
1

Models and Structuring of
Specifications

CafeOBJ Team of JAIST

Models and Satisfaction

2

LectureNote2, Sinaia School, 03-10/03/2008
3

Topics

Specification/Descriptions, Models, and Realities
Order Sorted Term Algebra, Quotient Term
Algebra, and Equation Reasoning
Congruence defined by Specification

Equivalence Relation
Congruence Relation

Initial/Tight denotation and Loose denotation
Satisfaction of a Property prop by a Specification
SPEC

SPEC |= prop

LectureNote2, Sinaia School, 03-10/03/2008
4

Specifications, Models, Realities
Specifications/Descriptions

Realities/Real-World

Models (Conceptual, Diagram, Formal/Mathematical)

Theories/Mathematics/Logics

Engineering/Technology

Implements/
Realizes

3

LectureNote2, Sinaia School, 03-10/03/2008
5

Specification and its model (1)

An equational specification SPEC in CafeOBJ (a
legitimate text in the CafeOBJ language with only
equations as axioms) is defined as a pair < S, E > of
order-sorted signature S and a set of conditional
equations E .

A model of an equational specification SPEC = < S, E >
is an algebra. An algebra is a mathematical object
composed of operations over order-sorted sets. A
signature S of a specification SPEC = < S, E >
determines a set of S-algebras (order-sorted algebras)
of the signature S .

LectureNote2, Sinaia School, 03-10/03/2008
6

Specification and its model (2)

A S-algebra A interprets a sort symbol s of the signature S
as a (non empty) set AS and an operation (function) symbol
f of the specification as a function Af. The interpretation
respects the order-sort constrains, and ranks (types) of
functions.

A S-algebra A is an order-sorted algebra. An order-sorted
algebra is a mathematical object which is composed of
operations defined over order-sorted sets. Order-sorted
sets are many-sorted sets with subset relations.

4

LectureNote2, Sinaia School, 03-10/03/2008
7

An example of Signature and its Algebra

-- signature NAT+sig
-- sort
[Zero NzNat < Nat]
-- operators
op 0 : -> Nat
op s_ : Nat -> NzNat
op _+_ : Nat Nat -> Nat

S_

Nat

0
NzNatZero

+

A MAT+sig-algebra
Order-Sorted Algebra with Signature NAT+sig:

<Nat, NzNat, Zero; 0, s_, _+_>

LectureNote2, Sinaia School, 03-10/03/2008
8

Order Sorted Term Algebra TNAT+sig
of Signature NAT+sig

Order-Sorted Carrier sets can be thought of
Order-Sorted Sets of Terms:
Zero = { 0 }
NzNat = { s n | n ∈ Nat }
Nat = Zero ∪ NzNat ∪

{ n1 + n2 | n1 ∈ Nat ∧ n2 ∈ Nat }

Operations over the order-sorted sets of terms:
0 = 0
(for n∈Nat)(s n = s n)
(for n1,n2∈Nat)(n1 + n2 = n1 + n2)

An Order-Sorted Algebra is a mathematical object composed of
order-sorted carrier sets and operations over them.

5

LectureNote2, Sinaia School, 03-10/03/2008
9

valuation, evaluation, equation

Given a model A and a valuation v, a term t of sort s,
which may contain variables, is evaluated to a value
Av(t) in a set As

A valuation (or an assignment) is a sort preserving
map from the (order-sorted) set of variables of a
specification to an order-sorted algebra (a model),
and assigns values to all variables.

Given terms t1 and t2 of a sort s and c of sort Bool, a
conditional equation is a sentence of the form:

t1 = t2 if c
An ordinary equation t1 = t2 is an abbreviation of

t1 = t2 if true

LectureNote2, Sinaia School, 03-10/03/2008
10

Satisfiability of equation

Given a model (an ordered-sorted algebra) A,
A satisfies an equation t1 = t2

iff
Av(t1) = Av(t2)

for any valuation v .

The satisfaction of an equation by a model A is denoted by
A |e= (t1 = t2)

6

LectureNote2, Sinaia School, 03-10/03/2008
11

For a CafeOBJ specification SPEC = < S, E >,
a SPEC-algebra is a S-algebra which satisfy
(1) all equations in E

and
(2) semantic constrains of SPEC.

SPEC-algebra

For a CafeOBJ specification SPEC = < S, E >,
a semantic constrains of SPEC are
(1) tight/loose denotations

and
(2) protecting/extending importations.

