Basics of Modeling, Specification,
Verification in CafeOBJ

CafeOBJ Team of JAIST

Topics

¢ Basic concepts for modeling, specification,
verification in CafeOBJ

¢ Basics of CafeOBJ language system: module,
signature, equations, term, parsing, debugging,
trace

LectureNotel, Sinai School, 03-10 March 2008

Basics of

Modeling/SEecification/Verification

Modeling/Specifying and Verifying in CafeOBJ

1. By understanding a problem to be
modeled/specified, determine several sorts of
objects (entities, data, agents, states) and
operations (functions, actions, events) over
them for describing the problem

2. Define the meanings/functions of the
operations by declaring equations over
expressions/terms composed of the operations

3. Write proof scores for properties to be verified

LectureNotel, Sinai School, 03-10 March 2008

Natural Numbers -- Signature --

|0 0+1 0+1+1 O+1+1+1 O+1+1+1+1 ... |
10 5(0) s(5(0) s(s(5(0)) s(s(S(S(0)))) .. |

objects: Nat
operations: O0: returns zero without arguments

s : given a natural number n returns the
next natural number (s n) of n

-- sort

[Nat] 0
-- operations S
op O : -> Nat

op s_: Nat -> Nat

LectureNotel, Sinai School, 03-10 March 2008

ot

Natural Number
-- Expressions/terms composed of operations --

mod! BASIC-NAT
{ [Nat] op O: -> Nat op s_: Nat -> Nat }

1. O is anatural number

2. If n is natural number then (s n) is a natural
number

3. An object which is to be a natural number by 1 and 2
is only a natural number

Peano’s definition of natural numbers (1889), Giuseppe Peano (1858-1932) |

Nat

{0, s(0), s(s(0))., s(s(s(0)))., s(s(s(s(0)))) . }|

Nat = {0, s 0, ss 0, sss0, ssss©O, .} |

Describe a problem in expressions/terms!

LectureNotel, Sinai School, 03-10 March 2008

Mathematical Induction over Natural Numbers

| The recursive definition of Nat induces the following induction scheme! |

Goal: Prove that for any natural number n € {0, s 0, s s
0,.} P(n) is true

Induction Scheme:

P(0) VneN_[P(n) => P(s n)]

vneN.P(n)

Concrete Procedure: (induction with respect to n)
1. Prove P(0) is true

2. Assume that P(n) holds, and prove that P(s n) is
true

LectureNotel, Sinai School, 03-10 March 2008

Natural numbers with addition operation
-- signature and expressions/terms --

S_
-- sort
[Nat]
-- operations 0
op O : -> Nat

op s_: Nat -> Nat

op _+ :© Nat Nat -> Nat '

+

Nat = {0} U {s n]| ne Nat }
U {nl+n2]| nl € Nat A n2 € Nat }

LectureNotel, Sinai School, 03-10 March 2008

Natural numbers with addition
-- expressions/terms composed by operations --

|op 0: -> Nat . op s_:

Nat -> Nat .

op _+ : Nat Nat -> Nat .

Nat = {

0,s0, ss0, sssO0, ...,
0+0,0+(0)),0+(ss0),0+((sss0, --.,
(s0) +0, (s0) + (s 0),

(ss0)+0, (ss0)+ (0, (ss0)+ (ss0),

(s 0) + (s s 0),
(s0) + (sss 0,

(ss0)+ (sss0)),

0+ @+0), 0+ O+ (s0)), ---
(O +0)+0, (O+(s0) +0, ...

