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Reasoning by Rewriting 

CafeOBJ Team of JAIST 
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Topics 

•! Introduction to the theory of term rewriting 

systems, which is a basis of the CafeOBJ 

execution 

•! How to write CafeOBJ specifications which 

satisfy two of the most important properties of 

TRS: 

–!Termination 

–!Confluence 
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Overview 

•! In the first half, we treat simple equational 

specifications which consist of  

–!ordinary operators without any attribute and  

–!equations without conditions  

•! In the last half, we discuss on rewriting for 

specifications including 

–!operators with associative and commutative attributes 

and  

–!conditional equations 
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Term rewriting system 
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Term rewriting system 

•! The term rewriting system (TRS) gives us an 

efficient way to prove equations by regarding an 

equation as a left-to-right rewrite rule 

•! Rewriting is the replacement of a redex with the 

corresponding instance of the rhs 

–!A redex is an instance of the lhs of an equation 

–! e.g.      

     eq N + 0 = N . 

     eq M + s N = s (M + N) .  

NAT+ 

s (0 + s 0) --> s (s (0 + 0)) 

Sinaia School Lecture 3 Reasoning by Rewriting  6 / 39 

Equational reasoning by TRS 

•! A reduction is a process of rewriting from a given 

term to a normal form 

–!A normal form is a term which cannot be rewritten 

•! Equational reasoning by TRS is done by 

reducing both sides of a given equation and 

comparing their normal forms 

     eq N + 0 = N . 

     eq M + s N = s (M + N) .  

NAT+ 

0 + s 0 --> s (0 + 0) --> --> s 0 

s 0 + 0 --> s 0 
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Equational reasoning with EQL 

•! A built-in module EQL is useful to check 

joinability of given terms 

A special predicate _=_ is defined for all sorts 

NAT+ + EQL> red 0 + s 0 = s 0 + 0 . 

[1]: ((0 + (s 0)) = ((s 0) + 0)) 

[2]: ((s (0 + 0)) = ((s 0) + 0)) 

[3]: ((s 0) = ((s 0) + 0)) 

[4]: ((s 0) = (s 0)) 

---> true 

(true):Bool 

SOUNDNESS: 

If s = t is reduced into true, it holds in all models 
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Conditions of TRS 

•! Rewrite rules should satisfy the following 

conditions on variables 

–!Any lhs should not be a variable 

•! Such a rule, e.g. N = N + 0,  causes an infinite loop 

–!Any variable in rhs should appear in lhs 

•! By such a rule, e.g. 0 = N * 0, a redex can be rewritten into 

infinitely many terms 

s 0 --> s 0 + 0 --> (s 0 + 0) + 0 --> ... 

0 --> 0 * 0       

0 --> s 0 * 0 ... 
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Bad equations ignored 

•! CafeOBJ system uses only equations satisfying 

the variable conditions when reducing terms by 

the reduction command 
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Properties of TRS 

•! TRS achieves only a partial equational 

reasoning, in general, because equations are 

directed 

–!e.g. b = c cannot be proved by TRS {a = b, a = c} 

•! However, TRS can prove any equation which 

can be deduced from the axiom E of SP              

if SP has the termination and confluence 

properties 
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Termination 
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Definition of Termination 

•! A specification (a TRS or a set of equations) SP 

is terminating if and only if there is no infinite 

rewrite sequence t0 --> t1 --> t2 --> ... 

•! Termination guarantees that any term has a 

normal form, and makes us possible to compute 

a normal form in finite times 

   eq X + Y = Y + X . 
NAT-COM 

s 0 + 0 --> 0 + s 0 --> s 0 + 0 --> ... 
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Proving termination 

•! Termination is an undecidable property, i.e. no 

algorithm can decide termination of term 

rewriting systems 

•! Several sufficient conditions for termination have 

been proposed 

•! In this presentation, we give one way to write 

terminating specifications 
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Hierarchical design 

•! A hierarchical design of a 

specification of an abstract data 

type SP consists of 
–! Module BASIC-SP for functions’ domain 

and range 

–! Module SP-F0 importing BASIC-SP for 
defining a function F0 

–! Module SP-Fi+1 importing SP-Fi for defining 

a function Fi+1 which is defined using a 

function Fk  ( k < i + 1) 

mod! NAT+ { 

 ... 

} 

mod! BASIC-NAT { 

 ... 