LectureNote2, Sinaia School, 03-10/03/2008
12

Tight denotation:
Quotient Term Algebra TNAT+sig/=NAT+

Two equations of
NAT defines
congruence
relations =NAT+
over the carrier
sets of TNAT+sig .

mod! NAT+ {
-- signature
-- sort
[Zero NzNat < Nat]
-- operators
op 0 : -> Nat
op s_ : Nat -> NzNat
op _+_ : Nat Nat -> Nat
-- equations
eq 0 + N:Nat = N .
eq (s M:Nat) + N:Nat

= s(M + N) . }

The specification NAT+ denotes the quotient term algebra
TNAT+sig/=NAT+ as the initial/standard model.

mod! indicates the
denotation to the
initial/standard model

7

LectureNote2, Sinaia School, 03-10/03/2008
13

Quotient Term Algebra TNAT+/=NAT+

0, 0+0

(0+0)+0,

...

S 0
,

0+s
 0,

(0+
(s

0))
+0,

...

s s 0,
(s 0)+(s 0),
(s s 0)+0,
...

.
.

.

...

TNAT+sig

is also written as

TNAT+

LectureNote2, Sinaia School, 03-10/03/2008
14

Given a specification SPEC, a binary relation =SPEC (written just =
in the following) on sorted sets of terms of SPEC is the congruence
defined by SPEC if and only if it is the smallest relation which
satisfies the following five properties:

Reflexivity: t1= t1
Symmetry: t1=t2 implies t2=t1
Transitivity: (t1=t2 and t2=t3) implies t1=t3
Congruence: for any operator f,

(t1=t1’ and … and ti=ti’) implies
f(t1,…,ti)=f(t1’,…,ti’)

Substitutivity: for any conditional equation (e=e’ if c) in SPEC
and any assignment a,

a(c)=ture implies a(e)=a(e’)

=NAT+ is the congruence defined by NAT+

Congruence Relation =SPEC

8

LectureNote2, Sinaia School, 03-10/03/2008
15

Equivalence Relation (等価関係)
and Partition (分割)

A binary relation
(a set of pairs)
which satisfies
reflexivity,
symmetry, and
transitivity is
defined to be an
equivalence
relation.

Partition

LectureNote2, Sinaia School, 03-10/03/2008
16

Congruence Relation

Any operator preserves
the equivalence relation!

9

LectureNote2, Sinaia School, 03-10/03/2008
17

Reflexivity: ------------ Symmetry: t1=t2
（反射律） t1= t1 (対称律） -------------

t2=t1
Transitivity: t1=t2 t2=t3
（推移律） ---------------------------

t1=t3

Congruence: t1=t1’ t2=t2’ … tn=tn’
（合同律） --------------------------------- {f is an operator}

f(t1,…,ti)=f(tn’,…,tn’)

Substitutivity: a(c)=ture
（代入律） ------------------- {(ceq e=e’ if c .), a is an assignment}

a(e)=a(e’)

Inference rules for conditional equations
-- identical to =SPEC

LectureNote2, Sinaia School, 03-10/03/2008
18

Initial = (No Junk + No Confusion)

No Junk = Any element of a carrier set is represented
by the operators in the signature.

No Confusion = No two elements of a carrier set are
equivalent unless they can be shown to
be equal using the axioms (equations)
of the specification.

Examples of Junks in spec. NAT+:
(s s 0) * (s 0), ¾, ∞, a

Examples of confusion in spec. NAT+:
s 0 = 0, s 0 + 0 = s s 0

10

LectureNote2, Sinaia School, 03-10/03/2008
19

Loose denotation: Non-Initial Model

mod* NAT+loose {
-- signature
-- sort
[Zero NzNat < Nat]
-- operators
op 0 : -> Nat
op s_ : Nat -> NzNat
op _+_ : Nat Nat -> Nat
-- equations
eq 0 + N:Nat = N .
eq (s M:Nat) + N:Nat

= s(M + N) . }

Carrier sets:
Zero = { 0 }
NzNat = { s n | n ∈ Nat }
Nat =
Zero ∪ NzNat ∪ { a } ∪
{ n1 + n2 |
n1 ∈ Nat ∧ n2 ∈ Nat }

A non-initial model of NAT+loose

Operations:
0 + 0 = 0 , 0 + a = a
a + 0 = 0 , a + a = 0
s N:Nat = N

+ is not commutative and not associative!mod* indicates
denotation to all
models that satisfy
the spec. NAT+loose U {eq s s s … s 0 = 0 .}

Another Example:

LectureNote2, Sinaia School, 03-10/03/2008
20

Satisfiability of boolean term

A SPEC-algebra A satisfies a term t of sort Bool iff
Av(t) = true for any valuation v (or iff A satisfies an
equation t = true) .

