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Topics

Specification/Descriptions, Models, and Realities
Order Sorted Term Algebra, Quotient Term 
Algebra, and Equation Reasoning
Congruence defined by Specification

Equivalence Relation
Congruence Relation

Initial/Tight denotation and Loose denotation
Satisfaction of a Property prop by a Specification 
SPEC

SPEC |= prop
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Specifications, Models, Realities
Specifications/Descriptions

Realities/Real-World

Models (Conceptual, Diagram, Formal/Mathematical)

Theories/Mathematics/Logics

Engineering/Technology

Implements/
Realizes
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Specification and its model (1) 

An equational specification SPEC in CafeOBJ (a 
legitimate text in the CafeOBJ language with only 
equations as axioms) is defined as a pair < S, E > of 
order-sorted signature S and a set of conditional 
equations E .

A model of an equational specification SPEC = < S, E >
is an algebra. An algebra is a mathematical object 
composed of operations over order-sorted sets.  A 
signature S of a specification SPEC = < S, E >
determines a set of S-algebras (order-sorted algebras) 
of the signature S .  
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Specification and its model (2) 

A S-algebra A interprets a sort symbol s of the signature S
as a (non empty) set AS and an operation (function) symbol 
f of the specification as a function Af. The interpretation 
respects the order-sort constrains, and ranks (types) of 
functions.

A S-algebra A is an order-sorted algebra.  An order-sorted 
algebra is a mathematical object which is composed of 
operations defined over order-sorted sets.   Order-sorted 
sets are many-sorted sets with subset relations.



4

LectureNote2, Sinaia School, 03-10/03/2008
7

An example of Signature and its Algebra

-- signature NAT+sig
-- sort
[ Zero NzNat < Nat ]
-- operators
op 0 :  -> Nat
op s_ :  Nat -> NzNat
op _+_ : Nat Nat -> Nat

S_

Nat

0
NzNatZero

_+_ 

A MAT+sig-algebra
Order-Sorted Algebra with Signature NAT+sig:

<Nat, NzNat, Zero; 0, s_, _+_>
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Order Sorted Term Algebra TNAT+sig
of Signature NAT+sig

Order-Sorted Carrier sets can be thought of 
Order-Sorted Sets of Terms:
Zero = { 0 }
NzNat = { s n | n ∈ Nat }
Nat = Zero ∪ NzNat ∪

{ n1 + n2 | n1 ∈ Nat ∧ n2 ∈ Nat }

Operations over the order-sorted sets of terms:
0 = 0
(for n∈Nat)(s n = s n)
(for n1,n2∈Nat)(n1 + n2 = n1 + n2)

An Order-Sorted Algebra is a mathematical object composed of 
order-sorted carrier sets and operations over them.
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valuation, evaluation, equation

Given a model A and a valuation v, a term t of sort s, 
which may contain variables, is evaluated to a value
Av(t) in a set As

A valuation (or an assignment) is a sort preserving 
map from the (order-sorted) set of variables of a 
specification to an order-sorted algebra (a model), 
and assigns values to all variables.

Given terms t1 and t2 of a sort s and c of sort Bool, a 
conditional equation is a sentence of the form: 

t1 = t2 if c
An ordinary equation t1 = t2 is an abbreviation of

t1 = t2 if true
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Satisfiability of equation

Given a model (an ordered-sorted algebra) A,
A satisfies an equation t1 = t2

iff
Av(t1) = Av(t2) 

for any valuation v . 

The satisfaction of an equation by a model A is denoted by 
A |e= (t1 = t2)
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For a CafeOBJ specification SPEC = < S, E >, 
a SPEC-algebra is a S-algebra which satisfy   
(1) all equations in E

and 
(2) semantic constrains of SPEC. 

SPEC-algebra

For a CafeOBJ specification SPEC = < S, E >,  
a semantic constrains of SPEC are 
(1) tight/loose denotations 

and 
(2) protecting/extending importations.
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Tight denotation:
Quotient Term Algebra TNAT+sig/=NAT+

Two equations of 
NAT defines 
congruence 
relations =NAT+
over the carrier 
sets of TNAT+sig .

mod! NAT+ {
-- signature
-- sort
[ Zero NzNat < Nat ]
-- operators
op 0 : -> Nat
op s_ : Nat -> NzNat
op _+_ : Nat Nat -> Nat
-- equations
eq 0 + N:Nat = N .
eq (s M:Nat) + N:Nat 

= s(M + N) . }

The specification NAT+ denotes the quotient term algebra  
TNAT+sig/=NAT+ as the initial/standard model.

mod! indicates the 
denotation to the 
initial/standard model
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Quotient Term Algebra TNAT+/=NAT+

0, 0+0

(0+0)+0,

...