} 

mod! NAT* { 

 ... 

} 
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BASIC-SP 

•! An operator in BASIC-SP is called a constructor 

•! Constructor terms denote elements of the 

domain 

–!A constructor term is a term consisting of only 

constructors 

mod! BASIC-NAT { 

 [Zero NzNat < Nat] 

 op 0  : -> Zero 

 op s_ : Nat -> NzNat 

} 

0,  s 0,  s s 0, s s s 0, ... 
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SP-F0 

•! SP-F0 consists of a protecting import of BASIC-

SP, an operator F0, and equations defining F0 

•! Each rhs should be constructed from variables, 

constructors, and recursive calls 

–!F(.,t,.) is a recursive call of F(.,t’,.) iff t is a subterm of t’ 

mod! NAT+ { 

 pr(BASIC-NAT) 

 op _+_  : Nat Nat -> Nat 

 vars M N : Nat 

 eq N + 0 = N . 

 eq M + s N = s (M + N) .  

} 
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SP-Fi+1 

•! SP-Fi+1 consists of a protecting import of SP-Fi, an 

operator Fi+1, and equations defining Fi+1 

•! Each rhs should be constructed from variables, 

constructors, pre-defined functions Fk  ( k < i + 1),  

and recursive calls 

mod! NAT* { 

 pr(NAT+) 

 op _*_  : Nat Nat -> Nat 

 vars M N : Nat 

 eq N * 0 = 0 . 

 eq M * s N = M + (M * N).  

} 

mod! NAT-FACT { 

 pr(NAT*) 

 op fact_  : Nat -> Nat 

 vars M N : Nat 

 eq fact 0 = s 0 . 

 eq fact (s N) = s N * (fact N) . 

} 
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Recursive Path Order 

•! RPO is one of the most famous classic 

termination proof techniques 

–!By RPO, we can prove termination of specifications 

described according to the hierarchical design 

•! For a specification beyond the hierarchical 

design, you may find useful termination provers 

on Internet: AProVE, CiME, TTT, etc 



Sinaia School Lecture 3 Reasoning by Rewriting  19 / 39 

Confluence 
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Definition of Confluence 

•! SP is confluent iff all divided terms are joinable, 

i.e., if s -->* t and s -->* t’ then t -->* u 

and t’ -->* u for some u 
–! -->* denotes zero or many rewrite steps 

* * 

* * 

s 

t t’ 

u 

   eq (X + Y) + Z = X +(Y + Z) . 

   eq first(X + Y) = X . 

NAT-ASSOC 

first((0 + s 0) + s s 0) --> 0 + s 0 

first((0 + s 0) + s s 0)  

--> first(0 + (s 0 + s s 0)) --> 0 
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Termination and Confluence 

•! Confluence guarantees that a normal form is 

unique for any term 

•! Thus, for a terminating and confluent SP, any 

term has the unique normal form 

•! We obtain complete equational reasoning: 

–!Reduce both sides of a given equation 

–!Compare their normal forms 

•! The equation is deducible from the axiom if they are same 

•! It is not deducible if they are not 
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Branch 

•! It is trivial that SP without any branch is confluence 

•! Unfortunately, such a SP is rare because an operator 

with more than one arities can include more than one 

redexs 

–! (Assume a --> b)  f(b, a) <-- f(a, a) --> f(a, b) 

•! Fortunately, such branches can be recovered by 

rewriting redexs of each other rewrite 

–! f(b, a) --> f(b, b) <-- f(a, b)  

•! What branches are troublesome? 



Sinaia School Lecture 3 Reasoning by Rewriting  23 / 39 

Overlap 

•! Terms overlap iff a one’s instance is an instance 

of the other’s non-variable subterm 

–! (X + Y) + Z is an instance of X + Y of first(X + Y)  

–!A branch resulting from an overlap may not be 

recovered because a redex may disappear  

   eq (X + Y) + Z = X +(Y + Z) . 

   eq first(X + Y) = X . 