The satisfaction of a predicate by a model A is denoted
by:

A |= p

Only the satisfaction relation:
A |= p

is simulated by CafeOBJ System. The satisfaction relation
A |e= (t1 = t2)

can not be simulated by CafeOBJ system, because equation
is a meta-entity and not in the object level of CafeOBJ.

11

LectureNote2, Sinaia School, 03-10/03/2008
21

Equality predicate _=_

For any specification SPEC = < S, E >, any SPEC-
algebra A is postulated to satisfy:

A |= (t1 = t2) iff A |e= (t1 = t2)
for any pair of terms t1 and t2 . That is, we only
consider the model which satisfies this condition.

There is a special operation (predicate) symbol _=_
with an operation declaration “op (_=_) : s s ->
Bool” for any sort symbol s of any signature S of any
specification SP = < S, E >. For any model A, _=_ is
postulated to be interpreted as the equality (or
identity) relation on the set As .

This is formulated as follows.

LectureNote2, Sinaia School, 03-10/03/2008
22

Satisfiability of property by specification:
SPEC |= prop

A specification SPEC = < S, E > is defined to satisfy a
property p (a term of sort Bool) iff A |= p holes for any
SPEC-algebra A.

The satisfaction of a predicate prop by a specification
SPEC = < S, E > is denoted by:

SPEC |= p or S,E |= p or E |= p

An important purpose of developing a specification
SPEC = <S,E> in CafeOBJ is to check whether

SPEC |= prop
holds for a predicate prop which describe some
important property of the system which SPEC specifies.

12

Structuring

Module Imports:
protecting, extending, and using

Parameterized Module
Parameter Instantiation
Module Expression

LectureNote2, Sinaia School, 03-10/03/2008
24

Module Imports

import declaration

module body

-- imported module
mod! BARE-NAT
{ [NzNat Zero < Nat]
op 0 : -> Zero
op s_ : Nat -> NzNat

}

-- importing module
mod! NAT+
{ protecting(BARE-NAT)

op _+_ : Nat Nat -> Nat
eq 0 + N:Nat = N .
eq (s M:Nat) + N:Nat = s(M + N) .

}

Sufficiently
completeness of
NAT+ over
BARE-NAT
guarantees the
“no junk”

13

LectureNote2, Sinaia School, 03-10/03/2008
25

Three Importation Modes

Semantics definition of three modes

protecting: no junk and no confusion into the imported
module

extending: may be junk but no confusion into the
imported module

using: may be junk and confusion into the
imported module

No semantics checks are done by CafeOBJ system
w.r.t. protecting and extending

LectureNote2, Sinaia School, 03-10/03/2008
26

Examples of protecting and extending
-- imported module
mod! BARE-NAT
{ [NzNat Zero < Nat]

op 0 : -> Zero
op s_ : Nat -> NzNat }

-- importing module
mod! NAT+
{ protecting(BARE-NAT)

op _+_ : Nat Nat -> Nat
eq 0 + N:Nat = N .
eq (s M:Nat) + N:Nat =

s(M + N) . }

-- imported module
mod! BARE-NAT
{ [NzNat Zero < Nat]

op 0 : -> Zero
op s_ : Nat -> NzNat

}

-- importing module
mod! NAT-INFINITY
{ extending(BARE-NAT)

op omega : -> Nat
eq s omega = omega . }

Suff. Comp. guarantees no junk.
Two equations preserve the number
of s_ in the term, hence no
confusion.

“omega” is a junk.
No equations for a term
like s s s … s 0, hence
no confusion.

14

LectureNote2, Sinaia School, 03-10/03/2008
27

Parameterized Module

formal parameter module:

parameter declaration:

-- built-in module TRIV
mod* TRIV { [Elt] }

--> parameterized string
mod! STRG (X :: TRIV)
{
-- any element is string of
-- length one
[Elt < Strg]
-- a binary juxtaposing
-- operation for strings
op (_ _) : Strg Strg -> Strg

{assoc}
}

specifies possible actual
parameters with loose
denotation

specifies a pair of a
(formal) parameter
name and parameter
module name

LectureNote2, Sinaia School, 03-10/03/2008
28

Parameter instantiations (1)

-- (0) standard way of declaring view first and instantiate
-- a formal parameter using it;
view natAsTriv from TRIV to NAT {sort Elt -> Nat}
make NAT-STRG0 (STRG(X <= natAsTriv))
make NAT-STRG0’ (STRG(natAsTriv))

-- (1) on the fly view declaration
make NAT-STRG1

(STRG(X <= view to NAT {sort Elt -> Nat}))

