
1

Basics of Modeling, Specification,
Verification in CafeOBJ

CafeOBJ Team of JAIST

LectureNote1, Sinai School, 03-10 March 2008 2

Topics

♦ Basic concepts for modeling, specification,
verification in CafeOBJ

♦ Basics of CafeOBJ language system: module,
signature, equations, term, parsing, debugging,
trace

2

Basics of
Modeling/Specification/Verification

LectureNote1, Sinai School, 03-10 March 2008 4

Modeling/Specifying and Verifying in CafeOBJ

1. By understanding a problem to be
modeled/specified, determine several sorts of
objects (entities, data, agents, states) and
operations (functions, actions, events) over
them for describing the problem

2. Define the meanings/functions of the
operations by declaring equations over
expressions/terms composed of the operations

3. Write proof scores for properties to be verified

3

LectureNote1, Sinai School, 03-10 March 2008 5

Natural Numbers -- Signature --

objects: Nat
operations: 0 : returns zero without arguments

s : given a natural number n returns the
next natural number (s n) of n

-- sort
[Nat]
-- operations
op 0 : -> Nat
op s_: Nat -> Nat

0 0+1 0+1+1 0+1+1+1 0+1+1+1+1 …

0 s(0) s(s(0)) s(s(s(0))) s(s(s(s(0)))) …

Nat
0

S_

LectureNote1, Sinai School, 03-10 March 2008 6

1. 0 is a natural number
2. If n is natural number then (s n) is a natural

number
3. An object which is to be a natural number by 1 and 2

is only a natural number

Natural Number
-- Expressions/terms composed of operations --

mod! BASIC-NAT
{ [Nat] op 0: -> Nat op s_: Nat -> Nat }

Nat = {0, s(0), s(s(0)), s(s(s(0))), s(s(s(s(0)))) … }

Nat = {0, s 0, s s 0, s s s 0, s s s s 0, … }

Describe a problem in expressions/terms!

Peano’s definition of natural numbers （１８８９）, Giuseppe Peano (1858-1932)

4

LectureNote1, Sinai School, 03-10 March 2008 7

Mathematical Induction over Natural Numbers

Goal: Prove that for any natural number n ∈ {0, s 0, s s
0,…} P(n) is true

Induction Scheme:

P(0) ∀n∈N.[P(n) => P(s n)]

∀n∈N.P(n)

Concrete Procedure: (induction with respect to n)
1. Prove P(0) is true
2. Assume that P(n) holds, and prove that P(s n) is

true

The recursive definition of Nat induces the following induction scheme!

LectureNote1, Sinai School, 03-10 March 2008 8

Natural numbers with addition operation
-- signature and expressions/terms --

-- sort
[Nat]
-- operations
op 0 : -> Nat
op s_: Nat -> Nat
op _+_: Nat Nat -> Nat

Nat
0

S_

+

Nat = { 0 } ∪ { s n | n ∈ Nat }
∪ { n1 + n2 | n1 ∈ Nat ∧ n2 ∈ Nat }

5

LectureNote1, Sinai School, 03-10 March 2008 9

Natural numbers with addition
-- expressions/terms composed by operations --

op 0: -> Nat . op s_: Nat -> Nat . op _+_: Nat Nat -> Nat .

Nat = {
0, s 0, s s 0, s s s 0, ... ,
0 + 0, 0 + (s 0), 0 + (s s 0), 0 + (s s s 0), ...,
(s 0) + 0, (s 0) + (s 0), (s 0) + (s s 0),

(s 0) + (s s s 0), ...,
(s s 0) + 0, (s s 0) + (s 0), (s s 0) + (s s 0),

(s s 0) + (s s s 0), ...,
... ...
0 + (0 + 0), 0 + (0 + (s 0)), ...
...
(0 + 0) + 0, (0 + (s 0)) + 0, ...
...
. }

