















LectureNote6, Sinaia School, 03-10 March 2008



A variable of the same name which appears in the same equation in  $\Sigma, E \models p$  denotes arbitrarily but the same object.

A variable of the same name which appears in several different equations in  $\Sigma, E \models p$  denotes any object independently, and does not necessary denote the same object.

A constant of the same name which appears in several different places in  $\Sigma, E \models p$  denotes the same object, because a constant constitutes the signature  $\Sigma$ .

LectureNote6, Sinaia School, 03-10 March 2008

9

Assertion and Proof Passage proof-00.mod **Proof Passage** Assertion -- [mx]\*inv1 U open INV1  $\{ op s : -> Sys \} \cup$ op s : -> Sys . {ops i j : -> Pid} ops i j : -> Pid . | = -- |= inv1(s,i,j) red inv1(s,i,j) . Logical Statement close of stating that **Logical Statement Specification satisfies** and property CafeOBJ Code If reduction part of the CafeOBJ code returns true then the assertion holds 10 LectureNote6, Sinaia School, 03-10 March 2008







| Assertion Splitting<br>via Induction Scheme induced by R <sub>oLock</sub>                             |
|-------------------------------------------------------------------------------------------------------|
| proof-01.mod                                                                                          |
| $R_{\text{QLOCK}} = \{\text{init}\} U$                                                                |
| $\{\text{want}(s,i)   s \in \mathbb{R}_{\text{QLOCK}}, i \in \text{Pid} \} \cup$                      |
| $\{try(s,i) \mid s \in \mathbb{R}_{OLOCK}, i \in \text{Pid}\} \cup$                                   |
| $\{\text{exit}(s,i)   s \in \mathbb{R}_{\text{OLOCK}}, i \in \text{Pid}\}$                            |
| In [mx]*, s : -> Sys means s : -> R <sub>QLOCK</sub> ,<br>and the following induction scheme follows. |
| Induction Scheme (Assertion Splitting via I.S.)                                                       |
|                                                                                                       |
| {[1-init],[1-want]*,[1-try]*,[1-exit]*}                                                               |
| <pre>implies [mx]*</pre>                                                                              |
| 1                                                                                                     |
| LectureNote6, Sinaia School, 03-10 March 2008                                                         |



















| Lemma declaration and its usage                                     |                |
|---------------------------------------------------------------------|----------------|
|                                                                     |                |
| [1-try2,c-t,i=k,~j=k,inv2]                                          |                |
| open INV2                                                           |                |
| ops i j k : -> Pid .                                                |                |
| <pre> eq inv1(s,I:Pid,J:Pid) = true eq inv2(s,J:Pid) = true .</pre> | declared lemma |
| eq $c$ -try(s,k) = true .                                           |                |
| eq pc(s,k) = wt.                                                    |                |
| eq top(queue(s)) = $k$ .                                            |                |
| eq i = k.                                                           |                |
| eq(j = k) = false.<br>successor state                               |                |
| eq s' = try(s,k).                                                   |                |
| =                                                                   | — used lemma   |
| <pre>red inv2(s,j) implies istep1(i,j) .</pre>                      |                |
| close                                                               |                |
|                                                                     | 24             |