-- (2) on the fly view declaration of shorter version
-- this is a recommend way to instantiate parameters
make NAT-STRG2 (STRG(NAT{sort Elt -> Nat}))

structSpecSTRG.mod

15

LectureNote2, Sinaia School, 03-10/03/2008
29

Parameter instantiations (2)

-- (3) on the fly view declaration using the mod construct
mod! NAT-STRG3 {
protecting(STRG(NAT {sort Elt -> Nat}))}

-- (4) on the fly view declaration
-- with sort renaming *{sort Strg -> NatStrg}
make NAT-STRG4
((STRG(NAT{sort Elt -> Nat}))*{sort Strg -> NatStrg})

-- (5) making use of default view mechanism:
-- it is possible because the sort Nat is declared to be
-- the principal-sort in the built-in module NAT;
-- it is not recommended if you are not get used to the notions of
-- principal-sort and default view;
-- with sort renaming “*{sort Strg -> NatStrg}”
make NAT-STRG5 ((STRG(NAT))*{sort Strg -> NatStrg})

LectureNote2, Sinaia School, 03-10/03/2008
30

Principal-sort and default view (1)

--> BARE-NAT
mod! BARE-NAT {
[NzNat Zero < Nat]
op 0 : -> Zero
op s_ : Nat -> NzNat

}

--> notice that the following does not work
--> because the pricipal sort is not declared
--> in the module BARE-NAT
make NAT-STRG8 (STRG(BARE-NAT))
make NAT-STRG9 (STRG(X <= BARE-NAT))

bareNatWithPsort.mod

16

LectureNote2, Sinaia School, 03-10/03/2008
31

Principal-sort and default view (2)

--> if the principal sort is declared as:
mod! BARE-NATwithPsort principal-sort Nat
{ [NzNat Zero < Nat]
op 0 : -> Zero
op s_ : Nat -> NzNat

}

--> then the following two work
make NAT-STRG10 (STRG(BARE-NATwithPsort))
make NAT-STRG11 (STRG(X <= BARE-NATwithPsort))

LectureNote2, Sinaia School, 03-10/03/2008
32

Parameterized lexicographic ordering (1)

--> a loose specification of totally ordered elements
mod* TOSET
{ us(EQL)

[Elt]
pred _<_ : Elt Elt -- strict total ordering

vars E1 E2 E3 : Elt
eq E1 < E1 = false .
eq (((E1 < E2) or (E2 < E1) or (E1 = E2))

and
not((E1 < E2) and (E2 < E1))
and

not((E2 < E1) and (E1 = E2))
and

not((E1 < E2) and (E1 = E2))) = true .
eq (((E1 < E2) and (E2 < E3)) implies (E1 < E3)) = true .

}

stringOfStringOf.mod

17

LectureNote2, Sinaia School, 03-10/03/2008
33

Parameterized lexicographic ordering (2)

mod! STRGlex (Y :: TOSET) { [Elt < Strg]
op _ _ : Strg Strg -> Strg {assoc}
-- lexicographic ordering over strings
op _<<_ : Strg Strg -> Bool
eq (E1:Elt):Strg << (E2:Elt):Strg = (E1):Elt < (E2):Elt .

ceq (E1:Elt):Strg << (E2:Elt S2:Strg) = true
if (E1 = E2) .

ceq (E1:Elt):Strg << (E2:Elt S2:Strg) = true
if (E1 < E2).

ceq (E1:Elt):Strg << (E2:Elt S2:Strg) = false
if (E2 < E1) .

ceq (E1:Elt S1:Strg) << (E2:Elt):Strg = false
if (E1 = E2) .

ceq (E1:Elt S1:Strg) << (E2:Elt):Strg = true
if (E1 < E2) .

ceq (E1:Elt S1:Strg) << (E2:Elt):Strg = false
if (E2 < E1) .

ceq (E1:Elt S1:Strg) << (E2:Elt S2:Strg) = S1 << S2
if E1 = E2 .

ceq (E1:Elt S1:Strg) << (E2:Elt S2:Strg) = true
if (E1 < E2) .

ceq (E1:Elt S1:Strg) << (E2:Elt S2:Strg) = false if (E2 < E1) . }

stringOfStringOf.mod

LectureNote2, Sinaia School, 03-10/03/2008
34

view

view body

Rename

An Example of Module Expression
actual parametermod! NATeq {pr(NAT + EQL)}

make NAT-STRG-STRGlex2
(
STRGlex
(((STRGlex

(NATeq{sort Elt -> Nat})
)
*{sort Strg -> St,
op (_ _) -> (_&_),
op (_<<_) -> (_<st_)}

)
{sort Elt -> St,
op (E1:Elt < E2:Elt)

->(E1:St <st E2:St)})
)

