Models and Structuring of Specifications

CafeOBJ Team of JAIST

Topics

- Specification/Descriptions, Models, and Realities
- Order Sorted Term Algebra, Quotient Term Algebra, and Equation Reasoning
- Congruence defined by Specification
- Equivalence Relation
- Congruence Relation
- Initial/Tight denotation and Loose denotation
- Satisfaction of a Property prop by a Specification SPEC
- SPEC |= prop

Specifications, Models, Realities

Specification and its model (1)

An equational specification SPEC in CafeOBJ (a legitimate text in the CafeOBJ language with only equations as axioms) is defined as a pair $<\Sigma$, $\mathrm{E}>$ of order-sorted signature $\boldsymbol{\Sigma}$ and a set of conditional equations E .

A model of an equational specification SPEC $=\langle\Sigma$, E \rangle is an algebra. An algebra is a mathematical object composed of operations over order-sorted sets. A signature Σ of a specification SPEC $=\langle\Sigma$, E \rangle determines a set of $\boldsymbol{\Sigma}$-algebras (order-sorted algebras) of the signature Σ.

Specification and its model (2)

A Σ-algebra \mathbf{A} is an order-sorted algebra. An order-sorted algebra is a mathematical object which is composed of operations defined over order-sorted sets. Order-sorted sets are many-sorted sets with subset relations.

A Σ-algebra A interprets a sort symbol s of the signature Σ as a (non empty) set \mathbf{A}_{Σ} and an operation (function) symbol f of the specification as a function \mathbf{A}_{f}. The interpretation respects the order-sort constrains, and ranks (types) of functions.

An example of Signature and its Algebra

Order Sorted Term Algebra $\mathrm{T}_{\text {NAT+sig }}$ of Signature NAT+sig

An Order-Sorted Algebra is a mathematical object composed of order-sorted carrier sets and operations over them.

Order-Sorted Carrier sets can be thought of Order-Sorted Sets of Terms:
Zero $=\{\underline{0}\}$
NzNat $=\{\underline{s} \boldsymbol{n} \mid \underline{n} \in$ Nat $\}$
Nat $=$ Zero U NzNat U
$\{\underline{n 1}+n 2 \mid \underline{n 1} \in$ Nat $\wedge n 2 \in$ Nat $\}$
Operations over the order-sorted sets of terms:
$0=0$
(for $\underline{n} \in$ Nat) (s $\underline{n}=\underline{s} n$)
(for $\underline{n 1}, \underline{n 2 \in N a t)(n 1+n 2=n 1+n 2)}$

valuation, evaluation, equation

A valuation (or an assignment) is a sort preserving map from the (order-sorted) set of variables of a specification to an order-sorted algebra (a model), and assigns values to all variables.

Given a model A and a valuation v, a term \mathbf{t} of sort s, which may contain variables, is evaluated to a value $\mathbf{A}_{\mathbf{v}}(\mathrm{t})$ in a set A_{s}

Given terms $\mathbf{t}_{\mathbf{1}}$ and $\mathbf{t}_{\mathbf{2}}$ of a sort \mathbf{s} and \mathbf{c} of sort Bool, a conditional equation is a sentence of the form:

$$
t_{1}=t_{2} \text { if } c
$$

An ordinary equation $t_{1}=t_{2}$ is an abbreviation of $\mathrm{t}_{1}=\mathrm{t}_{2}$ if true

Satisfiability of equation

Given a model (an ordered-sorted algebra) A,
A satisfies an equation $t_{1}=t_{2}$
iff
$A_{v}\left(t_{1}\right)=A_{v}\left(t_{2}\right)$
for any valuation \mathbf{v}.

SPEC-algebra

For a CafeOBJ specification SPEC $=\langle\Sigma, \mathrm{E}\rangle$, a SPEC-algebra is a Σ-algebra which satisfy
(1) all equations in E and
(2) semantic constrains of SPEC.

For a CafeOBJ specification $\operatorname{SPEC}=\langle\Sigma, \mathrm{E}\rangle$, a semantic constrains of SPEC are
(1) tight/loose denotations and
(2) protecting/extending importations.

