Verification of QLOCK
with Proof Score

CafeOBJ Team of JAIST

Topics

e Verification method for SPEC |= prop with Proof
Score

e QLOCK example is used to explain the method

LectureNote6, Sinaia School, 03-10 March 2008

Flow Chart for
Verification with Proof Scores in CafeOBJ

Understand problem
and construct model

Write system spec SPEC and
Write property spec prop

Construct proof scores of
SPEC |=prop

LectureNote6, Sinaia School, 03-10 March 2008

Signature Diagram of QLOCKviaOTS

glock.mod

LectureNote6, Sinaia School, 03-10 March 2008

Roock (set of reachable states) of
0TSq ok (OTS defined by the module QLOCK)

Signature determining Ry ok |

-- any initial state
op init : -> Sys

-- actions
bop want : Sys Pid -> Sys
bop try : Sys Pid -> Sys
bop exit : Sys Pid -> Sys

Recursive definition of Ry, ocx ‘

{want(s, 1) Is€Ry ok, 1EPId} U
{try(s, 1) Is€Ryo,1EPId} U
{exit(s, 1) Is€Ry ok, 1 EPIA}

LectureNote6, Sinaia School, 03-10 March 2008

glock.mod

(o1}

Formalization of mutual exclusion property
as an invariant

invariants-0.mod

mod INV1 {
pr(QLOCK)

-- declare a predicate to verify to be an invariant
pred invl : Sys Pid Pid

-- CafeOBJ variables
var S © Sys .
vars I J : Pid .

-- define invl to be the mutual exclusion property
eq invli(s,1,3)

= (((pc(S,1) = cs) and (pc(S,d) = cs)) implies 1 = J) .

Formulation of proof goal for mutual exclusion property ‘

INVL |= VSERy o Vi,jEPid.invi(s,i,]j)

LectureNote6, Sinaia School, 03-10 March 2008

Theorem of constants

INV1 |= Vs€&SysVi,jEPid.invi(s,i,])

||def

INV1 |= invl(s:Sys,i1:Pid,j:Pid)

IITC
[INVIU{op s : -> Sys}U{ops i j : -> Pid} |= invi(s,i,j) |

All the above three state:
for any model (or INV1-algebra) andany objects s:Sys,

1:Pid, j:Pid, the proposition invl(s,i,]j) holds.

LectureNote6, Sinaia School, 03-10 March 2008

Fresh constants and variables:
Theorem of Constants

Let p’ be the boolean term obtained from a boolean term p
by replacing all variables in p with “fresh constants” which do
not appear anywhere in the specification SP=<X,E> then
(TC) YE|=p iff GUC)LE|=p’

where G is the set of the introduced fresh constants.

Notice that different occurrences of a “same variable” should
be replaced with a same fresh constant. Notice also that a
fresh constant introduced will have much longer scope than
the original variable.

LectureNote6, Sinaia School, 03-10 March 2008

Constants and variables: Differences
(model/interpretation is assumed to be fixed
and p is assumed to contain no variables in ZE|= p)

object.

A variable of the same name which appears in the same
equation in Z,E|= p denotes arbitrarily but the same

object.

A variable of the same name which appears in several
different equations in Z,E|= p denotes any object
independently, and does not necessary denote the same

A constant of the same name which appears in several
different places in X,E|= p denotes the same object,
because a constant constitutes the signature X.

LectureNote6, Sinaia School, 03-10 March 2008

Assertion and Proof Passage

proof-00.mod

Assertion

Proof Passage ‘

INV1 U
{op s : -> Sys} U

{ops i j : -> Pid}
I:
invi(s,i,j)

Logical Statement

of stating that
Specification satisfies
property

-— [mx]*
open INV1
op s : -> Sys .

ops i j : -> Pid .

red invi(s,i,j) -
close

Logical Statement
and

CafeOBJ Code

If reduction part of
the CafeOBJ code
returns true then

the assertion holds

LectureNote6, Sinaia School, 03-10 March 2008

10

If [mx]™* returns true the verification is done,

but ...
-- [mx]* This assertion states
open INV1 that mutual exclusion

op s : -> Sys .

red invi(s,i,j) -
close

ops i jJ - -> Pid .

property holds for any
reachable states.

If this proof passage
returns true the game is
over. But it does not
return true.

A name of assertion/proof-passage(p.-p.)
which ends with the character * (like
[mx]*) indicates that it does not return
true. An assertion/p.-p. which return
true is called to be effective. An
effective p.p. has a name without * at
the end.

11

LectureNote6, Sinaia School, 03-10 March 2008

Proof Scores and Assertion Splitting Rules (1)

and

The goal of verification of an assertion A via

proof score is to get a set of assertions/p.-p.s
{A1,A2,..An} such that:
(1) (A1 and A2 and .. and An) implies A,

(2) All the A1,A2, ..,An are effective.

A set of assertions which satisfies (1) and (2) is
called a proof score (in a narrow sense) for A.

