\square

Topics

- Verification method for SPEC |= prop with Proof Score
- QLOCK example is used to explain the method

Flow Chart for
Verification with Proof Scores in CafeOBJ

Understand problem and construct model

$\mathrm{R}_{\text {QLock }}$ (set of reachable states) of OTS QLOCK (OTS defined by the module QLOCK)
qlock.mod
Signature determining $\mathbf{R}_{\text {QLOCK }}$
-- any initial state
op init : -> Sys
-- actions
bop want : Sys Pid -> Sys
bop try : Sys Pid -> Sys
bop exit : Sys Pid -> Sys

Recursive definition of $\mathrm{R}_{\mathrm{QLOCK}}$
$\mathrm{R}_{\text {QLock }}=\{$ init $\} \mathrm{U}$
$\left\{\right.$ want (s, i) $\mid s \in R_{\left.R_{\text {LLOCK }}, i \in P i d\right\}} U$
$\left\{\operatorname{try}(s, i) \mid s \in R_{\text {QLock }}, i \in \operatorname{Pid}\right\} \cup$ $\left\{\operatorname{exit}(s, i) \mid s \in \mathrm{R}_{\mathrm{QLO} \mathrm{K}}, i \in \operatorname{Pid}\right\}$

Formalization of mutual exclusion property as an invariant

```
mod INV1 \{
    pr(QLOCK)
-- declare a predicate to verify to be an invariant
    pred inv1 : Sys Pid Pid
-. CafeOBJ variables
    var S : Sys.
    vars I J : Pid
-- define inv1 to be the mutual exclusion property
    eq inv1(S,I,J)
        \(=(((\mathrm{pc}(\mathrm{S}, \mathrm{I})=\mathrm{cs})\) and \((\mathrm{pc}(\mathrm{S}, \mathrm{J})=\mathrm{cs}))\) implies \(\mathrm{I}=\mathrm{J})\).
```

\}

Formulation of proof goal for mutual exclusion property
INV1 $\mid=\forall s \in R_{\text {QLOck }} \forall i, j \in \operatorname{Pid} . i n v 1(s, i, j)$

Theorem of constants

INV1 |= $\forall s \in \operatorname{Sys} \forall i, j \in \operatorname{Pid} . i n v 1(s, i, j)$
||def
INV1 |= inv1(s:Sys,i:Pid,j:Pid)
||TC
INV1U\{op s : -> Sys\}U\{ops i j : -> Pid\} |= inv1(s,i,j)

All the above three state:
for any model (or INV1-algebra) andany objects s:Sys, i:Pid, j:Pid, the proposition inv1($\mathbf{s , i}, \mathbf{j}$) holds.

Fresh constants and variables:
Theorem of Constants

Let \mathbf{p}^{\prime} be the boolean term obtained from a boolean term \mathbf{p} by replacing all variables in \mathbf{p} with "fresh constants" which do not appear anywhere in the specification $\mathrm{SP}=<\Sigma, \mathrm{E}>$ then
(TC) $\quad \Sigma, \mathrm{E} \mid=\mathrm{p}$ iff $(\Sigma \cup \mathrm{C}), \mathrm{E} \mid=\mathrm{p}$ '
where \mathbf{C} is the set of the introduced fresh constants.

Notice that different occurrences of a "same variable" should be replaced with a same fresh constant. Notice also that a fresh constant introduced will have much longer scope than the original variable.

Constants and variables: Differences
(model/interpretation is assumed to be fixed
and p is assumed to contain no variables in $\Sigma, \mathrm{E} \mid=\mathrm{p}$)
A variable of the same name which appears in the same equation in $\Sigma, \mathrm{E} \mid=\mathrm{p}$ denotes arbitrarily but the same object.

A variable of the same name which appears in several different equations in $\Sigma, E \mid=p$ denotes any object independently, and does not necessary denote the same object.

A constant of the same name which appears in several different places in $\Sigma, \mathrm{E}=\mathrm{p}$ denotes the same object, because a constant constitutes the signature Σ.