Tight denotation:
Quotient Term Algebra $\mathbf{T}_{\text {NAT }+ \text { sig }} /=$ NAT +

```
mod! NAT+ {
```

mod! NAT+ {
-- signature
-- signature
-- sort
-- sort
[Zero NzNat < Nat]
[Zero NzNat < Nat]
-- operators
-- operators
op 0 : -> Nat
op 0 : -> Nat
op s_ : Nat -> NzNat
op s_ : Nat -> NzNat
op _+_ : Nat Nat -> Nat
op _+_ : Nat Nat -> Nat
-- equations
-- equations
eq 0 + N:Nat = N
eq 0 + N:Nat = N
eq (s M:Nat) + N:Nat
eq (s M:Nat) + N:Nat
= s(M + N) . }
= s(M + N) . }
mod! indicates the
mod! indicates the
denotation to the
denotation to the
initial/standard model
initial/standard model
Two equations of
Two equations of
NAT defines
NAT defines
congruence
congruence
relations =NAT+
relations =NAT+
over the carrier
over the carrier
sets of T}\mp@subsup{T}{\mathrm{ NAT+sig}}{}\mathrm{ .

```
sets of T}\mp@subsup{T}{\mathrm{ NAT+sig}}{}\mathrm{ .
```

-

The specification NAT+ denotes the quotient term algebra $\mathbf{T}_{\text {NAT+sig }} /=\mathrm{NAT}+$ as the initial/standard model.

Quotient Term Algebra $\mathbf{T}_{\text {NAT }+} /=$ NAT+

Congruence Relation =SPEC

Given a specification SPEC, a binary relation =SPEC (written just = in the following) on sorted sets of terms of SPEC is the congruence defined by SPEC if and only if it is the smallest relation which satisfies the following five properties:

Reflexivity: t1= t1
Symmetry: $\quad \mathrm{t} 1=\mathrm{t} 2$ implies $\mathrm{t} 2=\mathrm{t} 1$
Transitivity: ($\mathrm{t} 1=\mathrm{t} 2$ and $\mathrm{t} 2=\mathrm{t} 3$) implies $\mathrm{t} 1=\mathrm{t} 3$
Congruence: for any operator f,
(t1=t1' and ... and ti=ti') implies
$f(t 1, \ldots, t i)=f\left(t 1^{\prime}, \ldots, t i^{\prime}\right)$
Substitutivity: for any conditional equation ($\mathrm{e}=\mathrm{e}^{\prime}$ if c) in SPEC and any assignment a,
$a(c)=t u r e$ implies $a(e)=a\left(e^{\prime}\right)$
$=N A T+$ is the congruence defined by NAT+

Equivalence Relation（等価関係） and Partition（分割）

A binary relation （a set of pairs） which satisfies reflexivity， symmetry，and transitivity is defined to be an equivalence relation．

Partition

Congruence Relation

Inference rules for conditional equations

 -- identical to =SPEC

Initial $=$ (No Junk + No Confusion)
No Junk = Any element of a carrier set is represented by the operators in the signature.

Examples of Junks in spec. NAT+:
(s s 0) * (s 0), $3 / 4, \infty, a$

No Confusion = No two elements of a carrier set are equivalent unless they can be shown to be equal using the axioms (equations) of the specification.
Examples of confusion in spec. NAT+:

$$
\mathrm{s} 0=0, \mathrm{~s} 0+0=\mathrm{s} \mathrm{~s} 0
$$

Loose denotation: Non-Initial Model

```
mod* NAT+loose {
-- signature
-- sort
[ Zero NzNat < Nat ]
-- operators
op 0 : -> Nat
op s_ : Nat -> NzNat
op _+_ : Nat Nat -> Nat
-- equations
eq 0 + N:Nat = N .
eq (s M:Nat) + N:Nat
    = s(M + N) . }
```

mod* indicates denotation to all models that satisfy the spec.

```
A non-initial model of NAT+loose
Carrier sets:
Zero = { 0 }
NzNat = {s n | n N Nat }
Nat =
        Zero U NzNat U { a } U
        { n1 + n2 |
            n1 \in Nat ^ n2 \in Nat }
```

Operations:
$0+0=0,0+a=a$
$\mathbf{a}+0=0, \quad \mathbf{a}+\mathbf{a}=0$
s N:Nat = N

+ _ is not commutative and not associative!
Another Example:
NAT+loose U \{eqs s s... s 0 = 0 . $\}$
Lecture Note2, Sinaia School, 03-10/03/2008

Satisfiability of boolean term

A SPEC-algebra A satisfies a term t of sort Bool iff $\mathbf{A}_{\mathbf{v}}(\mathrm{t})=$ true for any valuation \mathbf{v} (or iff \mathbf{A} satisfies an equation $t=$ true).

