Reasoning by Rewriting

CafeOBJ Team of JAIST

Sinaia School Lecture 3 Reasoning by Rewriting 1/39

Topics

* Introduction to the theory of term rewriting
systems, which is a basis of the CafeOBJ
execution

» How to write CafeOBJ specifications which
satisfy two of the most important properties of
TRS:

— Termination
— Confluence

Sinaia School Lecture 3 Reasoning by Rewriting 2/39

Overview

* In the first half, we treat simple equational
specifications which consist of
— ordinary operators without any attribute and
— equations without conditions

 In the last half, we discuss on rewriting for
specifications including

— operators with associative and commutative attributes
and

— conditional equations

Sinaia School Lecture 3 Reasoning by Rewriting 3/39

Term rewriting system

Sinaia School Lecture 3 Reasoning by Rewriting 4/39

Term rewriting system

* The term rewriting system (TRS) gives us an
efficient way to prove equations by regarding an
equation as a left-to-right rewrite rule

* Rewriting is the replacement of a redex with the
corresponding instance of the rhs

— Aredex is an instance of the lhs of an equation
—€g. |s (0 +s0) -->s (s (0 + 0))

NAT+
eq N+ 0 =N .
eqM+ s N =

Sinaia School Lecture 3 Reasoning by Rewriting 5/39

Equational reasoning by TRS

« Areduction is a process of rewriting from a given
term to a normal form

— A normal form is a term which cannot be rewritten

» Equational reasoning by TRS is done by
reducing both sides of a given equation and
comparing their normal forms

O+s0-—>s (0O+0) ——> -—-—>15s20

s 0+ 0 -—> s 0

NAT+
eq N + 0 =N .
eq M+ s N=s (M + N) .

Sinaia School Lecture 3 Reasoning by Rewriting 6/39

Equational reasoning with EQL

A built-in module EQL is useful to check
joinability of given terms

A special predicate = _is defined for all sorts
NAT+ + EQL> red 0 + s O = s 0 + 0 .
[1]: ((0 + (s 0)) = ((s 0) + 0))
[2]: ((s (0 + 0)) = ((s 0) + 0))
[3]: ((s 0) = ((s0) + 0))
[4]: ((s 0) = (s 0))
-—=> true
(true) :Bool
SOUNDNESS:

If s =tis reduced into true, it holds in all models

Sinaia School Lecture 3 Reasoning by Rewriting 71739

Conditions of TRS

* Rewrite rules should satisfy the following
conditions on variables

— Any lhs should not be a variable
« Sucharule,e.g.N = N + 0, causes an infinite loop

s 0 -—>s 0+ 0 --> (s 0+0) +0 -—> ...

— Any variable in rhs should appear in lhs

* Bysucharule,e.g.0 = N * 0, a redex can be rewritten into
infinitely many terms

0 --=> 0 * 0

0O -—-—>s 0 * 0 ...

Sinaia School Lecture 3 Reasoning by Rewriting 8/39

Bad equations ignored

« CafeOBJ system uses only equations satisfying
the variable conditions when reducing terms by
the reduction command

Sinaia School Lecture 3 Reasoning by Rewriting 9/39

Properties of TRS

* TRS achieves only a partial equational
reasoning, in general, because equations are
directed
— e.g.b = c cannot be proved by TRS {a = b,a = ¢}

 However, TRS can prove any equation which
can be deduced from the axiom E of SP
if SP has the termination and confluence
properties

Sinaia School Lecture 3 Reasoning by Rewriting 10/39

Termination

Sinaia School Lecture 3 Reasoning by Rewriting 11/39

Definition of Termination

» A specification (a TRS or a set of equations) SP

is terminating if and only if there is no infinite
rewrite sequence t, --> t, --> t, -->

« Termination guarantees that any term has a
normal form, and makes us possible to compute
a normal form in finite times

NAT-COM
eqg X +Y=Y+ X .

s 0+0-—>0+s0-->s0+0--> ...

Sinaia School Lecture 3 Reasoning by Rewriting 12/39

Proving termination

« Termination is an undecidable property, i.e. no
algorithm can decide termination of term
rewriting systems

« Several sufficient conditions for termination have
been proposed

* In this presentation, we give one way to write
terminating specifications

Sinaia School Lecture 3 Reasoning by Rewriting 13/39

Hierarchical design

* A hierarchical design of a
specification of an abstract data

: d! NAT*
type SP consists of m {
— Module BASIC-SP for functions’ domain)
and range
— Module SP-F, importing BASIC-SP for mod! NAT+ {
defining a function F, y
— Module SP-F;,, importing SP-F; for defining
a function F,,, which is defined using a
function F, (k<i+1) mod! BASIC-NAT {

}...

