Models and Structuring of
Specifications

CafeOBJ Team of JAIST

Models and Satisfaction

Topics

e Specification/Descriptions, Models, and Realities

e Order Sorted Term Algebra, Quotient Term
Algebra, and Equation Reasoning

e Congruence defined by Specification
= Equivalence Relation
= Congruence Relation
e Initial/Tight denotation and Loose denotation

e Satisfaction of a Property prop by a Specification
SPEC

= SPEC |=prop

LectureNote2, Sinaia School, 03-10/03/2008

Specifications, Models, Realities

Specifications/Descriptions

Implements/

- Theories/Mathematics/Logics
Realizes

2

Models (Conceptual, Diagram, Formal/Mathematical)

a

Engineering/Technology |

Realities/Real-World

LectureNote2, Sinaia School, 03-10/03/2008

Specification and its model (1)

An equational specification SPEC in CafeOBJ (a
legitimate text in the CafeOBJ language with only
equations as axioms) is defined as a pair < X, E > of
order-sorted signature X and a set of conditional
equations E .

A model of an equational specification SPEC =< X, E >
is an algebra. An algebra is a mathematical object
composed of operations over order-sorted sets. A
signature X of a specification SPEC =< X, E>
determines a set of Z-algebras (order-sorted algebras)
of the signature X .

LectureNote2, Sinaia School, 03-10/03/2008

Specification and its model (2)

A XZ-algebra A is an order-sorted algebra. An order-sorted
algebra is a mathematical object which is composed of
operations defined over order-sorted sets. Order-sorted
sets are many-sorted sets with subset relations.

A X-algebra A interprets a sort symbol s of the signature X
as a (non empty) set Az and an operation (function) symbol
f of the specification as a function A;. The interpretation
respects the order-sort constrains, and ranks (types) of
functions.

LectureNote2, Sinaia School, 03-10/03/2008

An example of Signature and its Algebra

-- signature NAT+sig

-- sort

[Zero NzNat < Nat]

-- operators

op O : -> Nat

op s_ - Nat -> NzNat
op _+ : Nat Nat -> Nat

A MAT+sig-algebra
Order-Sorted Algebra with Signature NAT+siq:

<Nat, NzNat, Zero; 0, s , + >

LectureNote2, Sinaia School, 03-10/03/2008

Order Sorted Term Algebra Tyar.sigq
of Signature NAT+sig

An Order-Sorted Algebra is a mathematical object composed of
order-sorted carrier sets and operations over them.

Order-Sorted Carrier sets can be thought of
Order-Sorted Sets of Terms:
Zero = { 0 }
NzNat = { s n | n € Nat }
Nat = Zero U NzNat U
{nl+n2 | nl € Nat A n2 € Nat }

Operations over the order-sorted sets of terms:
0=20

(for neNat)(s n = s n)

(for nl,n2€Nat)(nl + n2 = n1 + n2)

LectureNote2, Sinaia School, 03-10/03/2008

valuation, evaluation, equation

A valuation (or an assignment) is a sort preserving
map from the (order-sorted) set of variables of a
specification to an order-sorted algebra (a model),
and assigns values to all variables.

Given a model A and a valuation v, a term t of sort s,
which may contain variables, is evaluated to a value
A, (t) in aset Ag

Given terms t; and t, of a sort s and c of sort Bool, a
conditional equation is a sentence of the form:

t,=t,ifc
An ordinary equation t, = t, is an abbreviation of
t, = t,if true

LectureNote2, Sinaia School, 03-10/03/2008

Satisfiability of equation

Given a model (an ordered-sorted algebra) A,
A satisfies an equation t; = t,
iff
Alty) = A(ty)
for any valuation v .

The satisfaction of an equation by a model A is denoted by
Ale= (&, = t,)

10
LectureNote2, Sinaia School, 03-10/03/2008

SPEC-algebra

For a CafeOBJ specification SPEC =< X, E >,
a SPEC-algebra is a X-algebra which satisfy
(1) all equations in E
and
(2) semantic constrains of SPEC.

For a CafeOBJ specification SPEC =< X, E >,
a semantic constrains of SPEC are

(1) tight/loose denotations
and

(2) protecting/extending importations.

