables
- both should be used based on situations -

axioms

mod! NAT+ {
[Zero NzNat < Nat]
. . .
eq 0      + N:Nat = N .
eq (s M:Nat) + N:Nat = s(M + N) .

}

Variables can be declared before axioms 

mod! NAT+ {. . .
vars M N : Nat
eq 0  + N = N .
eq (s M) + N = s(M + N) .

}

Basics of Verification
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How to do verification with CafeOBJ specifications

♦ The basic mechanism of CafeOBJ verification is 
equational reasoning. Equational reasoning is to 
deduce an equation (a candidate of a theorem) 
from a given set of equations (axioms of a 
specification).

♦ The CafeOBJ system supports an automatic 
equational reasoning based on rewriting (or TRS: 
Term Rewriting System).

♦ “reduce” or “red” (reduction) command to do 
equational reasoning is provided by CafeOBJ
System.
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Reduction command: 
Equational reasoning by rewritings

There are two ways to do equational reasoning in CafeOBJ by 
rewritings: red <term>. and red <term> = <term>.

NAT+> red +(0, s(0)) .
-- reduce in NAT+ : +(0,s(0))
s(0) : NzNat
(0.000 sec for parse, 1 rewrites(0.000 sec), 1 matches)

NAT+> open (NAT+ + EQL) –- for using equality predicate (_=_)
NAT+ + EQL%> red +(0, s(0)) = +(s(0), 0) .
-- reduce in NAT+ : +(0,s(0)) = +(s(0),0)
true : Bool
(0.000 sec for parse, 4 rewrites(0.000 sec), 5 matches)

This means that the input term is equivalent to the output term.

This means that the one side is equivalent to the other side.
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What can be done with 
red (reduction) command?

A reduction command of CafeOBJ:
MODULE> red inputTerm .

returns a most simplified term of the given term inputTerm by 
using all equations of the module MODULE as rewriting rules from 
LHS to RHS.  For any context,

any-module> red in MODULE : red inputTerm .
returns the same result.

Let us fix a context M (a module M in CafeOBJ), and let (t1 =*M> t2) 
denote that t1 is reduced to t2 in the context. That is, (red in 
M : t1 .) returns t2 .  Let ( t1 =M t2) denote that t1 is equal to
t2 in the context M.  It is important to notice:

( t1 =*M> t2 ) implies ( t1 =M t2 )
but

( t1 =M t2 ) does not implies ( t1 =*M> t2 )

red.mod
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Two equality predicates _=_ and _==_

Assume that  ( t1 =*> t1’ ) and ( t2 =*> t2’ ) in any context
then
if  ( t1’ and t2’ are the same term )

then ( red t1 = t2 . ) returns true
and 
( red t1 == t2 . ) returns true

if  ( t1’ and t2’ are different terms ) 
then ( red t1 = t2 . ) returns ( t1’ = t2’ ) 

but  
( red t1 == t2 . ) returns false

=and==
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Soundness of _=_ and _==_

♦ The result of “red <term1> == <term2> .” is sound but 
not complete, that is:
• If it returns true, then the two terms <term1> and 
<term2> is proved to be equal.

• But if it returns false, then the two terms may equal or not 
equal. 

♦ The reduction of Boolean term involving _==_ may return true 
even if it is not true w.r.t. the set of axioms (or the 
specification).  That is, _==_ may not be sound.

♦ If the reduction of Boolean term involving only _=_ returns 
true, then it is true w.r.t. the set of axioms (or the 
specification) .

＝and==
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Proof scores in a wide sense

♦ A fragment proof score begins at “open” command which 
opens a module, and ends with “close” command.

♦ While a module is opened (between open and close), we 
can declare operations and equations for doing verification.

NAT+> open (NAT+ + EQL)
-- opening module NAT+.. done.
%NAT+ + EQL> op n : -> Nat .
%NAT+ + EQL> eq n = 0 .
%NAT+ + EQL> red +(n, n) = 0 .
*
-- reduce in %NAT+ + EQL : +(n,n) = 0
true : Bool
(0.000 sec for parse, 4 rewrites(0.000 sec), 4 matches)
%NAT+ + EQL> close
NAT+> 
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Arbitrary element

♦ After opening a module, a declared constant operation 
op e : -> S .

stands for an arbitrary element of the sort S whose scope is 
from its declaration to the end of a proof score ( i.e. close).