The satisfaction of a predicate by a model \mathbf{A} is denoted by:

$$
A \mid=p
$$

Only the satisfaction relation:

$$
A \mid=p
$$

is simulated by CafeOBJ System. The satisfaction relation $A \mid e=\left(t_{1}=t_{2}\right)$
can not be simulated by CafeOBJ system, because equation is a meta-entity and not in the object level of CafeOBJ.

Equality predicate _=

There is a special operation (predicate) symbol $=-$
with an operation declaration "op $(=):$ s s -> Bool" for any sort symbol s of any signature $\boldsymbol{\Sigma}$ of any specification $\mathbf{S P}=\langle\boldsymbol{\Sigma}, \mathrm{E}\rangle$. For any model $\mathbf{A}, \ldots=$ is postulated to be interpreted as the equality (or identity) relation on the set $\mathbf{A}_{\mathbf{s}}$.

This is formulated as follows.
For any specification SPEC $=<\Sigma$, E $>$, any SPECalgebra \mathbf{A} is postulated to satisfy:
$A \mid=\left(t_{1}=t_{2}\right)$ iff $\quad A \mid e=\left(t_{1}=t_{2}\right)$ for any pair of terms t_{1} and t_{2}. That is, we only consider the model which satisfies this condition.

Satisfiability of property by specification: SPEC |= prop

A specification SPEC $=<\mathbf{S}, \mathbf{E}>$ is defined to satisfy a property \mathbf{p} (a term of sort Bool) iff $\mathbf{A l}=\mathbf{p}$ holes for any SPEC-algebra A.

The satisfaction of a predicate prop by a specification SPEC $=<\Sigma, \mathrm{E}>$ is denoted by:

SPEC $\mid=p$ or $\Sigma, E \mid=p$ or $E \mid=p$
An important purpose of developing a specification SPEC $=<\Sigma, \mathrm{E}>$ in CafeOBJ is to check whether SPEC |= prop
holds for a predicate prop which describe some important property of the system which SPEC specifies.

Structuring

- Module Imports:
- protecting, extending, and using
- Parameterized Module
- Parameter Instantiation
- Module Expression

Module Imports

```
-- imported module
mod! BARE-NAT
{ [ NzNat Zero < Nat ]
    op 0 : -> Zero
    op s_ : Nat -> NzNat
}
-- importing module
mod! NAT+
{ protecting(BARE-NAT)
    op _+_ : Nat Nat -> Nat
    eq 0 + N:Nat = N .
    eq (s M:Nat) + N:Nat = s(M + N)
}
```

import declaration

Sufficiently
completeness of
NAT+ over
BARE-NAT
guarantees the
"no junk"
import declaration
module body

Three Importation Modes

Semantics definition of three modes

protecting: no junk and no confusion into the imported module
extending: may be junk but no confusion into the imported module
using: may be junk and confusion into the imported module

No semantics checks are done by CafeOBJ system w.r.t. protecting and extending

Examples of protecting and extending

```
-- imported module
mod! BARE-NAT
{ [ NzNat Zero < Nat ]
    op 0 : -> Zero
    op s_ : Nat -> NzNat }
-- importing module
mod! NAT+
{ protecting(BARE-NAT)
    op _+_ : Nat Nat -> Nat
    eq 0 + N:Nat = N .
    eq (s M:Nat) + N:Nat =
        s(M + N) . }
```

Suff. Comp. guarantees no junk.
Two equations preserve the number of s_{-}in the term, hence no confusion.

```
-- imported module
```

mod! BARE-NAT
\{ [NzNat Zero < Nat]
op 0 : -> Zero
op s : Nat -> NzNat
\}
-- importing module
mod! NAT-INFINITY
\{ extending(BARE-NAT)
op omega : -> Nat
eq s omega $=$ omega . \}
"omega" is a junk.
No equations for a term
like s s s ... s 0, hence
no confusion.