11
LectureNote2, Sinaia School, 03-10/03/2008

Tight denotation:
Quotient Term Algebra Tyar,gig/ =NAT+

mod! NAT+ { mod! indicates the

_- Sonature denotation to the

[Zero NzNat < Nat] initial/standard model

-— operators

op 0 : -> Nat Two equations of

op s_ : Nat -> NzNat NAT defines

op E+Jat:ior’\1lst Nat -> Nat congruence

o Oq+ e = relations =NAT+

eq (s M:Nat) + N:Nat over the carrier
=s(M+N) .} sets of TNAT+sig'

The specification NAT+ denotes the quotient term algebra
Tyat+sig/ =NAT+ as the initial/standard model.

LectureNote2, Sinaia School, 03-10/03/2008

Quotient Term Algebra Ty,r./=NAT+

TNAT+5 ig

ssoO,
(s 0)+(s 0),
(s s 0)+0,

0, 0+0

T
(0+0)+0, NAT+

is also written as

LectureNote2, Sinaia School, 03-10/03/2008

13

Congruence Relation =SPEC

in the following) on sorted sets of terms of SPEC is the congruence
defined by SPEC if and only if it is the smallest relation which
satisfies the following five properties:

Reflexivity: t1=t1
Symmetry: t1=t2 implies t2=t1
Transitivity: (t1=t2 and t2=t3) implies t1=t3
Congruence: for any operator f,

(t1=t1’ and ... and ti=ti’) implies

f(ta,... t)=f(t1",...,ti"

Substitutivity: for any conditional equation (e=e’ if ¢) in SPEC

and any assignment a,

a(c)=ture implies a(e)=a(e")

Given a specification SPEC, a binary relation =SPEC (written just =

=NAT+ is the congruence defined by NAT+

LectureNote2, Sinaia School, 03-10/03/2008

Equivalence Relation (Z{fiB8{%)
and Partition (%&)

A binary relation
(a set of pairs)
which satisfies
reflexivity,
symmetry, and <>
transitivity is
defined to be an

equivalence
relation.

Partition

15
LectureNote2, Sinaia School, 03-10/03/2008

Congruence Relation

Any operator preserves
the equivalence relation!

16
LectureNote2, Sinaia School, 03-10/03/2008

Inference rules for conditional equations
-- identical to =SPEC

Reflexivity:
(R&TE)

Transitivity:

(HEBR)

Congruence:
(AR

(RAR)

Substitutivity:

------------ Symmetry: t1=t2
t1=t1 [55755 I—

t1=t2 t2=t3

t1=t3

t1=tl’ t2=t2’ ... tn=tn’

{f is an operator}
f(tl,...,ti)=f(tn’,...,tn")

a(c)=ture
——————————————————— {(ceq e=€’ if ¢ .), ais an assignment}

LectureNote2, Sinaia School, 03-10/03/2008

Initial = (No Junk + No Confusion)

No Junk = Any element of a carrier set is represented
by the operators in the signature.

Examples of Junks in spec. NAT+:

(ss0) *(s0), %, , a

No Confusion = No two elements of a carrier set are

equivalent unless they can be shown to
be equal using the axioms (equations)
of the specification.

Examples of confusion in spec. NAT+:
s0=0,s0+0=ss0

LectureNote2, Sinaia School, 03-10/03/2008

Loose denotation: Non-Initial Model

mod* NAT+loose { A non-initial model of NAT+loose
- Zlcg);rnfture Carrier sets:
i Zero = { 0 }
[Zero NzNat < Nat] NzNat = { s n | n € Nat }
-- operators Nat =
op 0 : -> Nat Zero U NzNat U{ a } U
op s_ : Nat -> NzNat {nl+n2|
op _+_ : Nat Nat -> Nat nl € Nat A n2 € Nat 3}
-- equations -
eq O + N:Nat = N . Operations:
eq (s M:Nat) + N:Nat 0+0=0, 0+a=a

=sM+N) .} a+0=0, a+a=0

s N:Nat = N

mod* indicates
denotation to all

_+_is not commutative and not associative!

models that satisfy Another Example: |
the spec. NAT+loose U {eq s ss .s0=0 .}|

LectureNote2, Sinaia School, 03-10/03/2008

Satisfiability of boolean term

A SPEC-algebra A satisfies a term t of sort Bool iff
A, (t) = true for any valuation v (or iff A satisfies an
equation t = true) .

The satisfaction of a predicate by a model A is denoted
by:

Al=p

Only the satisfaction relation:
Al=p
is simulated by CafeOBJ System. The satisfaction relation
Ale=(t;=t)
can not be simulated by CafeOBJ system, because equation
is a meta-entity and not in the object level of CafeOBJ.