LectureNote6, Sinaia School, 03-10 March 2008

Proof Scores and Assertion Splitting Rules (2)

For constructing proof scores, several kinds of assertion
splitting rules of the form:
(A1l and Ai2 and .. and Ain) implies Al
are used. An assetion splitting rule is also written as:
{A11,A12, .. Ain} implies Al.
If n =1 the assertion splitting rule is also called assertion
transformation rule and is written like:
Ail implies A.

13
LectureNote6, Sinaia School, 03-10 March 2008

Assertion Splitting
via Induction Scheme induced by Ry ek
proof-01.mod

{want(s, 1) Is€Ry ok, 1EPId} U
{try(s, 1) Is€Ryo,1EPId} U
{exit(s, 1) Is€Ry ok, 1 EPIA}

In [mx]*, s : -> Sysmeanss I -> Ry o>
and the following induction scheme follows.

Induction Scheme (Assertion Splitting via I.S.)
{[1-init], [1-want]™, [1-try]™*, [1l-exit]*}
implies [mx]*

14
LectureNote6, Sinaia School, 03-10 March 2008

Assertion Splitting via Case Splitting
proof-Oi.mod

For any INV1-algebra (a model of INV1) c-want(s,k)
is either true or false. Hence the following assertion
splitting is justified.

Assertion Splitting via Case Splitting ‘
{[1-want,c-w]*, [1-want,~c-w]}
implies [1-want]*

(CS) {(E|=(pyorpy), (EU{p,=true} |=p),
(E U {p,=true} |= p) }
implies E|=p

LectureNote6, Sinaia School, 03-10 March 2008

Meta Level Equation and Object Level Equation

(EQ) EU{t, =t }|=p iff EU{(t1=t2)=true}|=p

(p =true) iff p

--> [1-want,c-w-org]* --> [1-want,c-w]*

as assertion

open INV1 ———p | Open INV1
op s : ->8ys . iff op s : ->8ys .

ops i j k : -> Pid . ops i j k : -> Pid .

eq invl(s,I:Pid,J:Pid) = true . eq invi(s,I:Pid,J:Pid) = true .
eq c-want(s,k) = true . as p.e. -- eq c-want(s,k) = true .

- 1= EQ eq pc(s,k) = rm .
red invi(want(s,k),i,j) . -— 1=
close red invi(want(s,k),i,j) -

close

16
LectureNote6, Sinaia School, 03-10 March 2008

Assertion Transformation: INST, TRANS, HIDE, IMP

proof-4.mod

The proof passage [1-want,c-w,~i=k,~j=k]*
returns a boolean term witch is equivalent to
invli(s,i,}J). Thisshouldreturn true because
the boolean term is an instance of

invl(s, I:Pid,J:Pid) which is declared in the
premise part (the part before |=) of this proof
passage. This assertion/proof-passage is
transformed to the effective one (the one which
return true) by using INST, TRANS, and HIDE
transforming rules.

17
LectureNote6, Sinaia School, 03-10 March 2008
INST
-- [1-want,c-w,~i=k,~j=k]*
open INV1
ops:->Sys .opsijk:->Pid.| gy
eq invli(s,1:Pid,J:Pid) = true . iff
-- eq c-want(s,k) = true .
eq pc(s,k) = rm . >
eq (i = k) = false . INST
eq (g = k) = false .
cloggd invi(want(s,k),i.i) - — [l-want,c-w,~i=k,~j=k, inst]*
open INV1
ops:->Sys .opsijk:->Pid.
eq invi(s,I:Pid,J:Pid) = true .
eq invi(s,i,j) = true . **
-- eq c-want(s,k) = true .
eq pc(s,k) = rm .
eq (i = k) = false .
eq (0 = k) = false .
-— 1=
red invi(want(s,k),i,j) -
close
18

LectureNote6, Sinaia School, 03-10 March 2008

TRANS, HIDE

-- [1-want,c-w,~i=k,~j=k, inst, trans]*

open INV1
ops:->Sys .opsijk:->Pid.
— eq invi(s,I:Pid,J:Pid) = true . including comments
iff -- eq c-want(s,k) = true . —
eq pc(s,k) = rm . iff
eq (i = k) = false .
—— eq (j = k) = false .
TRANS | __ |=
red inviCs,i,j) implies Comment-out-ed equations
close invi(want(s,k),i.j) . ** are effective for “assertions”
-- [1-want,c-w,~i=k,~j=k, inst, trans,hide]
open INV1
. ops:->Sys .opsijk:->Pid.
excluding com. ments -- eq invl(s,I1:Pid,J:Pid) = true . **
; : -- eq c-want(s,k) = true .
implies eq pc(s,k) = rm .
eq (i = k) = false .
e eq (g = k) = false .
HIDE |- |=

red invl(s,i,j) implies
invi(want(s,k),i,j) -
close 19
LectureNote6, Sinaia School, 03-10 March 2008

Some basic properties of E |=p (1)
(term or equation which moves across |=
is assumed to include no variables)

Let t1’ and t2’ be the terms obtained from (a
boolean: error) terms t1 and t2 by replacing
variables in t1 and t2 with corresponding ground
terms respectively then:

(INST) (EU {t1=t2))|=p iff
(E U {t1=t2} U {tI'=t2)|= p

(TRANS) E|=((t, =t,) implies p) iff
EU{t=t}[=p

20
LectureNote6, Sinaia School, 03-10 March 2008

Some basic properties of E|=p (2)
(term or equation which moves across |=
is assumed to include no variables)

(HIDE) (E U {t1=t2})|= p implies
(E U {t1=t2} U {t3=t4})|=p

This justifies to comment out any equation (removing
by making it comment) at any moment. (as a p.-p.)