3

LectureNotel, Sinai School, 03-10 March 2008

Natural numbers with addition

-- equations defining meaning/function --

natPlus.mod basicNatPlus.mod

CafeOBJ module NAT+ defining
Natural numbers with addition

mod! NATplus {

-- sort

[Nat]

-- operations

op O : -> Nat {constr}

op s _: Nat -> Nat {constr}

op _+_:- Nat Nat -> Nat

-- equations

eq 0O + NzNat = N .

eq (s M:Nat) + N:Nat = s(M + N) .
by

Inference/Computation
with the equations

(ss0) + (s 0
s((s 0) + (s 0))
s s(0 + (s 0))
sssO

.> select NATplus

NATplus> red s s 0 + s O .
NATplus> -- reduce in NAT+
D ((s (s 0) + (s 0)):Nat
(s (s (s 0))):NzNat

(0.000 sec for parse,

3 rewrites(0.000 sec),

5 matches)

LectureNotel, Sinai School, 03-10 March 2008 10

Proof Score
for the proof of associativity of addition (_+)

natPlusAssocPS.mod

-- opening module NATplus and EQL

open (NATplus + EQL)

--> declaring constants for arbitrary values
ops i jJ k - -> Nat .

**> Prove associativity: (i + j) + k =i + + k)
**> py induction on i

**> base case proof for O:

red 0+ g +k)=@Q+j) +k.

**> induction hypothesis:

eq (i + J:Nat) + K:Nat =1 + (3 + K) .

**> induction step proof for (s k):

red ((s 1) + J:Nat) + K:Nat = (s 1) + (J + K) .
**> QED {end of proof for associativity of (_+)}
close

LectureNotel, Sinai School, 03-10 March 2008

11

module, signature, equatio
term, order-sort

n,

Three kinds of modules

CafeOBJ specification is composed of modules. There are
three kinds of modules.

mod! <module_name> { mod* <module_name> { mod <module_name> {
<modlue_element> * <modlue_element> * <modlue_element>*

} } 3

mod! declares that the module denotes tight denotatin
mod* declares that the module denotes loose denotation
mod does not declare any semantic denotationd

[Naming convention] module name starts with
two successive upper case charactors
(example:TEST, NAT, NATplus, ACCOUNT-SYS,..)

LectureNotel, Sinai School, 03-10 March 2008 13

Module NATplus

’A module is composed of signature and axioms

("mod?! NATplus { h

[Nat]
op O : -> Nat

op s_ : Nat -> Nat signature
op _+_: Nat Nat -> Nat
vars M N : Nat
eq 0O +N=N . axioms/equations
eq (s M) + N =s(M + N) |

G)

LectureNotel, Sinai School, 03-10 March 2008 14

Signature:
sort name, operator name, arity, co-arity, rank

A signature is a pair of a set of sorts and a set of operations.

mod! NATplus {
at T sons |
A op 0 : -> Nat
Signature L .
op s : Nat -> Nat operations
op _+_ : Nat Nat -> Nat
-}

[Convention] The first and second letter of a sort name is written in a
upper case and lower case letter respectively. (E.g. Nat, Set)

[Convention] The first letter of an operation name is written in a
lowerl case letter or a non-alphabet letter. (E.g. 0, s, +)

§ op _+_ :[Nat Nat|—>|Nat|
‘ arity co-arity (rang) | rank

LectureNotel, Sinai School, 03-10 March 2008 15

Natural numbers with addition
-- order sorted signature and sorted terms —

—-- signature

-- sort

[Zero NzNat < Nat]
-- operators

op 0 : -> Zero

op s - Nat -> NzNat
op _+_ = Nat Nat -> Nat

Sorted terms

Zero = { 0 }

NzNat = { s n | n € Nat }

Nat = Zero U NzNat U
{nl +n2] nl € Nat A n2 € Nat }

LectureNotel, Sinai School, 03-10 March 2008 16

Recursive Definition of Terms

For a given signature, tis aterm of asort S if
and only if t is

e avariable X:S,

e aconstant c declared by ““op ¢ : -> S, or

e aterm f(t,,,t) for“op f:5s, s, > 5S”
and atermt; ofasortS; (i=1, ,n).