S 0
,

0+s
 0,

(0+
(s 

0))
+0,

...

s s 0,
(s 0)+(s 0),
(s s 0)+0,
...

.
.

.

...

TNAT+sig

is also written as

TNAT+
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Given a specification SPEC, a binary relation =SPEC (written just = 
in the following) on sorted sets of terms of SPEC is the congruence 
defined by SPEC if and only if it is the smallest relation which 
satisfies the following five properties:

Reflexivity:        t1= t1
Symmetry:         t1=t2 implies t2=t1
Transitivity: (t1=t2 and t2=t3) implies t1=t3
Congruence: for any operator f,

(t1=t1’ and … and ti=ti’) implies 
f(t1,…,ti)=f(t1’,…,ti’)

Substitutivity: for any conditional equation (e=e’ if c) in SPEC
and any assignment a, 

a(c)=ture implies a(e)=a(e’)

=NAT+ is the congruence defined by NAT+

Congruence Relation =SPEC 
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Equivalence Relation (等価関係)
and Partition (分割)

A binary relation 
(a set of pairs) 
which satisfies 
reflexivity, 
symmetry, and 
transitivity is 
defined to be an 
equivalence 
relation.

Partition
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Congruence Relation

Any operator preserves 
the equivalence relation!
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Reflexivity:       ------------ Symmetry:           t1=t2
（反射律） t1= t1 (対称律） -------------

t2=t1
Transitivity:          t1=t2      t2=t3
（推移律） ---------------------------

t1=t3

Congruence:              t1=t1’ t2=t2’ … tn=tn’
（合同律） --------------------------------- {f is an operator}

f(t1,…,ti)=f(tn’,…,tn’)

Substitutivity:      a(c)=ture
（代入律） ------------------- {(ceq e=e’ if c .),  a is an assignment}

a(e)=a(e’)

Inference rules for conditional equations
-- identical to =SPEC
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Initial = (No Junk + No Confusion)

No Junk = Any element of a carrier set  is represented 
by the operators in the signature.

No Confusion = No two elements of a carrier set are 
equivalent unless they can be shown to 
be equal using the axioms (equations) 
of the specification.

Examples of Junks in spec. NAT+:
(s s 0) * (s 0), ¾, ∞, a

Examples of confusion in spec. NAT+:
s 0 = 0, s 0 + 0 = s s 0
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Loose denotation: Non-Initial Model

mod* NAT+loose {
-- signature
-- sort
[ Zero NzNat < Nat ]
-- operators
op 0 : -> Nat
op s_ : Nat -> NzNat
op _+_ : Nat Nat -> Nat
-- equations
eq 0 + N:Nat = N .
eq (s M:Nat) + N:Nat 

= s(M + N) . }

Carrier sets:
Zero = { 0 }
NzNat = { s n | n ∈ Nat }
Nat = 
Zero ∪ NzNat ∪ { a } ∪
{ n1 + n2 | 
n1 ∈ Nat ∧ n2 ∈ Nat }

A non-initial model of NAT+loose

Operations:
0 + 0 = 0 , 0 + a = a
a + 0 = 0 ,  a + a = 0
s N:Nat = N 

_+_ is not commutative and not associative!mod* indicates 
denotation to all 
models that satisfy 
the spec. NAT+loose U {eq s s s … s 0 = 0 .}

Another Example:
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Satisfiability of boolean term

A SPEC-algebra A satisfies a term t of sort Bool iff
Av(t) = true for any valuation v (or iff A satisfies an 
equation t = true) .