Assertion
```INV1 U {op s : -> Sys} U {ops i j : -> Pid} \|= inv1(s,i,j)```
Logical Statement of stating that Specification satisfies property

-- [mx]* open INV1
op s : -> Sys .
ops i j : -> Pid .
-- |=
red inv1( $\mathrm{s}, \mathrm{i}, \mathrm{j})$.
close
Logical Statement and
CafeOBJ Code
If reduction part of the CafeOBJ code returns true then the assertion holds

If [mx] * returns true the verification is done, but ...

```
-- [mx]*
open INV1
 op s : -> Sys .
 ops i j : -> Pid
-- |=
 red inv1(s,i,j) .
close
```

If this proof passage returns true the game is over. But it does not return true.

The goal of verification of an assertion A via proof score is to get a set of assertions/p.-p.s \{A1, A2, ...An\} such that:
(1) (A1 and A2 and ... and An) implies A, and
(2) All the A1, A2 , .., An are effective.

A set of assertions which satisfies (1) and (2) is called a proof score (in a narrow sense) for $\mathbf{A}$.

## Proof Scores and Assertion Splitting Rules (2)

For constructing proof scores, several kinds of assertion splitting rules of the form:
(Ai1 and Ai2 and ... and Ain) implies Ai are used. An assetion splitting rule is also written as:
\{Ai1,Ai2, ... Ain\} implies Ai.
If $\mathbf{n}=\mathbf{1}$ the assertion splitting rule is also called assertion transformation rule and is written like:

Ai1 implies A.

## Assertion Splitting <br> via Induction Scheme induced by $\mathrm{R}_{\text {olock }}$

$\begin{aligned} \mathrm{R}_{\mathrm{QLOCK}}= & \{\operatorname{init}\} \\ & \left\{\text { want }(\mathrm{s}, \mathrm{i}) \mid \mathrm{s} \in \mathrm{R}_{\mathrm{QLOCK}}, i \in \operatorname{Pid}\right\}\end{aligned}$ $\left\{\operatorname{try}(s, i) \mid s \in R_{\text {QLock }}, i \in \operatorname{Pid}\right\} \cup$ $\left\{\operatorname{exit}(s, i) \mid s \in \mathrm{R}_{\mathrm{QLOCK}}, i \in \operatorname{Pid}\right\}$

In [mx]*, s : -> Sys means s : -> $\mathbf{R}_{\mathbf{Q L O C K}}$, and the following induction scheme follows.

Induction Scheme (Assertion Splitting via I.S.) \{[1-init], [1-want]*, [1-try]*, [1-exit]*\} implies [mx]*

## Assertion Splitting via Case Splitting

proof-02.mod
For any INV1-algebra (a model of INV1) c-want(s,k) is either true or false. Hence the following assertion splitting is justified.

Assertion Splitting via Case Splitting
$\{[1$-want, c-w], [1-want, ~c-w] $\}$
implies [1-want]*
(CS) $\quad\left\{\left(E \mid=\left(p_{1}\right.\right.\right.$ or $\left.\left.p_{2}\right)\right),\left(E \cup\left\{p_{1}=\right.\right.$ true $\left.\} \mid=p\right)$,
( $E \cup\left\{p_{2}=\right.$ true $\left.\left.\} \mid=p\right)\right\}$ implies E|=p

## Meta Level Equation and Object Level Equation

$$
\text { (EQ) } E \cup\left\{\mathrm{t}_{1}=\mathrm{t}_{2}\right\} \mid=\mathrm{p} \text { iff } E \cup\{(\mathrm{t} 1=\mathrm{t} 2)=\text { true }\} \mid=\mathrm{p}
$$

$$
\text { ( } p=\text { true }) \text { iff } p
$$

```
--> [1-want,c-w-org]*
open INV1
op s : -> Sys
ops i j k : -> Pid
eq inv1(s,I:Pid,J:Pid) = true
eq c-want(s,k) = true
-- |=
red inv1(want(s,k),i,j)
close
```

	```--> [1-want,c-w]* open INV1 op s : -> Sys . ops i j k : -> Pid. eq inv1(s,I:Pid,J:Pid) = true -- eq c-want(s,k) = true . eq pc(s,k) = rm . -- \|= red inv1(want(s,k),i,j) . close```

Assertion Transformation: INST, TRANS, HIDE, IMP

The proof passage [1-want, c-w, $\sim \mathbf{i}=k, \sim \mathbf{j}=k$] * returns a boolean term witch is equivalent to inv1(s,i,j). This should return true because the boolean term is an instance of inv1(s,I:Pid, J:Pid) which is declared in the premise part (the part before |=) of this proof passage. This assertion/proof-passage is transformed to the effective one (the one which return true) by using INST, TRANS, and HIDE transforming rules.