LectureNote1, Sinai School, 03-10 March 2008 10

Natural numbers with addition
-- equations defining meaning/function --

CafeOBJ module NAT+ defining
Natural numbers with addition

mod! NATplus {
-- sort
[Nat]
-- operations
op 0 : -> Nat {constr}
op s_: Nat -> Nat {constr}
op _+_: Nat Nat -> Nat
-- equations
eq 0 + N:Nat = N .
eq (s M:Nat) + N:Nat = s(M + N) .
}

Inference/Computation
with the equations

(s s 0) + (s 0)
= s((s 0) + (s 0))
= s s(0 + (s 0))
= s s s 0

natPlus.mod basicNatPlus.mod

…> select NATplus
NATplus> red s s 0 + s 0 .
NATplus> -- reduce in NAT+
: ((s (s 0)) + (s 0)):Nat
(s (s (s 0))):NzNat
(0.000 sec for parse,
3 rewrites(0.000 sec),
5 matches)

6

LectureNote1, Sinai School, 03-10 March 2008 11

Proof Score
for the proof of associativity of addition (_+_)

-- opening module NATplus and EQL
open (NATplus + EQL)
--> declaring constants for arbitrary values
ops i j k : -> Nat .

**> Prove associativity: (i + j) + k = i +(j + k)
**> by induction on i

**> base case proof for 0:
red 0 + (j + k) = (0 + j) + k .
**> induction hypothesis:
eq (i + J:Nat) + K:Nat = i + (J + K) .
**> induction step proof for (s k):
red ((s i) + J:Nat) + K:Nat = (s i) + (J + K) .
**> QED {end of proof for associativity of (_+_)}
close

natPlusAssocPS.mod

module, signature, equation,
term, order-sort

7

LectureNote1, Sinai School, 03-10 March 2008 13

CafeOBJ specification is composed of modules. There are
three kinds of modules.

Three kinds of modules

mod! <module_name> {
<modlue_element> *

}

[Naming convention] module name starts with
two successive upper case charactors
(example：TEST, NAT, NATplus，ACCOUNT-SYS,…)

mod* <module_name> {
<modlue_element> *

}

mod! declares that the module denotes tight denotatin
mod* declares that the module denotes loose denotation
mod does not declare any semantic denotationd

mod <module_name> {
<modlue_element>*

}

LectureNote1, Sinai School, 03-10 March 2008 14

Module NATplus

A module is composed of signature and axioms

axioms/equations

signature

mod! NATplus {
[Nat]
op 0 : -> Nat
op s_ : Nat -> Nat
op _+_ : Nat Nat -> Nat

vars M N : Nat
eq 0 + N = N .
eq (s M) + N = s(M + N) .

}

8

LectureNote1, Sinai School, 03-10 March 2008 15

rank

Signature:
sort name, operator name, arity, co-arity, rank

A signature is a pair of a set of sorts and a set of operations.

Signature

mod! NATplus {

[Nat]

op 0 : -> Nat

op s : Nat -> Nat

op _+_ : Nat Nat -> Nat

... }

sorts

operations

op _+_ : Nat Nat -> Nat

arity co-arity (rang)

[Convention] The first and second letter of a sort name is written in a
upper case and lower case letter respectively. (E.g. Nat, Set)

[Convention] The first letter of an operation name is written in a
lowerl case letter or a non-alphabet letter. (E.g. 0, s, +)

LectureNote1, Sinai School, 03-10 March 2008 16

Natural numbers with addition
-- order sorted signature and sorted terms –

-- signature
-- sort
[Zero NzNat < Nat]
-- operators
op 0 : -> Zero
op s_: Nat -> NzNat
op _+_: Nat Nat -> Nat

Sorted terms
Zero = { 0 }
NzNat = { s n | n ∈ Nat }
Nat = Zero ∪ NzNat ∪

{ n1 + n2 | n1 ∈ Nat ∧ n2 ∈ Nat }

S_

Nat

0
NzNatZero

+

9

LectureNote1, Sinai School, 03-10 March 2008 17

Recursive Definition of Terms

For a given signature, t is a term of a sort S if
and only if t is
• a variable X:S,
• a constant c declared by “op c : -> S”, or
• a term f(t1,,tn) for “op f : S1 Sn -> S”

and a term ti of a sort Si (i =1, ,n).
• a term of a sort S’ which is a sub-sort of S