The satisfaction of a predicate by a model A is denoted 
by:

A |= p

Only the satisfaction relation:
A |= p

is simulated by CafeOBJ System.   The satisfaction relation 
A |e= (t1 = t2)

can not be simulated by CafeOBJ system, because equation 
is a meta-entity and not in the object level of CafeOBJ.
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Equality predicate _=_

For any specification SPEC = < S, E >, any SPEC-
algebra A is postulated to satisfy:

A |= (t1 = t2)    iff A |e= (t1 = t2)
for any pair of terms t1 and t2 .  That is, we only 
consider the model which satisfies this condition.

There is a special operation (predicate) symbol  _=_
with an operation declaration “op (_=_) : s s -> 
Bool” for any sort symbol s of any signature S of any 
specification SP = < S, E >.  For any model A, _=_ is 
postulated to be interpreted as the equality (or 
identity) relation on the set As .

This is formulated as follows.
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Satisfiability of property by specification:
SPEC |= prop

A specification SPEC = < S, E > is defined to satisfy a 
property p (a term of sort Bool) iff A |= p holes for any 
SPEC-algebra A.

The satisfaction of a predicate prop by a specification 
SPEC = < S, E > is denoted by:

SPEC |= p  or  S,E |= p  or  E |= p

An important purpose of developing a specification 
SPEC = <S,E> in CafeOBJ is to check whether 

SPEC |= prop
holds for a predicate prop which describe some 
important property of the system which SPEC specifies.
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Structuring

Module Imports: 
protecting, extending, and using

Parameterized Module
Parameter Instantiation
Module Expression
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Module Imports

import declaration

module body

-- imported module
mod! BARE-NAT
{ [ NzNat Zero < Nat ]
op 0 : -> Zero
op s_ : Nat -> NzNat

}

-- importing module
mod! NAT+ 
{ protecting(BARE-NAT)

op _+_ : Nat Nat -> Nat
eq 0 + N:Nat = N .
eq (s M:Nat) + N:Nat = s(M + N) . 

}

Sufficiently 
completeness of 
NAT+ over 
BARE-NAT
guarantees the 
“no junk”
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Three Importation Modes

Semantics definition of three modes

protecting: no junk and no confusion into the imported 
module

extending: may be junk but no confusion into the 
imported module 

using: may be junk and confusion into the 
imported module

No semantics checks are done by CafeOBJ system 
w.r.t. protecting and extending
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Examples of protecting and extending
-- imported module
mod! BARE-NAT
{ [ NzNat Zero < Nat ]

op 0 : -> Zero
op s_ : Nat -> NzNat }

-- importing module
mod! NAT+ 
{ protecting(BARE-NAT)

op _+_ : Nat Nat -> Nat
eq 0 + N:Nat = N .
eq (s M:Nat) + N:Nat = 

s(M + N) .  }

-- imported module
mod! BARE-NAT
{ [ NzNat Zero < Nat ]

op 0 : -> Zero
op s_ : Nat -> NzNat

}

-- importing module
mod! NAT-INFINITY 
{ extending(BARE-NAT)

op omega : -> Nat
eq s omega = omega . }

Suff. Comp. guarantees no junk.
Two equations preserve the number 
of s_ in the term, hence no 
confusion.

“omega” is a junk.
No equations for a term 
like s s s … s 0, hence 
no confusion.
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Parameterized Module

formal parameter module:

parameter declaration:

-- built-in module TRIV
mod* TRIV { [ Elt ] }

--> parameterized string
mod! STRG (X :: TRIV) 
{
-- any element is string of 
-- length one
[ Elt < Strg ]  
-- a binary juxtaposing 
-- operation for strings
op (_ _) : Strg Strg -> Strg

{assoc}
}

specifies possible actual 
parameters with loose 
denotation

specifies a pair of a 
(formal) parameter 
name and parameter 
module name
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Parameter instantiations (1)  

-- (0) standard way of declaring view first and instantiate 
-- a formal parameter using it;
view natAsTriv from TRIV to NAT {sort Elt -> Nat}
make NAT-STRG0 (STRG(X <= natAsTriv))
make NAT-STRG0’ (STRG(natAsTriv))

-- (1) on the fly view declaration 
make NAT-STRG1

(STRG(X <= view to NAT {sort Elt -> Nat}))

-- (2) on the fly view declaration of shorter version
-- this is a recommend way to instantiate parameters
make NAT-STRG2 (STRG(NAT{sort Elt -> Nat}))

structSpecSTRG.mod
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Parameter instantiations (2)  