INST

```
-- [1-want,c-w,~i=k,~j=k]*
open INV1
    op s : -> Sys . ops i j k : -> Pid
    eq inv1(s,I:Pid,J:Pid) = true .
    -- eq c-want(s,k) = true .
    eq pc(s,k) = rm .
    eq (i = k) = false
    eq (j = k) = false
-- I=
    red inv1(want(s,k),i,j) . -- [1-want,c-w,~i=k,~j=k,inst]*
close
    n INV1
    op s: -> Sys . ops i j k : -> Pid
    eq inv1(s,I:Pid,J:Pid) = true .
    eq inv1(s,i,j) = true . **
    -- eq c-want(s,k) = true
    eq pc(s,k) = rm
    eq (i = k) = false
    eq (j = k) = false
-- |=
red inv1(want(s,k),i,j) .
close
```


TRANS, HIDE

Some basic properties of $\mathrm{E} \mid=\mathrm{p}$ (1) (term or equation which moves across |= is assumed to include no variables)

Let $\mathrm{t} 1^{\prime}$ and $\mathrm{t} 2^{\prime}$ be the terms obtained from (a boolean: error) terms t 1 and t 2 by replacing variables in t 1 and t 2 with corresponding ground terms respectively then:
(INST)
($\mathrm{E} \cup\{\mathrm{t} 1=\mathrm{t} 2\}) \mid=\mathrm{p}$ iff
$\left(E \cup\{t 1=t 2\} \cup\left\{t 1^{\prime}=t 2 \prime\right\}\right) \mid=p$
(TRANS) $\quad E \mid=\left(\left(\mathrm{t}_{1}=\mathrm{t}_{2}\right)\right.$ implies p$)$ iff
$E \cup\left\{t_{1}=t_{2}\right\} \mid=p$

Some basic properties of E |= p (2)

(term or equation which moves across |= is assumed to include no variables)

> | (HIDE) $\begin{aligned}(E \cup\{t 1=t 2\}) \mid & =p \text { implies } \\ & (E \cup\{t 1=\mathrm{t} 2\} \cup\{\mathrm{t} 3=\mathrm{t} 4\}) \mid=\mathrm{p}\end{aligned}$ |
| :--- |

This justifies to comment out any equation (removing by making it comment) at any moment. (as a p.-p.)
(IMP) $E \mid=\left(t_{1}=t_{2}\right)$ implies
$\left(E \cup\left\{t_{1}=t_{2}\right\} \mid=p\right.$ iff $\left.E \mid=p\right)$

module ISTEP1

invarients-1.mod, proof-05.mod->proof-06.mod

$$
\text { red inv1(s,i,j) implies inv1(want }(s, k), i, j)
$$

eq istep1(I:Pid, J:Pid) = inv1($\mathrm{S}, \mathrm{I}, \mathrm{J})$ implies inv1($\left.\mathbf{s}^{\prime}, \mathbf{I}, \mathbf{J}\right)$.
red istep1(i,j).

```
Notice that using INST,TRANS,HIDE, and istep1,
    ops k l : -> Pid .
    -- |=
    red inv1(s,k,l) implies istep1(i,j).
can also be used instead of instead of istep1(i,j) for any k and l.
```


Simultaneous Induction Scheme

simultaniousIS.txt,invariants-2.mod, proof-09.mod->proof-10.mod
Lemma Discovery/Introduction:
[1-init] Invariant inv2 is decided to be a [1-want,c-w,i=k] lemma to be introduced.