e aterm of asort S” which is a sub-sort of S
(Example: Since Zero < Nat, aterm 0:Zerois also
aterm of sort Nat)

LectureNotel, Sinai School, 03-10 March 2008

17

Several forms of function application:
standard, prefix, infix, postfix, distfix

op f - Nat Nat -> Nat .
f(2,3) standard
op (F_) : Nat Nat -> Nat . -- recommended

(F 2 3) prefix
op F__ : Nat Nat -> Nat .
(F 2 3) prefix
op _+_ - Nat Nat -> Nat .
(2 + 3) infix
op _! : Nat -> Nat .
Gn postfix
op if_then_else_fi : Bool Nat Nat -> Nat .
(if 2 < 3 then 4 else 5 fi) distfix

-- for succesive

LectureNotel, Sinai School, 03-10 March 2008

Term = Tree = Expression

nat+.mod

A tree data structure having operators as node and constants
or variables as leaf is called a term. A term is also called an

expression.

e (s 0) + Orepresents term/tree/expression

S0 +0
mod! NAT+ { ()
[Zero NzNat < Nat] +
op 0 : -> Zero /:;:;\
op s_ : Nat -> NzNat s 0
op _+_ :© Nat Nat -> Nat -
.
0
LectureNotel, Sinai School, 03-10 March 2008 19
Parsing - precedence of operators- nat+.mod

operator (_ +)

s 0 + 0 represents (s 0) + 0, because the
operator (s) has high precedence than the

Ve

LectureNotel, Sinai School, 03-10 March 2008

s0+0
mod! NAT+ {
[Zero NzNat < Nat] » s
op 0 : -> Zero P _
op s_ : Nat -> NzNat 0
op _+_ : Nat Nat -> Nat _t_
.} A
- J O O
(s0) +0 s(0 + 0)

20

10

Error handling with subsorts

ratDiv.mod

RAT> parse 2 / 2 .
(2 /7 2) - NzRat

RAT> reduce 2 /7 2 .
1 : NzNat

RAT> parse 2 / 0 .
(2 7 0) : ?Rat

RAT> parse 2 / ((3 /7 2) + (01 7/ 2)) .
/7 (@B772)+ @7 2)) : ?Rat

RAT>red 2 /7 (372 + (17 2)) .
1 : NzNat

LectureNotel, Sinai School, 03-10 March 2008

21

Equation

An equation is a pair of terms of a same sort, and
written as:

eql =r .
in CafeOBJ. Where 1 is called the left-hand
side (LHS) of the equation and r is the right-

hand side (RHS). An equation can have a
condition (COND) c like:

ceg I =r if c .

¢ Most important kind of axioms of CafeOBJ specification are
equations

¢ Properties to be verified are also expressed as equations

LectureNotel, Sinai School, 03-10 March 2008

22

11

Two way of declaring variables

- both should be used based on situations -

mod! NAT+ {
[Zero NzNat < Nat]

N

eq 0 + N:Nat -
s(M + N) .

eq (s M:Nat) + N:Nat

}

Variables can be declared before axioms

mod! NAT+ {. . .

vars M N - Nat

eq 0O +N=N .

eq (s M) + N=s(M+ N) .
ks

LectureNotel, Sinai School, 03-10 March 2008

axioms

axioms

23

Basics of Verification

12

How to do verification with CafeOBJ specifications

¢ The basic mechanism of CafeOBJ verification is
equational reasoning. Equational reasoning is to
deduce an equation (a candidate of a theorem)
from a given set of equations (axioms of a
specification).

¢ The CafeOBJ system supports an automatic
equational reasoning based on rewriting (or TRS:
Term Rewriting System).

¢ “reduce” or “red” (reduction) command to do

equational reasoning is provided by CafeOBJ
System.

LectureNotel, Sinai School, 03-10 March 2008 25

Reduction command:
Equational reasoning by rewritings

There are two ways to do equational reasoning in CafeOBJ by
rewritings: red <term>. and red <term> = <term>.