20
LectureNote2, Sinaia School, 03-10/03/2008

10

Equality predicate =

There is a special operation (predicate) symbol =
with an operation declaration “op (=) - s s ->
Bool”’ for any sort symbol s of any signature X of any
specification SP =< X, E >. Forany model A, = is
postulated to be interpreted as the equality (or
identity) relation on the set A, .

This is formulated as follows.

For any specification SPEC = < X, E >, any SPEC-
algebra A is postulated to satisfy:

Al=(t = &) iff Ale=(t, = 1)
for any pair of terms t; and t, . Thatis, we only
consider the model which satisfies this condition.

21
LectureNote2, Sinaia School, 03-10/03/2008

Satisfiability of property by specification:
SPEC |= prop

A specification SPEC = < S, E > is defined to satisfy a
property p (a term of sort Bool) iff A |=p holes for any
SPEC-algebra A.

The satisfaction of a predicate prop by a specification
SPEC =< X, E> is denoted by:

SPEC|=p or ZE|=p or E|=p

An important purpose of developing a specification
SPEC = <%,E> in CafeOBJ is to check whether

SPEC |= prop
holds for a predicate prop which describe some
important property of the system which SPEC specifies.

22
LectureNote2, Sinaia School, 03-10/03/2008

11

Structuring

e Module Imports:

m protecting, extending, and using

Parameterized Module
Parameter Instantiation
Module Expression

Module Imports

-— Imported module
mod! BARE-NAT
{ [NzNat Zero < Nat]
op 0 : -> Zero
op s_ : Nat -> NzNat
}

-— @mporting module
mod! NAT+
{ protecting(BARE-NAT)

op _+ :- Nat Nat -> Nat
eq O + N:Nat = N .
eq (s M:Nat) + N:Nat = s(M + N) .

LectureNote2, Sinaia School, 03-10/03/2008

Sufficiently
completeness of
NAT+ over
BARE-NAT

guarantees the
“no junk”

import declaration

module body

24

12

Three Importation Modes

Semantics definition of three modes

module

protecting: no junk and no confusion into the imported

extending: may be junk but no confusion into the
imported module

using: may be junk and confusion into the
imported module

No semantics checks are done by CafeOBJ system

w.r.t. protecting and extending

25

LectureNote2, Sinaia School, 03-10/03/2008

Examples of protecting and extending

—-- imported module

mod! BARE-NAT

{ [NzNat Zero < Nat]
op 0 : -> Zero
op s_ : Nat -> NzNat }

-- importing module
mod! NAT+
{ protecting(BARE-NAT)
op _+_ - Nat Nat -> Nat
eq O + N:Nat = N .
eq (s M:Nat) + N:Nat =
s(M +N) . }

-- imported module
mod! BARE-NAT
{ [NzNat Zero < Nat]
op 0 : -> Zero
op s_ - Nat -> NzNat

}

-- @importing module
mod! NAT-INFINITY
{ extending(BARE-NAT)
op omega : -> Nat
eq s omega = omega . }

Suff. Comp. guarantees no junk.

Two equations preserve the number

of s_in the term, hence no
confusion.

““omega’ is a junk.

No equations for a term
likes s s .. s 0, hence
no confusion.

26

LectureNote2, Sinaia School, 03-10/03/2008

13

Parameterized Module

m

- built-in module TRIV
od* TRIV { [EIt] }

specifies possible actual
parameters with loose

denotation
--> parameterized string
mod! STRG (X :: TRIV) parameter declaration:
{ specifies a pair of a
-- any element is string of (formal) parameter
-- length one name and parameter
[ElIt < Strg] module name

op (_) : Strg Strg -> Strg

-- a binary juxtaposing
-- operation for strings

{assoc}

LectureNote2, Sinaia School, 03-10/03/2008

formal parameter module:

Parameter instantiations (1)

structSpecSTRG.mod

-- (0) standard way of declaring view first and instantiate

-- aformal parameter using it;

view natAsTriv from TRIV to NAT {sort EIt -> Nat}
make NAT-STRGO (STRG(X <= natAsTriv))

make NAT-STRGO” (STRG(natAsTriv))

-- (1) on the fly view declaration
make NAT-STRG1

(STRG(X <= view to NAT {sort EIt -> Nat}))

-- (2) on the fly view declaration of shorter version
-- this is a recommend way to instantiate parameters
make NAT-STRG2 (STRG(NAT{sort EIt -> Nat}))

LectureNote2, Sinaia School, 03-10/03/2008

14

Parameter instantiations (2)

-- (3) on the fly view declaration using the mod construct
mod! NAT-STRG3 {
protecting(STRG(NAT {sort EIt -> Nat}))}