NAT+> open (NAT+ + EQL)
-- opening module NAT+.. done.
%NAT+ + EQL> op n : -> Nat .
%NAT+ + EQL> red +(0, n) = n .
-- reduce in %NAT+ : +(0,n) = n
true : Bool
(0.000 sec for parse, 2 rewrites(0.000 sec), 2 matches)
%NAT+ + EQL> close
NAT+> 

This is a proof score for the claim that +(0, N) = N for any 
natural number N.  Since the reduction returns “true”, it holds.

LectureNote1, Sinai School, 03-10 March 2008 32

Declaring assumptions

♦ While a module is opening, a declared equation 
represents an assumption of the proof score.

NAT+> open (NAT+ + EQL)
-- opening module NAT+.. done.
%NAT+ + EQL> op n : -> Nat .
%NAT+ + EQL> eq +(n, 0) = n .
_
%NAT+ + EQL> red +(s(n), 0) = s(n) .
*
-- reduce in %NAT+ : +(s(n),0) = s(n)
true : Bool
(0.000 sec for parse, 3 rewrites(0.000 sec), 5 matches)

This is a proof for “+(N, 0) = N implies +(s(N), 0) = s(N)
for any natural number N” (it holds).

nat+ps
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Constant v.s. variable 

♦ Using a variable in an equation instead of a constant makes a 
drastic change of meaning of the proof score.  Be careful!
• The scope of a constant is to the end of a open-close 

session assuming that the declared constants are fresh.
• The scope of a variable is inside of the equation.

open (NAT+ + EQL)
op n : -> Nat .
eq +(n, 0) = n .
red +(s(n), 0) = s(n) .
close

open (NAT+ + EQL)
var N : Nat .
eq +(N, 0) = N .
red +(s(N), 0) = s(N) .
close

Constant: ∀N:Nat. [+(N,0)=N ⇒ +(s(N),0)=s(N)]

Variable: ∀N:Nat.[+(N,0)=N ] ⇒∀N:Nat.[ +(s(N),0)=s(N)]

constVsVar
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Mathematical Induction over Natural Numbers 

Goal: Prove that for any natural number n ∈ {0, s 0, 
s s 0,…} P(n) is true

Induction Scheme:

P(0)  ∀n∈N.[P(n) => P(s n)] 

∀n∈N.P(n)

Concrete Procedure: (induction with respect to n)
1. Prove P(0) is true
2. Assume that P(n) holds, and prove that P(s n) is true
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Induction step

Base case

Induction

♦ The following is a proof score of “∀n:Nat.+(n,0) = n” :

open (NAT+ + EQL)
red +(0, 0) = 0 .
op n : -> Nat .
eq +(n, 0) = n .
red +(s(n), 0) = s(n) .
close

-- opening module (NAT+ + EQL).. done.
%NAT+ + EQL> -- reduce in %NAT+ + EQL : +(0,0) = 0
true : Bool
(0.000 sec for parse, 2 rewrites(0.000 sec), 2 matches)

-- reduce in %NAT+ + EQL : +(s(n),0) = s(n)
true : Bool
(0.000 sec for parse, 3 rewrites(0.000 sec), 5 matches)
%NAT+ + EQL> 
NAT+> 

LectureNote1, Sinai School, 03-10 March 2008 36

Complete proof score
--> This is a proof of +(N, 0) = N
open (NAT+ + EQL)
--> Base case
red +(0, 0) = 0 .
--> Induction step
op n : -> Nat . 
eq +(n, 0) = n . -- I.H.
red +(s(n), 0) = s(n) .
close

NAT+> in nat+ps.mod
processing input : /.../proof.mod
--> This is a proof of +(N, 0) = N
-- opening module NAT+ + EQL .. done.
--> Base case
-- reduce in %NAT+ + EQL : +(0,0) = 0
true : Bool
(0.000 sec for parse, 2 rewrites(0.000 sec), 2 matches)
--> Induction step_*
-- reduce in %NAT+ + EQL : +(s(n),0) = s(n)
true : Bool
(0.000 sec for parse, 3 rewrites(0.000 sec), 5 matches)
NAT+> 

nat+ps