NAT-ASSOC 

first((0 + s 0) + s s 0) --> 0 + s 0 

first((0 + s 0) + s s 0)  

--> first(0 + (s 0 + s s 0)) --> 0 
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Overlapping rewrite rules 

•! Rewrite rules overlap if their lhss overlap 

•! SP overlaps if there are overlapping rewrite rules 

–!You can take two copies of one rewrite rule to check 
an overlap. For such cases, the overlap at the root 
position should be ignored 

–!e.g. a rewrite rule ~ ~ X = X overlaps itself because  
~ ~ X is an instance of a subterm ~ X  

•! A unifier of two overlapping terms (s, t) is an 
instance of s which has a  t’s  instance 
–!e.g. ~ ~ ~ 0 is a unifier of (~ ~ X, ~ ~ X) 
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Critical Pair 

•! The most general unifier of overlapping rewrite 

rules has two direct descendant. Such a pair is 

called a critical pair 

–!The m.g.u. of ~ ~ X  and ~ 0  is  ~ ~ 0 

–!The CP of them is (0, ~1) because ~ ~ 0 --> 0 by 

the 1st rule and ~ ~ 0 --> ~ 1 by the 2nd rule 

   eq ~ ~ X = X . 

   eq   ~ 0 = 1 . 

   eq   ~ 1 = 0 . 

BOOL-NOT 
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Sufficient condition of Confluence 

•! Theorem (Knuth and Bendix 1970): If SP is 

terminating and all critical pairs are joinable, then 

SP is confluent 

–! BOOL-NOT has three CPs: (0, ~1), (1, ~0) and (~ X, ~X), and 

all those CPs are joinable, thus, it is confluent 

   eq ~ ~ X = X . 

   eq   ~ 0 = 1 . 

   eq   ~ 1 = 0 . 

BOOL-NOT 
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Conditional Equations 
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Conditional equations 

•! CafeOBJ allows us to write a condition for an 

equation 

–!A condition is a term of Boolean sort Bool 

–!CafeOBJ modules import a built-in Boolean module 

BOOL implicitly, thus, you can use Boolean operators 

to write equations 

   eq even 0 = true . 

   ceq even(s N) = false if even N . 

   ceq even(s N) = true  if not (even N) . 

NAT-EVEN 
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Reduction by conditional equations 

•! A conditional equation is applied when the 

condition part is reduced into true 

NAT-EVEN> red even s 0 . 

-- reduce in NAT-EVEN : (even (s 0)):Bool 

1>[1] apply trial #1 

-- rule: ceq (even (s N:Nat)) = false if (even N) 

    { N:Nat |-> 0 } 

2>[1] rule: eq (even 0) = true 

    {} 

2<[1] (even 0) --> true 

1>[2] match success #1 

1<[2] (even (s 0)) --> false 

(false):Bool 

Try to apply  

the cond. equation 

The condition part is  

reduced into true 

Apply the equation part 
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Termination of conditional equations 

•! To obtain a terminating conditional SP, not only 

rhs but a condition part should also be cared 

   ceq even(s N) = false if even N . 

   ceq even(s N) = true  if not (even N) . 

NAT-EVEN 

   ceq f(X) = true  if f(X) . 
INFINITE 

INFINITE> red f(X:Elt) . 

-- reduce in INFINITE : (f(X)):Bool 

[Warning]:  

Infinite loop? Evaluation of condition nests too deep, 

terminates rewriting: f(X:Elt) 

INFINITE>  
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Confluence of conditional equations 

•! In most cases, conditional SPs overlap because 
conditions are used to write case-splitting of a 
same pattern 

–!For confluence, each condition of a pattern should be 
separated from each other, i.e., if one is true, then the 
others should be false, for example, 

•! P(X), not P(X) 

•! X < 5, ((5 <= X and X < 10), 10 <= X 

   ceq even(s N) = false if even N . 

   ceq even(s N) = true  if not (even N) . 

NAT-EVEN 
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Associative Commutative Operators 
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Associative Commutative operators 

•! Equations of Associativity and Commutativity may cause 

non-termination and non-confluence 

•! They are recommended to be specified as operators 

attributes 

    op _+_ : Nat Nat -> Nat { assoc comm } 

NAT+AC 

    eq X + Y = Y + X . 

    eq (X + Y) + Z = X + (Y + Z) . 

-  You do not need bracket for associative operators 

-  eq N + 0 = N can be applied to (N + 0) since + is commutative. 

NAT+AC> red 0 + (N:Nat) + 0 . 