Sinaia School Lecture 3 Reasoning by Rewriting 14/ 39

BASIC-SP

* An operator in BASIC-SP is called a constructor

» Constructor terms denote elements of the

domain

— A constructor term is a term consisting of only

constructors

mod! BASIC-NAT {
[Zero NzNat < Nat]
op 0 : -> Zero
op s : Nat -> NzNat

}

0, s s 0, s s s 0,

Sinaia School Lecture 3 Reasoning by Rewriting

SP'FO

15/39

« SP-F, consists of a protecting import of BASIC-

SP, an operator F,, and equations defining F,,

e Each rhs should be constructed from variables,

constructors, and recursive calls

— F(.,t,.) is arecursive call of F(.,t,.) iff t is a subterm of t’

mod! NAT+ {
pr (BASIC-NAT)

op + ¢ Nat Nat -> Nat
vars M N : Nat
eq N+ 0 =N .
eq M+ s N=s (M+ N) .

Sinaia School Lecture 3 Reasoning by Rewriting

16 /39

SP'|:i+1

« SP-F,,, consists of a protecting import of SP-F;, an
operator F;,,, and equations defining F;,,
Each rhs should be constructed from variables,

constructors, pre-defined functions F, (k<i+1),
and recursive calls

mod! NAT* { mod! NAT-FACT {

pr (NAT+) pr (NAT*)

op _* : Nat Nat -> Nat op fact : Nat -> Nat

vars M N : Nat vars M N : Nat

eqg N * 0 =0 . eq fact 0 = s 0 .

eqM* s N=M+ (M * N). eq fact (s N) = s N * (fact N) .
} }

Sinaia School Lecture 3 Reasoning by Rewriting 17/ 39

Recursive Path Order

RPO is one of the most famous classic

termination proof techniques

— By RPO, we can prove termination of specifications
described according to the hierarchical design

For a specification beyond the hierarchical

design, you may find useful termination provers

on Internet: AProVE, CIME, TTT, etc

Sinaia School Lecture 3 Reasoning by Rewriting 18/39

Confluence

Sinaia School Lecture 3 Reasoning by Rewriting 19/39

Definition of Confluence

« SP is confluent iff all divided terms are joinable,
l.e.,ifs -——> tand s -->* t" thent -->* u
and ¢’ -->* u for some u
- —->* denotes zero or many rewrite steps

NAT-ASSOC

eq first(X + YY) = X .

s
/ \ eq (X +Y) +2 =X +(Y + 2) .
t t

. ,/ first((0 + s 0) + s s 0) -——> 0 + s O
* ‘%
“u’ first((0 + s 0) + s s 0)
-——> first(0 + (s 0O + s s 0)) -——> O

Sinaia School Lecture 3 Reasoning by Rewriting 20/ 39

Termination and Confluence

Confluence guarantees that a normal form is
unique for any term

Thus, for a terminating and confluent SP, any
term has the unique normal form

We obtain complete equational reasoning:
— Reduce both sides of a given equation

— Compare their normal forms
» The equation is deducible from the axiom if they are same
* It is not deducible if they are not

Sinaia School Lecture 3 Reasoning by Rewriting 21/39

Branch

It is trivial that SP without any branch is confluence

Unfortunately, such a SP is rare because an operator
with more than one arities can include more than one

redexs
— (Assumea --> b) f£(b, a) <-- f£(a, a) --> £(a, b)

Fortunately, such branches can be recovered by
rewriting redexs of each other rewrite

- £f(b, a) --> £(b, b) <-- f(a, b)
What branches are troublesome?

Sinaia School Lecture 3 Reasoning by Rewriting 22739

Overlap

» Terms overlap iff a one’s instance is an instance
of the other’s non-variable subterm
— (X+Y)+ Zis an instance of X +Y of first(X +Y)

— A branch resulting from an overlap may not be
recovered because a redex may disappear

NAT-ASSOC

eq (X +Y) + 2 =X +(Y + 2) .

eq first(X + Y) = X .

first((0 + s 0) + s s 0) ——> 0 + s O

first((0 + s 0) + s s 0)

--> first(0 + (s 0 + s s 0)) --> 0
Sinaia School Lecture 3 Reasoning by Rewriting 23/39

Overlapping rewrite rules

» Rewrite rules overlap if their Ihss overlap

» SP overlaps if there are overlapping rewrite rules

— You can take two copies of one rewrite rule to check
an overlap. For such cases, the overlap at the root
position should be ignored