(IMP) E|=(t,=t,) implies
(EU{t,=t}|=p iff E|=p)

21
LectureNote6, Sinaia School, 03-10 March 2008

module ISTEPT

invgrients-l.mod, proof-05.mod->proof-06.mod

| red invi(s,i,j) implies invi(want(s,k),i,j) |

eq istepl(l:Pid,J:Pid) =
invl(s,1,Jd) implies invli(s-,1,Jd) .

y

red istepl(i,j).

Notice that using INST,TRANS,HIDE, and istepl,
ops k I : -> Pid .
—_ I:
red invi(s,k,l) implies istepl(i,j) -
can also be used instead of instead of istepl(i,j) forany k and I.

22
LectureNote6, Sinaia School, 03-10 March 2008

11

Simultaneous Induction Scheme

simultanious|S.txt,invariants-2.mod, proof-09.

mod->proof-10.mod

Lemma Discovery/Introduction:
Invariant inv2 is decided to be a
lemma to be introduced.

[1-init]
[1-want,c-w,i=k]

[1-want,~c-w]

[1-want,c-w,~i=k,j=k]
[1-want,c-w,~i=k,~j=K,istepl]

[A-try,c-t,i=k,j=k]

- - [1-try,c-t,i=k,~j=k]*
Simultaneous Induction Scheme [L-try,c-t,~i=k]*
{ [L-init], [L-want2]*, [1-try2]*, [L-exit2]*, g™
[2-init], [2-want2]*, [2-try2]*, [2-exit2]* }
implies [mx]*
{ [1-init], [1-want2]*, [1-try2]*, [1-exit2]*, [i-i"illt -
[2-init], [2-want2]*, [2-try2]*, [2-exit2]* } {Lmzt:g:m::]k,j:k]
implies} [inv2]* [1-want.c-w,~i=k ~j=k,istep1]

Lemma Usage: Invariant predicate
inv2 can be declared in the premise
part of any assertion/proof-passage
after the introduction. [2-inite]

[1-try2,~c-t]
[1-exit2]*

[2-want2]*
[2-try2]*
[2-exit2]*

[1-try2,c-t,~i=K]*

23

LectureNote6, Sinaia School, 03-10 March 2008

Lemma declaration and its usage

-- [1-try2,c-t,i=k,~jJ=k, inv2]
open INV2
ops i jJ k : -> Pid .

€q
€q
€q
€q

—-- successor state

eq
_ I:

red

close

eq invl(s,1:Pid,J:Pid) = true .
eq inv2(s,J:Pid) = true .
eq c-try(s,k) = true .

pc(s,k) = wt .
top(queue(s)) = k .
i =k .

(g = k) = false .

s = try(s,k) .

declared lemma

inv2(s,j) implies istepl(i,j) -

LectureNote6, Sinaia School, 03-10 March 2008

used lemma

24

12

No need to change already constructed
assertions/proof-passages by lemma introduction

-- [1-want]™*
open INV1
op s : -> Sys .
ops 1 j k : -> Pid .

eq invi(s,1:Pid,J:Pid) = true .

- I:
red invi(want(s,k),i,j) -
close

-- [1-want2]*
open ISTEP2
ops i j k : -> Pid .
— -- eq invl(s,1:Pid,J:Pid) = true .
implies -- eq inv2(s,1:Pid) = true .

eq
I:

s® = want(s,k) .

red istepl(i) -

close

LectureNote6, Sinaia School, 03-10 March 2008

Final Proof Score for QLOCK

[1-init]

[1-want,c-w,i=K]
[1-want,c-w,~i=k,j=K]
[1-want,c-w,~i=k,~j=K,istep1]
[1-want,~c-w]
[1-try,c-t,i=k,j=K]
[1-try2,c-t,i=k,~j=k,inv2]
[1-try2,c-t,~i=k,j=k,inv2]
[1-try2,c-t,~i=k,~j=k]
[1-try,~c-t]
[1-exit2,c-e,i=K]
[1-exit2,c-e,~i=K,j=K]
[1-exit2,c-e,~i=K,~j=K]
[1-exit2,~c-€]

[2-init]

[2-want2,c-w,i=k]
[2-want2,c-w,~i=k,queue(s)=empty]
[2-want2,c-w,~i=k,queue(s)=j,q]
[2-want2,~c-w]

[2-try2,c-t,i=K]

[2-try2,c-t,~i=K]

[2-try2,~c-t]

[2-exit2,c-e,,i=k]
[2-exit2,c-e,~i=k,pc(s,i)=cs,inv1]
[2-exit2,c-e,~i=k,~pc(s,i)=cS]
[2-exit2,~c-e]

LectureNote6, Sinaia School, 03-10 March 2008

26

13