Simultaneous Induction Scheme
\{ [1-init], [1-want2], [1-try2], [1-exit2],
[2-init], [2-want2]*, [2-try2]*, [2-exit2]* \} implies [mx]*
\{ [1-init], [1-want2]*, [1-try2]*, [1-exit2]*, [2-init], [2-want2]*, [2-try2]*, [2-exit2]* \} implies\} [inv2]*

$$
[1-w a n t, c-w,-i=k, j=k]
$$

1-want,c-w, $\sim \mathrm{i}=\mathrm{k}, \mathrm{\sim}=\mathrm{k}$,istep1]
[1-want, cc-w]
[1-try,c-t, i=k,j=k]
$[1-\text { try }, \mathrm{c}-\mathrm{t}, \mathrm{i}=\mathrm{k}, \mathrm{j}=\mathrm{j}=\mathrm{k}]^{\star}$
$[1-\text { try }, c-c-t,-i=k]^{*}$
[1-try,c-t, $-i=1]$
$[1-$ try,$\sim-\mathrm{c}-\mathrm{t}]$
${ }^{\left[1-\text {-exit] }{ }^{*}\right.}$

Lemma Usage: Invariant predicate inv2 can be declared in the premise
[1-want, $\mathrm{c}-\mathrm{w}, \mathrm{i}=\mathrm{k}$]
[1-want,c-w, $\sim i=k, j=k]$
[1-want, c-w, ~i=k, $\sim j=k$, istep1]
[1-want, $\sim \mathrm{c}$-w]
[1-want, $\sim \mathrm{c}-\mathrm{w}]$
[1-try,c-t, $i=k, j=k]$
$[1-\operatorname{try}, \mathrm{c}-\mathrm{t}, \mathrm{i}=\mathrm{k}, \mathrm{j}=\mathrm{k}]$
$[1-\operatorname{try} 2, \mathrm{c}-\mathrm{t}, \mathrm{i}=\mathrm{k}, \sim \mathrm{j}=\mathrm{k}$, inv2
$[1-\operatorname{try} 2, c-t, i=k, \sim j=k$
$[1-\operatorname{try} 2, c-t, \sim i=k]^{*}$
part of any assertion/proof-passage after the introduction.
[1-try2,~c-t
[1-exit2]*
[2-inite]
[2-want2]*
${ }^{[2-t r y 2]^{\star}}{ }^{\text {[2-exit2]* }}$
[2-exit2]*

```
-- [1-try2,c-t,i=k,~j=k,inv2]
open INV2
    ops i j k : -> Pid .
    -- eq inv1(s,I:Pid,J:Pid) = true .
    -- eq inv2(s,J:Pid) = true . declared lemma
    -- eq c-try(s,k) = true .
    eq pc(s,k) = wt.
    eq top(queue(s)) = k .
    eq i = k .
    eq (j = k) = false.
-- successor state
    eq s' = try(s,k) .
-- |=
    red inv2(s,j) implies istep1(i,j)
close

\section*{No need to change already constructed assertions/proof-passages by lemma introduction}
```

-- [1-want]*
open INV1
op s : -> Sys
ops i j k : -> Pid
eq inv1(s,I:Pid,J:Pid) = true
-- |=
red inv1(want(s,k),i,j) .
close

```
```

- [1-want2]*
open ISTEP2
ops i j k : -> Pid
-- eq inv1(s,I:Pid,J:Pid) = true .
implies -- eq inv2(s,I:Pid) = true .
eq s' = want(s,k).
I=
red istep1(i)
close

```

Final Proof Score for QLOCK

[2-init]
[2-want2,c-w,i=k]
[2-want2,c-w,~i=k,queue(s)=empty]
[2-want2,c-w,~i=k,queue(s)=j,q]
[2-want2,~c-w]
[2-try2,c-t,i=k]
\([2-t r y 2, c-t, \sim i=k]\)
\([2-t r y 2, \sim c-t]\)
\([2-e x i t 2, c-e, i=k]\)
\([2-e x i t 2, c-e, \sim i=k, p c(s, i)=c s\), inv1 \(]\)
\([2-e x i t 2, c-e, \sim i=k, \sim p c(s, i)=c s]\)
\([2-e x i t 2, \sim c-e]\)
[2-exit2,~c-e]```