NAT+> red +(0, s(0)) .

-- reduce in NAT+ : +(0,s(0))

s(0) : NzNat

(0.000 sec for parse, 1 rewrites(0.000 sec), 1 matches)

This means that the input term is equivalent to the output term.

NAT+> open (NAT+ + EQL) — for using equality predicate (=)
NAT+ + EQL%> red +(0, s(0)) = +(s(0), 0) .

-- reduce in NAT+ : +(0,s(0)) = +(s(0),0)

true : Bool

(0.000 sec for parse, 4 rewrites(0.000 sec), 5 matches)

This means that the one side is equivalent to the other side.

LectureNotel, Sinai School, 03-10 March 2008 26

13

What can be done with
red (reduction) command?

red.mod

A reduction command of CafeOBJ:

MODULE> red inputTerm .
returns a most simplified term of the given term inputTerm by
using all equations of the module MODULE as rewriting rules from
LHS to RHS. For any context,

any-module> red in MODULE : red inputTerm .
returns the same result.

Let us fix a context M (a module M in CafeOBJ), and let (€1 =*M> t2)
denote that t1 is reduced to t2 inthe context. Thatis, (red in
M t1l) returnst2 . Let(tl =M t2)denote that t1 is equal to
t2 inthe context M. Itis important to notice:

(t1 =*M> t2)implies (tl =M t2)

but
(tl =M t2)does notimplies (tl =*M> t2)
LectureNotel, Sinai School, 03-10 March 2008 27
Two equality predicates = and == e

Assume that (t1 =*> t1”)and (t2 =*> t2”)in any context
then
if (t1” and t2” are the same term)
then (red t1l = t2 .)returns true
and
(red t1 == t2 .)returns true
if (t1'and t2' are different terms))
then(red t1 = t2 .)returns(tl” = t27)
but
(red t1 == t2 .)returns false

LectureNotel, Sinai School, 03-10 March 2008 28

14

Soundness of = and ==_ e

¢ Theresultof “red <terml> == <term2> .” is sound but
not complete, that is:
e [f it returns true, then the two terms <terml> and
<term2> is proved to be equal.

e Butif it returns false, then the two terms may equal or not

equal.
¢ The reduction of Boolean term involving _==_may return true
even if it is not true w.r.t. the set of axioms (or the
specification). Thatis, == may not be sound.
+ If the reduction of Boolean term involving only = returns

true, then it is true w.r.t. the set of axioms (or the
specification) .

LectureNotel, Sinai School, 03-10 March 2008

29

Proof scores in awide sense

+ A fragment proof score begins at “open” command which
opens a module, and ends with “close” command.

¢ While a module is opened (between open and close), we

can declare operations and equations for doing verification.

(7
NAT+> open (NAT+ + EQL)

-- opening modulle NAT+.. done.

%NAT+ + EQL> op n : -> Nat .

%NAT+ + EQL> eq n = 0 .

%NAT+ + EQL> red +(n, n) = 0 .

*

-- reduce in %NAT+ + EQL : +(n,n) =0

true : Bool

(0.000 sec for parse, 4 rewrites(0.000 sec), 4 matches)
%NAT+ + EQL> close

NAT+>

LectureNotel, Sinai School, 03-10 March 2008

30

15

Arbitrary element

¢ After opening a module, a declared constant operation
ope: ->S.
stands for an arbitrary element of the sort S whose scope is
from its declaration to the end of a proof score (i.e. close).

(NAT+> open (NAT+ + EQL))
-- opening module NAT+.. done.

%NAT+ + EQL> op n : -> Nat .

%NAT+ + EQL> red +(0, n) = n .

-- reduce in %NAT+ : +(0,n) = n

true : Bool

(0.000 sec for parse, 2 rewrites(0.000 sec), 2 matches)
%NAT+ + EQL> close

NAT+>

& J

This is a proof score for the claim that +(0, N) = N forany
natural number N. Since the reduction returns “true”, it holds.