(Example: Since Zero < Nat, a term 0:Zero is also
a term of sort Nat)

LectureNote1, Sinai School, 03-10 March 2008 18

Several forms of function application:
standard, prefix, infix, postfix, distfix

op f : Nat Nat -> Nat .
f(2,3) standard

op (f_ _) : Nat Nat -> Nat . -- recommended
-- for succesive __

(f 2 3) prefix
op f__ : Nat Nat -> Nat .

(f 2 3) prefix
op _+_ : Nat Nat -> Nat .

(2 + 3) infix
op _! : Nat -> Nat .

(5 !) postfix
op if_then_else_fi : Bool Nat Nat -> Nat .

(if 2 < 3 then 4 else 5 fi) distfix

10

LectureNote1, Sinai School, 03-10 March 2008 19

Term = Tree = Expression

A tree data structure having operators as node and constants
or variables as leaf is called a term. A term is also called an
expression.

• (s 0) + 0 represents term/tree/expression

mod! NAT+ {
[Zero NzNat < Nat]
op 0 : -> Zero
op s_ : Nat -> NzNat
op _+_ : Nat Nat -> Nat
… }

+

s_ 0

0

(S 0) + 0

nat+.mod

LectureNote1, Sinai School, 03-10 March 2008 20

Parsing – precedence of operators-

s 0 + 0 represents (s 0) + 0, because the
operator (s _) has high precedence than the
operator (_ + _)

mod! NAT+ {
[Zero NzNat < Nat]
op 0 : -> Zero
op s_ : Nat -> NzNat
op _+_ : Nat Nat -> Nat
… }

+

s_ 0

0

s_

0

+

0

s 0 + 0

nat+.mod

(s 0) + 0 s(0 + 0)

11

LectureNote1, Sinai School, 03-10 March 2008 21

Error handling with subsorts

RAT> parse 2 / 2 .
(2 / 2) : NzRat

RAT> reduce 2 / 2 .
1 : NzNat

RAT> parse 2 / 0 .
(2 / 0) : ?Rat

RAT> parse 2 / ((3 / 2) + (1 / 2)) .
(2 / ((3 / 2) + (1 / 2))) : ?Rat

RAT> red 2 / ((3 / 2) + (1 / 2)) .
1 : NzNat

ratDiv.mod

LectureNote1, Sinai School, 03-10 March 2008 22

Equation

♦ Most important kind of axioms of CafeOBJ specification are
equations

♦ Properties to be verified are also expressed as equations

An equation is a pair of terms of a same sort, and
written as:

eq l = r .
in CafeOBJ. Where l is called the left-hand
side (LHS) of the equation and r is the right-
hand side (RHS). An equation can have a
condition (COND) c like:

ceq l = r if c .

12

LectureNote1, Sinai School, 03-10 March 2008 23

axioms

Two way of declaring variables
- both should be used based on situations -

axioms

mod! NAT+ {
[Zero NzNat < Nat]
. . .
eq 0 + N:Nat = N .
eq (s M:Nat) + N:Nat = s(M + N) .

}

Variables can be declared before axioms

mod! NAT+ {. . .
vars M N : Nat
eq 0 + N = N .
eq (s M) + N = s(M + N) .

}

Basics of Verification

13

LectureNote1, Sinai School, 03-10 March 2008 25

How to do verification with CafeOBJ specifications

♦ The basic mechanism of CafeOBJ verification is
equational reasoning. Equational reasoning is to
deduce an equation (a candidate of a theorem)
from a given set of equations (axioms of a
specification).

♦ The CafeOBJ system supports an automatic
equational reasoning based on rewriting (or TRS:
Term Rewriting System).

♦ “reduce” or “red” (reduction) command to do
equational reasoning is provided by CafeOBJ
System.