— e.g. arewrite rule ~ ~ x = x overlaps itself because
~ ~ X is an instance of a subterm ~ x
A unifier of two overlapping terms (s, t) is an
instance of s which has a t’s instance
—e.g.~ ~ ~ 0 isaunifierof (~ ~ x, ~ ~ X)

Sinaia School Lecture 3 Reasoning by Rewriting 24 /39

Critical Pair

« The most general unifier of overlapping rewrite
rules has two direct descendant. Such a pair is
called a critical pair

BOOL-NOT

eq ~ ~ X =X
eq ~ 0 =1
eq ~1 =20

— Them.gu.of~ ~ X and~ 0 is ~ ~ 0

— The CP of them is (0, ~1) because ~ ~ 0 --> 0 by
the 1struleand ~ ~ 0 --> ~ 1 by the 2" rule

Sinaia School Lecture 3 Reasoning by Rewriting 25/39

Sufficient condition of Confluence

* Theorem (Knuth and Bendix 1970): If SP is
terminating and all critical pairs are joinable, then
SP is confluent

BOOL-NOT
eq ~ ~ X =X .
eq ~0=1.
eq ~1 =20

- BooL-NoT has three CPs: (0, ~1), (1, ~0) and (~ X, ~X), and
all those CPs are joinable, thus, it is confluent

Sinaia School Lecture 3 Reasoning by Rewriting 26 /39

Conditional Equations

Sinaia School Lecture 3 Reasoning by Rewriting 271739

Conditional equations

« CafeOBJ allows us to write a condition for an
equation
— A condition is a term of Boolean sort Bool

— CafeOBJ modules import a built-in Boolean module
BOOL implicitly, thus, you can use Boolean operators
to write equations

NAT-EVEN

eq even 0 = true .

ceq even(s N) = false if even N .

true 1f not (even N) .

ceq even (s N)

Sinaia School Lecture 3 Reasoning by Rewriting 28/ 39

Reduction by conditional equations

» A conditional equation is applied when the

condition part is reduced into true

NAT-EVEN> red even s 0 .
-—- reduce in NAT-EVEN :
1>[1] apply trial #1
—-— rule: ceq (even (s N:Nat))
{ N:Nat |-> 0 }
2>[1] rule: eq (even 0)
{}
]

(even (s 0)) :Bool

false if

(even N)

true

(even 0) —--> true

] match success #1

] (even (s 0)) --> false
(false) :Bool

2<[1
1>[2
1<[2

Sinaia School Lecture 3 Reasoning by Rewriting

Try to apply
the cond. equation

The condition part is
reduced into true

Apply the equation part

29/39

Termination of conditional equations

« To obtain a terminating conditional S

P, not only

rhs but a condition part should also be cared

NAT_EV?E) ceq even (s N)

false if even N .

ceq even(s N) = true if not (even N)
— ceq £ (X) = true if £(X)
INFINITE> red f£(X:E1lt)
-— reduce in INFINITE : (f (X)) :Bool

[Warning] :

Infinite loop? Evaluation of condition nests
terminates rewriting: f(X:Elt)

INFINITE>

too deep,

Sinaia School Lecture 3 Reasoning by Rewriting

30/39

Confluence of conditional equations

* In most cases, conditional SPs overlap because
conditions are used to write case-splitting of a
same pattern

NAT-EVEN ceq even(s N) = false if even N .
ceq even(s N) = true if not (even N) .
— For confluence, each condition of a pattern should be
separated from each other, i.e., if one is true, then the
others should be false, for example,

» P(X), not P(X)
« X<5,((5<=Xand X<10), 10 <=X

Sinaia School Lecture 3 Reasoning by Rewriting 31/39

Associative Commutative Operators

Sinaia School Lecture 3 Reasoning by Rewriting 32/39

Associative Commutative operators

» Equations of Associativity and Commutativity may cause
non-termination and non-confluence

« They are recommended to be specified as operators

attributes

NAT+AC

eq X Hg=_Y + X g

equ(XTFY) + 7 = X P+ 7) .

op + : Nat Nat -> Nat { assoc comm }

- You do not need bracket for associative operators

-eqN+0=N

can be applied to (N + 0) since + is commutative.

NAT+AC> red 0 + (N:Nat) + 0 .
N:Nat 33/39

Specification of bags (multi-sets)

<:}%§{:>[Elt < Bag]

ops a b ¢ : -> Elt

op

eq

op _ _

var E : Elt var B : Bag

: Bag Bag -> Bag { assoc comm }

in : Elt Bag -> Bool

E in (E B) = true .