-- (3) on the fly view declaration using the mod construct
mod! NAT-STRG3 {
protecting(STRG(NAT {sort Elt -> Nat}))} 

-- (4) on the fly view declaration 
-- with sort renaming *{sort Strg -> NatStrg} 
make NAT-STRG4
((STRG(NAT{sort Elt -> Nat}))*{sort Strg -> NatStrg})

-- (5) making use of default view mechanism:
-- it is possible because the sort Nat is declared to be 
-- the principal-sort  in the built-in module NAT;
-- it is not recommended if you are not get used to the notions of 
-- principal-sort and default view;
-- with sort renaming “*{sort Strg -> NatStrg}”
make NAT-STRG5 ((STRG(NAT))*{sort Strg -> NatStrg})
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Principal-sort and default view (1)

--> BARE-NAT
mod! BARE-NAT {
[ NzNat Zero < Nat ]
op 0 : -> Zero
op s_ : Nat -> NzNat

}

--> notice that the following does not work 
--> because the pricipal sort is not declared 
--> in the module BARE-NAT
make NAT-STRG8 (STRG(BARE-NAT))
make NAT-STRG9 (STRG(X <= BARE-NAT))

bareNatWithPsort.mod
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Principal-sort and default view (2)

-->  if the principal sort is declared as:
mod! BARE-NATwithPsort principal-sort Nat 
{ [ NzNat Zero < Nat ]
op 0 : -> Zero
op s_ : Nat -> NzNat

}

--> then the following two work
make NAT-STRG10 (STRG(BARE-NATwithPsort))
make NAT-STRG11 (STRG(X <= BARE-NATwithPsort))
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Parameterized lexicographic ordering (1)

--> a loose specification of totally ordered elements
mod* TOSET 
{ us(EQL)

[ Elt ]
pred _<_ : Elt Elt -- strict total ordering

vars E1 E2 E3 : Elt
eq E1 < E1 = false .
eq ( ((E1 < E2) or (E2 < E1) or (E1 = E2)) 

and
not((E1 < E2) and (E2 < E1))
and

not((E2 < E1) and (E1 = E2)) 
and

not((E1 < E2) and (E1 = E2)) ) = true .
eq (((E1 < E2) and (E2 < E3)) implies (E1 < E3)) = true .

}

stringOfStringOf.mod
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Parameterized lexicographic ordering (2) 

mod! STRGlex (Y :: TOSET) { [ Elt < Strg ]
op _ _ : Strg Strg -> Strg {assoc}
-- lexicographic ordering over strings
op _<<_ : Strg Strg -> Bool
eq (E1:Elt):Strg << (E2:Elt):Strg = (E1):Elt < (E2):Elt .

ceq (E1:Elt):Strg << (E2:Elt  S2:Strg) = true 
if (E1 = E2) .

ceq (E1:Elt):Strg << (E2:Elt  S2:Strg) = true 
if (E1 < E2).

ceq (E1:Elt):Strg << (E2:Elt  S2:Strg) = false 
if (E2 < E1) .

ceq (E1:Elt  S1:Strg) << (E2:Elt):Strg  = false 
if (E1 = E2) .

ceq (E1:Elt  S1:Strg) << (E2:Elt):Strg  = true
if (E1 < E2) .

ceq (E1:Elt  S1:Strg) << (E2:Elt):Strg  = false 
if (E2 < E1) .

ceq (E1:Elt  S1:Strg) << (E2:Elt  S2:Strg) = S1 << S2 
if E1 = E2 .

ceq (E1:Elt  S1:Strg) << (E2:Elt  S2:Strg) = true 
if (E1 < E2) .

ceq (E1:Elt  S1:Strg) << (E2:Elt  S2:Strg) = false if (E2 < E1) . }

stringOfStringOf.mod
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view

view body

Rename

An Example of Module Expression
actual parametermod! NATeq {pr(NAT + EQL)}

make NAT-STRG-STRGlex2
(
STRGlex
( ((STRGlex

(NATeq{sort Elt -> Nat})
)
*{sort Strg -> St,
op (_ _) -> (_&_),
op (_<<_) -> (_<st_)}

)
{sort Elt -> St,
op (E1:Elt < E2:Elt)

->(E1:St <st E2:St)} )
)