Parameterized Module

-- built-in module TRIV	
mod* TRIV \{ [Elt] \}	formal parameter module:
	specifies possible actual parameters with loose denotation
--> parameterized string mod! STRG (X :: TRIV)	parameter declaration:
\{ -- any element is string of -- length one [Elt < Strg]	specifies a pair of a (formal) parameter name and parameter module name
-- a binary juxtaposing -- operation for strings op (_ _) : Strg Strg -> Strg \{assoc\}	
$\}$	
LectureNote2, Sinaia School, 03-10/03/2008	

Parameter instantiations (1)

-- (0) standard way of declaring view first and instantiate
-- a formal parameter using it;
view natAsTriv from TRIV to NAT \{sort Elt -> Nat
make NAT-STRG0 (STRG(X <= natAsTriv))
make NAT-STRG0' (STRG(natAsTriv))
-- (1) on the fly view declaration
make NAT-STRG1

$$
\text { (STRG(X <= view to NAT \{sort Elt -> Nat\})) }
$$

-- (2) on the fly view declaration of shorter version
-- this is a recommend way to instantiate parameters
make NAT-STRG2 (STRG(NAT\{sort Elt -> Nat\}))

Parameter instantiations (2)

-- (3) on the fly view declaration using the mod construct
mod! NAT-STRG3 \{ protecting(STRG(NAT \{sort Elt -> Nat \}))\}
-- (4) on the fly view declaration
-- with sort renaming *\{sort Strg -> NatStrg\}
make NAT-STRG4
((STRG(NAT\{sort Elt -> Nat\}))*\{sort Strg -> NatStrg\})
-- (5) making use of default view mechanism:
-- it is possible because the sort Nat is declared to be
-- the principal-sort in the built-in module NAT;
-- it is not recommended if you are not get used to the notions of
-- principal-sort and default view;
-- with sort renaming "*\{sort Strg -> NatStrg\}"
make NAT-STRG5 ((STRG(NAT))*\{sort Strg -> NatStrg\})

```
--> BARE-NAT
mod! BARE-NAT {
    [ NzNat Zero < Nat ]
    op 0 : -> Zero
    op s_ : Nat -> NzNat
}
--> notice that the following does not work
--> because the pricipal sort is not declared
--> in the module BARE-NAT
make NAT-STRG8 (STRG(BARE-NAT))
make NAT-STRG9 (STRG(X <= BARE-NAT))
```


Principal-sort and default view (2)

--> if the principal sort is declared as: mod! BARE-NATwithPsort principal-sort Nat
\{ [NzNat Zero < Nat]
op 0 : -> Zero
op s_ : Nat -> NzNat
\}
--> then the following two work
make NAT-STRG10 (STRG(BARE-NATwithPsort))
make NAT-STRG11 (STRG(X <= BARE-NATwithPsort))

Parameterized lexicographic ordering (1)

stringOfStringOf.mod

```
--> a loose specification of totally ordered elements
mod* TOSET
{ us(EQL)
    [ Elt ]
    pred _<_ : Elt Elt -- strict total ordering
    vars E1 E2 E3 : Elt
    eq E1 < E1 = false
    eq ( ((E1 < E2) or (E2 < E1) or (E1 = E2))
            and
            not((E1 < E2) and (E2 < E1))
                and
            not((E2 < E1) and (E1 = E2))
                and
            not((E1 < E2) and (E1 = E2)) ) = true.
    eq (((E1 < E2) and (E2 < E3)) implies (E1 < E3)) = true .
}
```


Parameterized lexicographic ordering (2)

```
mod! STRGlex (Y :: TOSET) \{ [ Elt < Strg ]
    op _ : Strg Strg -> Strg \{assoc\}
    - lexicographic ordering over strings
    op _<<_ : Strg Strg -> Bool
    eq (E1:Elt):Strg < (E2:Elt):Strg = (E1):Elt < (E2):Elt .
    ceq (E1:Elt):Strg << (E2:Elt S2:Strg) = true
                        if (E1 = E2)
    eq (E1:Elt):Strg << (E2:E1t S2:Strg) = true
    if (E1 < E2).
    ceq (E1:Elt):Strg << (E2:Elt S2:Strg) = false
        if (E2 < E1)
    ceq (E1:Elt S1:Strg) < (E2:Elt):Strg = false
                if (E1 = E2)
    ceq (E1:Elt S1:Strg) << (E2:Elt):Strg = true
                if (E1 < E2)
    ceq (E1:Elt S1:Strg) < (E2:Elt):Strg = false
        if (E2 < E1)
    ceq (E1:Elt S1:Strg) << (E2:Elt S2:Strg) = S1 << S2
    if E1 = E2
    ceq (E1:Elt S1:Strg) << (E2:Elt S2:Strg) = true
    if (E1 < E2)
    ceq (E1:Elt S1:Strg) << (E2:Elt S2:Strg) = false if (E2 < E1) . \}
```


An Example of Module Expression