N:Nat 
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Specification of bags (multi-sets) 

•! From the subsort relation [Elt < Bag] and the associative 

operator (_ _), a sequence of  Elt  is a term of  Bag 

    [Elt < Bag] 

  ops a b c  : -> Elt 

  op _ _ : Bag Bag -> Bag { assoc comm } 

  op _in_ : Elt Bag -> Bool 

  var E : Elt    var B : Bag 

  eq E in (E B) = true . 

BAG 

c in (a b c)   =   c in (a (c b)) 

               =   c in ((c b) a) 

               =   c in (c (b a) 

               =   true 
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AC Rewriting 

•! One step AC (or A or C) Rewriting, denoted by   

-->AC, is defined as the composition (=AC o -->) 

c in (a b c)   =C   c in (a (c b)) 

               =C   c in ((c b) a) 

               =A   c in (c (b a) 

               -->  true 

When applying a rewrite rule to a term with AC operators,  

first compute all AC equivalent terms (it is finite), and if there 

is a redex, then rewrite it 

a (b c),  (a b) c,  a (c b),  (a c) b,  b (a c),  (b a) c,  b (c a),  (b c) a, 

c (a b),  (c a) b,  c (b a), (c b) a   
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Termination of AC Rewriting 

•! Even if SP is terminating, adding AC attribute to 

some operator makes it non-terminating 

    [Elt < Bag] 

  ops 0 1  : -> Elt 

  op _ _ : Bag Bag -> Bag { assoc comm } 

  var E : Elt  

  eq (E E) = 0 1 . 

BAG2 

0 (0 1)   =A   (0 0) 1 

         -->   (0 1) 1 

          =A   0 (1 1) 

         -->   0 (0 1) ... 
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Confluence of AC Rewriting 

•! Even if SP is confluent, adding AC attribute to 

some operator makes it non-confluent 

  ops 0 1  : -> Elt 

  op begin-with-0 : Bag -> Bool 

  op _ _ : Bag Bag -> Bag { assoc comm } 

  var B : Bag  

  eq begin-with-0(0 B) = true . 

  eq begin-with-0(1 B) = false . 

BAG3 

begin-with-0(0 1) --> true 

begin-with-0(0 1) =C begin-with-0(1 0) --> false 
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Summary 

•! For a given equation, [Reducible by rewriting] => 

[Deducible from E] => [Satisfied by any model], however, 

–!The opposite is not true in general 

–!Reducible <=> Deducible holds when it is terminating 

and confluent 

•! To obtain a terminating SP, describe it according to the 

hierarchical design with recursive definition 

•! To obtain a confluence SP, check all critical pairs are 

joinable 
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Extra topic!

•! Sufficient completeness 
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Sufficient completeness!

•! A function f is sufficiently complete if and only 

if for any constructors arguments  t1,…,tn, the 

term f(t1,…,tn) is equivalent to some constructor 

term t 

–!That is, f(t1,…,tn) = t can be deduced from the axiom  !
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     eq N + 0 = N . 

     eq M + s N = s (M + N) .  

NAT+ 
     eq 0 + N = N . 

     eq M + s N = s (M + N) .  

NAT+x 

(s 0) + 0 is un-defined!

Sufficient condition of sufficient 

completeness!

•! SP is sufficiently complete if 

–!SP is terminating, and  

–!All function operators are reducible, that is, for any 

ground (variable-free) term which includes a function 

operator, it is reducible (= a redex exists) 

–!E.g. s (s (0 + (0 + s 0))) 

–!Because of the 1st condition each term has its normal 

form, and 

–!Because of the 2nd condition each normal form is  

constructed by constructors only 
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     eq N + 0 = N . 

     eq M + s N = s (M + N) .  

NAT+ 



Into one module!

•! If all functions are defined sufficiently complete, 

they can be written into one module without 

changing its denotation 

–!Actually, specifications of data types are often 

described in one module including constructors and 

functions together!
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mod! NAT-fact{ 

  [Zero NzNat < Nat] 

  op 0 : -> Zero {constr} 

  op s_ : Nat -> NzNat {constr} 

  op _+_ : Nat Nat -> Nat 

  op _*_ : Nat Nat -> Nat 

  op fact_ : Nat -> Nat  

vars M N : Nat 

  eq N + 0 = N . 

  eq M + s N = s(M + N) . 

  eq N * 0 = 0 . 

  eq M * s N = (M * N) + M . 

  eq fact 0 = s 0 . 

  eq fact (s N) = (s N) * (fact N) . 

} 
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