LectureNotel, Sinai School, 03-10 March 2008

31

Declaring assumptions nateps

¢ While a module is opening, a declared equation
represents an assumption of the proof score.

/NAT+> open (NAT+ + EQL)

-- opening module NAT+.. done.
%NAT+ + EQL> op n - -> Nat .
%NAT+ + EQL> eq +(n, 0) = n .

WNAT+ + EQL> red +(s(n), 0) = s(n) .
*

-- reduce in %NAT+ : +(s(n),0) = s(n)

true : Bool

(0.000 sec for parse, 3 rewrites(0.000 sec), 5 matches)
. J

This is a proof for “+(N, 0) = N implies +(s(N), 0) = s(N)
for any natural number N” (it holds).

LectureNotel, Sinai School, 03-10 March 2008

32

16

Constant v.s. variable

constVsVar

¢ Using avariable in an equation instead of a constant makes a
drastic change of meaning of the proof score. Be careful!

e The scope of a constant is to the end of a open-close
session assuming that the declared constants are fresh.

e The scope of a variable is inside of the equation.

open (NAT+ + EQL) open (NAT+ + EQL)

op n : -> Nat . var N - Nat .

eq +(n, 0) = n . eq +(N, 0) = N .

red +(s(n), 0) = s(n) . red +(s(N), 0) = s(N) .
close close

Constant: YN:Nat. [+(N,0)=N = +(s(N),0)=s(N)]
Variable: YN:Nat.[+(N,0)=N] =YN:Nat.[+(s(N),0)=s(\N)]

LectureNotel, Sinai School, 03-10 March 2008

33

Mathematical Induction over Natural Numbers

Goal: Prove that for any natural number n € {0, s O,
s s 0,.} P(n) is true

Induction Scheme:

(S ==
VneN.P(n)
Concrete Procedure: (induction with respect to n)

1. Prove P(0) is true
2. Assume that P(n) holds, and prove that P(s n) is true

LectureNotel, Sinai School, 03-10 March 2008

34

17

Induction

¢ The following is a proof score of “Yn:Nat.+(n,0) = n’

open (NAT+ + EQL)

red +(0, 0) = 0 .

op n : -> Nat .

eq +(n, 0) = n .

red +(s(n), 0) = s(n) -
close

Base case

Induction step

-~

true : Bool

true : Bool

%NAT+ + EQL>
| NAT+>

-- opening module (NAT+ + EQL).. done.
%NAT+ + EQL> -- reduce in %NAT+ + EQL : +(0,0)

0

(0.000 sec for parse, 2 rewrites(0.000 sec), 2 matches)
-- reduce in %NAT+ + EQL : +(s(n),0) = s(n)

(0.000 sec for parse, 3 rewrites(0.000 sec), 5 matches)

LectureNotel, Sinai School, 03-10 March 2008

Complete proof score

nat+ps

--> This is a proof of +(N, 0) = N
open (NAT+ + EQL)

--> Base case

red +(0, 0) =0 .

--> Induction step

opn : ->Nat .

eq +(n, 0) = n . —- I.H.

red +(s(n), 0) = s(n) .

close

Ve
A S —

NAT+> in nat+ps.mod

processing input : /.../proof.mod

--> This is a proof of +(N, 0) = N

-- opening module NAT+ + EQL .. done.
--> Base case

-- reduce in %NAT+ + EQL :
true : Bool

(0.000 sec for parse, 2 rewrites(0.000 sec), 2 matches)
--> Induction step_*

-- reduce in %NAT+ + EQL : +(s(n),0) = s(n)
true : Bool

(0.000 sec for parse, 3 rewrites(0.000 sec), 5 matches)

+(0,0) = 0

L NAT+>

LectureNotel, Sinai School, 03-10 March 2008

36

18