-- (4) on the fly view declaration

-- with sort renaming *{sort Strg -> NatStrg}

make NAT-STRG4

((STRG(NAT{sort EIt -> Nat}))*{sort Strg -> NatStrg})

-- (5) making use of default view mechanism:

-- itis possible because the sort Nat is declared to be

- the principal-sort in the built-in module NAT;

- itis not recommended if you are not get used to the notions of

- principal-sort and default view;

-- with sort renaming “*{sort Strg -> NatStrg}”

make NAT-STRG5 ((STRG(NAT))*{sort Strg -> NatStrg})
29

LectureNote2, Sinaia School, 03-10/03/2008

Principal-sort and default view (1)

bareNatWithPsort.mod

--> BARE-NAT
mod! BARE-NAT {
[NzNat Zero < Nat]
op 0 : -> Zero
op s_ : Nat -> NzNat
}

--> notice that the following does not work
--> because the pricipal sort is not declared
--> in the module BARE-NAT

make NAT-STRG8 (STRG(BARE-NAT))

make NAT-STRGY9 (STRG(X <= BARE-NAT))

30
LectureNote2, Sinaia School, 03-10/03/2008

Principal-sort and default view (2)

--> if the principal sort is declared as:
mod! BARE-NATwithPsort principal-sort Nat
{ [NzNat Zero < Nat]

op 0 : -> Zero

op s_ - Nat -> NzNat
}

--> then the following two work
make NAT-STRG10 (STRG(BARE-NATwithPsort))
make NAT-STRG11 (STRG(X <= BARE-NATwithPsort))

LectureNote2, Sinaia School, 03-10/03/2008

31

Parameterized lexicographic ordering (1)

stringOfStringOf.mod

--> a loose specification of totally ordered elements
mod* TOSET
{ us(EQL)

[Elt]

pred < : ElIt EIt -- strict total ordering

vars E1 E2 E3 : ElIt
eq E1 < E1 = false .
eq (((E1 < E2) or (E2 < E1) or (E1 = E2))

and
not((El < E2) and (E2 < E1))
and
not((E2 < E1) and (E1 = E2))
and

not((El < E2) and (E1 = E2))) = true .

eq (((E1 < E2) and (E2 < E3)) implies (E1 < E3)) = true .

LectureNote2, Sinaia School, 03-10/03/2008

32

16

Parameterized lexicographic ordering (2)

stringOfStringOf.mod

ceq

ceq

ceq

ceq

ceq

ceq

ceq

ceq

ceq

op _
eq (El:Elt):Strg << (E2:Elt)

<<_

(E1:
(E1:

(E1:

(E1:
(E1:

(E1:

(E1:
(E1:

(E1:

mod! STRGlex (Y ::
op _ _:
-- lexicographic ordering over strings

TOSET) { [Elt < Strg]
Strg Strg -> Strg {assoc}

: Strg Strg -> Bool

Elt):
Elt):

EI):

Elt
Elt

Elt

Elt
Elt

Elt

Strg << (E2:
Strg << (E2:

Strg << (E2:

S1

S1:

S1:

S1:

S1:

if (E1 =
if (E1 <

if (B2 <

:Strg) <<

it (E1 =
Strg) <<
if (E1 <
Strg) <<
if (E2 <

Strg) <<

Elt
E2)
Elt

:Strg

= (E1):Elt < (E2):Elt .

S2:Strg) = true

S2:Strg) = true

E2).

Elt
E1)

(E2:

E2)
(E2
E2)
(E2

S2:Strg) = false

Elt):
:élt):

:élt):

E1) .

(E2:

Elt

if E1 = E2 .

Strg) <<

(E2:

if (E1 < E2) .

S1:Strg) << (E2:

Elt

Elt

Strg = false
Strg = true

Strg = false

S2:Strg) = S1 << S2
S2:Strg) = true

S2:Strg) = false if (E2 < E1) . }

LectureNote2, Sinaia School, 03-10/03/2008

33

An Example of Module Expression

mod! NATeq {pr(NAT + EQL)}

make NAT-STRG-STRGlex2

(C
STRGlex

)

([((STRGIex
(NATeg{sort EIt -> Nat})

)

*{sort Strg -> St,
op (C D > (&),
op (<< -> (sst)}

{sort EIt > St,
op (E1:Elt < E2:Elt)
->(E1:St <st E2:St)})

LectureNote2, Sinaia School, 03-10/03/2008

actual parameter

view

Rename

view body

34

17