LectureNote1, Sinai School, 03-10 March 2008 26

Reduction command:
Equational reasoning by rewritings

There are two ways to do equational reasoning in CafeOBJ by
rewritings: red <term>. and red <term> = <term>.

NAT+> red +(0, s(0)) .
-- reduce in NAT+ : +(0,s(0))
s(0) : NzNat
(0.000 sec for parse, 1 rewrites(0.000 sec), 1 matches)

NAT+> open (NAT+ + EQL) –- for using equality predicate (_=_)
NAT+ + EQL%> red +(0, s(0)) = +(s(0), 0) .
-- reduce in NAT+ : +(0,s(0)) = +(s(0),0)
true : Bool
(0.000 sec for parse, 4 rewrites(0.000 sec), 5 matches)

This means that the input term is equivalent to the output term.

This means that the one side is equivalent to the other side.

14

LectureNote1, Sinai School, 03-10 March 2008 27

What can be done with
red (reduction) command?

A reduction command of CafeOBJ:
MODULE> red inputTerm .

returns a most simplified term of the given term inputTerm by
using all equations of the module MODULE as rewriting rules from
LHS to RHS. For any context,

any-module> red in MODULE : red inputTerm .
returns the same result.

Let us fix a context M (a module M in CafeOBJ), and let (t1 =*M> t2)
denote that t1 is reduced to t2 in the context. That is, (red in
M : t1 .) returns t2 . Let (t1 =M t2) denote that t1 is equal to
t2 in the context M. It is important to notice:

(t1 =*M> t2) implies (t1 =M t2)
but

(t1 =M t2) does not implies (t1 =*M> t2)

red.mod

LectureNote1, Sinai School, 03-10 March 2008 28

Two equality predicates _=_ and _==_

Assume that (t1 =*> t1’) and (t2 =*> t2’) in any context
then
if (t1’ and t2’ are the same term)

then (red t1 = t2 .) returns true
and
(red t1 == t2 .) returns true

if (t1’ and t2’ are different terms)
then (red t1 = t2 .) returns (t1’ = t2’)

but
(red t1 == t2 .) returns false

=and==

15

LectureNote1, Sinai School, 03-10 March 2008 29

Soundness of _=_ and _==_

♦ The result of “red <term1> == <term2> .” is sound but
not complete, that is:
• If it returns true, then the two terms <term1> and
<term2> is proved to be equal.

• But if it returns false, then the two terms may equal or not
equal.

♦ The reduction of Boolean term involving _==_ may return true
even if it is not true w.r.t. the set of axioms (or the
specification). That is, _==_ may not be sound.

♦ If the reduction of Boolean term involving only _=_ returns
true, then it is true w.r.t. the set of axioms (or the
specification) .

＝and==

LectureNote1, Sinai School, 03-10 March 2008 30

Proof scores in a wide sense

♦ A fragment proof score begins at “open” command which
opens a module, and ends with “close” command.

♦ While a module is opened (between open and close), we
can declare operations and equations for doing verification.

NAT+> open (NAT+ + EQL)
-- opening module NAT+.. done.
%NAT+ + EQL> op n : -> Nat .
%NAT+ + EQL> eq n = 0 .
%NAT+ + EQL> red +(n, n) = 0 .
*
-- reduce in %NAT+ + EQL : +(n,n) = 0
true : Bool
(0.000 sec for parse, 4 rewrites(0.000 sec), 4 matches)
%NAT+ + EQL> close
NAT+>

16

LectureNote1, Sinai School, 03-10 March 2008 31

Arbitrary element

♦ After opening a module, a declared constant operation
op e : -> S .

stands for an arbitrary element of the sort S whose scope is
from its declaration to the end of a proof score (i.e. close).

NAT+> open (NAT+ + EQL)
-- opening module NAT+.. done.
%NAT+ + EQL> op n : -> Nat .
%NAT+ + EQL> red +(0, n) = n .
-- reduce in %NAT+ : +(0,n) = n
true : Bool
(0.000 sec for parse, 2 rewrites(0.000 sec), 2 matches)
%NAT+ + EQL> close
NAT+>

This is a proof score for the claim that +(0, N) = N for any
natural number N. Since the reduction returns “true”, it holds.