* From the subsort relation [E1t < Bag] and the associative

operator (_

_), asequence of E1t is aterm of Bag

c in

(a b c) c in (a (c b))
c in ((c b) a)
c in (¢ (b a)

true

Sinaia School Lecture 3 Reasoning by Rewriting 34 /39

AC Rewriting

* One step AC (or A or C) Rewriting, denoted by

-->., IS defined as the composition (=,. 0 -->)

c in (a b ¢) = c in (a (c b))
= c in ((c b) a)
=5 c in (¢ (b a)
--> true

When applying a rewrite rule to a term with AC operators,

first compute all AC equivalent terms (it is finite), and if there

is a redex, then rewrite it

a(bc), (@ab)c, a(cb), (ac)b, b(ac), (ba)c, b(ca), (bc)a,
c(ab), (ca)b, c(ba),(cb)a

Sinaia School Lecture 3 Reasoning by Rewriting

Termination of AC Rewriting

some operator makes it non-terminating

ops 0 1

[Elt < Bag]
: -> Elt
op _ _ : Bag Bag -> Bag { assoc comm }

var E : Elt

35/39

« Even if SP is terminating, adding AC attribute to

36/39

Confluence of AC Rewriting

« Even if SP is confluent, adding AC attribute to
some operator makes it non-confluent

BAG3
Qops 01 : ->Elt

op begin-with-0 : Bag -> Bool

op _ _ : Bag Bag -> Bag { assoc comm }

var B : Bag

eq begin-with-0 (0 B) true .

eq begin-with-0(1 B) = false .

begin-with-0(0 1) --> true

begin-with-0(0 1) =, begin-with-0(1 0) --> false

Sinaia School Lecture 3 Reasoning by Rewriting 37/39

Summary

* For a given equation, [Reducible by rewriting] =>
[Deducible from E] => [Satisfied by any model], however,
— The opposite is not true in general
— Reducible <=> Deducible holds when it is terminating
and confluent

« To obtain a terminating SP, describe it according to the
hierarchical design with recursive definition

» To obtain a confluence SP, check all critical pairs are
joinable

Sinaia School Lecture 3 Reasoning by Rewriting 38/39

References

F. Baader and T.Nipkow, Term Rewriting and all that,
Cambridge Univ. Press, 1998.

— Introduction to TRS: Termination, Confluence
E.Ohlebusch, Advanced topics in Term Rewriting,
Springer, 2002.

— + Conditional TRS, Modularity

Terese, Term Rewriting systems, Cambridge Univ.
Press, 2003.

— + Strategy, Higher-order rewriting

AProVE : http://aprove.informatik.rwth-aachen.de/

— System for automated termination, supports Conditional TRS,

AC-TRS, etc
Sinaia School Lecture 3 Reasoning by Rewriting 39/39

Extra topic

» Sufficient completeness

Sinaia School Lecture 3 Reasoning by Rewriting 40/ 39

Sufficient completeness

« Afunction f is sufficiently complete if and only
if for any constructors arguments t,,...,t, the
term f(t,,...,t,) is equivalent to some constructor
term t
— That s, f(t,...,t,) = t can be deduced from the axiom

NAT+ NAT+x
eq N+ 0 =N . eq 0 + N =N .
eq M+ s N=s (M + N) . eq M+ s N=s (M + N) .

(s 0) + 0 is un-defined

Sinaia School Lecture 4 Verification with Induction 41/39

Sufficient condition of sufficient
completeness

« SP is sufficiently complete if
— SP is terminating, and

— All function operators are reducible, that is, for any
ground (variable-free) term which includes a function
operator, it is reducible (= a redex exists)

—Eg.s(s(0+(0+s0)) ATt Ly 0w,

eqM+ s N=s (M + N) .

— Because of the 15t condition each term has its normal
form, and

— Because of the 2 condition each normal form is
constructed by constructors only
Sinaia School Lecture 3 Reasoning by Rewriting 42739

Into one module

« If all functions are defined sufficiently complete,
they can be written into one module without
changing its denotation

— Actually, specifications of data types are often
described in one module including constructors and

functions together

mod! NAT-fact({
[Zero NzNat < Nat]

op 0 : -> Zero {constr}

op s_ : Nat -> NzNat {constr}
op + : Nat Nat -> Nat

op _* : Nat Nat -> Nat

op fact : Nat -> Nat

Sinaia School Leq

vars
€q
€q
eq
eq
€q
€q

M N : Nat

N + 0 =N

M+ s N=s(M + N)

N*0=20

M* s N= (M * N) + M

fact 0 = s 0

fact (s N) = (s N) * (fact N)

Sinaia School Lecture 3 Reasoning by Rewriting 44 /39