LectureNote1, Sinai School, 03-10 March 2008 32

Declaring assumptions

♦ While a module is opening, a declared equation
represents an assumption of the proof score.

NAT+> open (NAT+ + EQL)
-- opening module NAT+.. done.
%NAT+ + EQL> op n : -> Nat .
%NAT+ + EQL> eq +(n, 0) = n .
_
%NAT+ + EQL> red +(s(n), 0) = s(n) .
*
-- reduce in %NAT+ : +(s(n),0) = s(n)
true : Bool
(0.000 sec for parse, 3 rewrites(0.000 sec), 5 matches)

This is a proof for “+(N, 0) = N implies +(s(N), 0) = s(N)
for any natural number N” (it holds).

nat+ps

17

LectureNote1, Sinai School, 03-10 March 2008 33

Constant v.s. variable

♦ Using a variable in an equation instead of a constant makes a
drastic change of meaning of the proof score. Be careful!
• The scope of a constant is to the end of a open-close

session assuming that the declared constants are fresh.
• The scope of a variable is inside of the equation.

open (NAT+ + EQL)
op n : -> Nat .
eq +(n, 0) = n .
red +(s(n), 0) = s(n) .
close

open (NAT+ + EQL)
var N : Nat .
eq +(N, 0) = N .
red +(s(N), 0) = s(N) .
close

Constant: ∀N:Nat. [+(N,0)=N ⇒ +(s(N),0)=s(N)]

Variable: ∀N:Nat.[+(N,0)=N] ⇒∀N:Nat.[+(s(N),0)=s(N)]

constVsVar

LectureNote1, Sinai School, 03-10 March 2008 34

Mathematical Induction over Natural Numbers

Goal: Prove that for any natural number n ∈ {0, s 0,
s s 0,…} P(n) is true

Induction Scheme:

P(0) ∀n∈N.[P(n) => P(s n)]

∀n∈N.P(n)

Concrete Procedure: (induction with respect to n)
1. Prove P(0) is true
2. Assume that P(n) holds, and prove that P(s n) is true

18

LectureNote1, Sinai School, 03-10 March 2008 35

Induction step

Base case

Induction

♦ The following is a proof score of “∀n:Nat.+(n,0) = n” :

open (NAT+ + EQL)
red +(0, 0) = 0 .
op n : -> Nat .
eq +(n, 0) = n .
red +(s(n), 0) = s(n) .
close

-- opening module (NAT+ + EQL).. done.
%NAT+ + EQL> -- reduce in %NAT+ + EQL : +(0,0) = 0
true : Bool
(0.000 sec for parse, 2 rewrites(0.000 sec), 2 matches)

-- reduce in %NAT+ + EQL : +(s(n),0) = s(n)
true : Bool
(0.000 sec for parse, 3 rewrites(0.000 sec), 5 matches)
%NAT+ + EQL>
NAT+>

LectureNote1, Sinai School, 03-10 March 2008 36

Complete proof score
--> This is a proof of +(N, 0) = N
open (NAT+ + EQL)
--> Base case
red +(0, 0) = 0 .
--> Induction step
op n : -> Nat .
eq +(n, 0) = n . -- I.H.
red +(s(n), 0) = s(n) .
close

NAT+> in nat+ps.mod
processing input : /.../proof.mod
--> This is a proof of +(N, 0) = N
-- opening module NAT+ + EQL .. done.
--> Base case
-- reduce in %NAT+ + EQL : +(0,0) = 0
true : Bool
(0.000 sec for parse, 2 rewrites(0.000 sec), 2 matches)
--> Induction step_*
-- reduce in %NAT+ + EQL : +(s(n),0) = s(n)
true : Bool
(0.000 sec for parse, 3 rewrites(0.000 sec), 5 matches)
NAT+>

nat+ps

