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Verification of QLOCK 
with Proof Score

CafeOBJ Team of JAIST
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Topics

Verification method for  SPEC |= prop with Proof 
Score

QLOCK example is used to explain the method
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Flow Chart for 
Verification with Proof Scores in CafeOBJ

Understand problem 
and construct model

Write system spec SPEC and
Write property spec prop

Construct proof scores of 
SPEC |= prop
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Signature Diagram of QLOCKviaOTS
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RQLOCK (set of reachable states) of 
OTSQLOCK (OTS defined by the module QLOCK)

-- any initial state
op init : -> Sys

-- actions
bop want : Sys Pid -> Sys
bop try  : Sys Pid -> Sys
bop exit : Sys Pid -> Sys

Signature determining RQLOCK

RQLOCK = {init} ∪
{want(s,i)|s∈RQLOCK,i∈Pid} ∪
{try(s,i) |s∈RQLOCK,i∈Pid} ∪
{exit(s,i)|s∈RQLOCK,i∈Pid} 

Recursive definition of RQLOCK

qlock.mod
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Formalization of mutual exclusion property 
as an invariant

mod INV1 {
pr(QLOCK)

-- declare a predicate to verify to be an invariant
pred inv1 : Sys Pid Pid

-- CafeOBJ variables
var S :  Sys .
vars I J : Pid . 

-- define inv1 to be the mutual exclusion property
eq inv1(S,I,J) 

= (((pc(S,I) = cs) and (pc(S,J) = cs)) implies I = J) .
}

INV1 |= ∀s∈RQLOCK∀i,j∈Pid.inv1(s,i,j)
Formulation of proof goal for mutual exclusion property

invariants-0.mod
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Theorem of constants

INV1 |= ∀s∈Sys∀i,j∈Pid.inv1(s,i,j)

INV1 |= inv1(s:Sys,i:Pid,j:Pid)

INV1∪{op s : -> Sys}∪{ops i j : -> Pid} |= inv1(s,i,j) 

All the above three state:
for any model (or INV1-algebra) andany objects s:Sys,
i:Pid, j:Pid, the proposition inv1(s,i,j) holds.

||def

||TC
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Fresh constants and variables:
Theorem of Constants

Let p’ be the boolean term obtained from a boolean term p
by replacing all variables in p with “fresh constants” which do 
not appear anywhere in the specification SP=<S,E> then
(TC)              S,E |= p iff (S U C),E |= p’
where C is the set of the introduced fresh constants.

Notice that different occurrences of a “same variable” should 
be replaced with a same fresh constant. Notice also that a 
fresh constant introduced will have much longer scope than 
the original variable.
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Constants and variables: Differences
(model/interpretation is assumed to be fixed
and p is assumed to contain no variables in S,E|= p)

A constant of the same name which appears in several 
different places in S,E|= p denotes the same object, 
because a constant constitutes the signature S.  

A variable of the same name which appears in several 
different equations in S,E|= p denotes any object 
independently, and does not necessary denote the same 
object.

A variable of the same name which appears in the same 
equation in S,E|= p denotes arbitrarily but the same 
object.
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Assertion and Proof Passage

-- [mx]*
open INV1 
op s : -> Sys . 
ops i j : -> Pid .
-- |=
red inv1(s,i,j) .
close 

Proof Passage

INV1 ∪
{op s : -> Sys} ∪
{ops i j : -> Pid}  
|= 

inv1(s,i,j) 

Assertion

Logical Statement 
of stating that 
Specification satisfies 
property

Logical Statement 
and
CafeOBJ Code
If reduction part of 
the CafeOBJ code 
returns true then 
the assertion holds

～

proof-00.mod
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If [mx]* returns true the verification is done,
but ...  

A name of assertion/proof-passage(p.-p.) 
which ends with the character * (like 
[mx]*) indicates that it does not return 
true.  An assertion/p.-p. which return 
true is called to be effective. An 
effective p.p. has a name without * at 
the end.

-- [mx]*
open INV1 
op s : -> Sys . 
ops i j : -> Pid .
-- |=
red inv1(s,i,j) .
close 

This assertion states 
that mutual exclusion 
property holds for any 
reachable states.  

If this proof passage 
returns true the game is 
over. But it does not 
return true.
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Proof Scores and Assertion Splitting Rules (1)

The goal of verification of an assertion A via 
proof score is to get a set of assertions/p.-p.s
{A1,A2,…An} such that:
(1) (A1 and A2 and … and An) implies A,

and
(2) All the A1,A2,…,An are effective.  

A set of assertions which satisfies (1) and (2) is 
called a proof score (in a narrow sense) for A.
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Proof Scores and Assertion Splitting Rules (2)

For constructing proof scores, several kinds of assertion 
splitting rules of the form: 

(Ai1 and Ai2 and … and Ain) implies Ai
are used.  An assetion splitting rule is also written as:

{Ai1,Ai2, … Ain} implies Ai .
If n = 1 the assertion splitting rule is also called assertion 
transformation rule and is written like:

Ai1 implies A .
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Assertion Splitting 
via Induction Scheme induced by RQLOCK

proof-01.mod
RQLOCK = {init} ∪

{want(s,i)|s∈RQLOCK,i∈Pid} ∪
{try(s,i) |s∈RQLOCK,i∈Pid} ∪
{exit(s,i)|s∈RQLOCK,i∈Pid} 

In [mx]*, s : -> Sys means s : -> RQLOCK, 
and the following induction scheme follows.

{[1-init],[1-want]*,[1-try]*,[1-exit]*}
implies [mx]*

Induction Scheme (Assertion Splitting via I.S.)
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Assertion Splitting via Case Splitting 

proof-02.mod

For any INV1-algebra (a model of INV1) c-want(s,k) 
is either true or false.  Hence the following assertion 
splitting is justified.

{[1-want,c-w]*, [1-want,~c-w]}
implies [1-want]*

Assertion Splitting via Case Splitting

(CS)     { (E |= (p1 or p2)), (E U {p1=true} |= p) , 
(E U {p2=true} |= p) }

implies  E |= p
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Meta Level Equation and Object Level Equation

--> [1-want,c-w]*
open INV1
op s : -> Sys .
ops i j k : -> Pid .
eq inv1(s,I:Pid,J:Pid) = true .
-- eq c-want(s,k) = true .
eq pc(s,k) = rm .
-- |=
red inv1(want(s,k),i,j) .
close

--> [1-want,c-w-org]*
open INV1
op s : -> Sys .
ops i j k : -> Pid .
eq inv1(s,I:Pid,J:Pid) = true .
eq c-want(s,k) = true .
-- |=
red inv1(want(s,k),i,j) .
close

(EQ) E U { t1 = t2 } |= p iff E U { ( t1 = t2 ) = true } |= p

(p = true)  iff p

EQ

iff
as assertion

as p.p.
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Assertion Transformation: INST,TRANS,HIDE,IMP

proof-4.mod

The proof passage [1-want,c-w,~i=k,~j=k]*
returns a boolean term witch is equivalent to 
inv1(s,i,j). This should return true because 
the boolean term is an instance of 
inv1(s,I:Pid,J:Pid) which is declared in the 
premise part (the part before |=) of this proof 
passage.  This assertion/proof-passage is 
transformed to the effective one (the one which 
return true) by using INST, TRANS, and HIDE 
transforming rules.
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INST

-- [1-want,c-w,~i=k,~j=k]*
open INV1

op s : -> Sys . ops i j k : -> Pid .
eq inv1(s,I:Pid,J:Pid) = true .
-- eq c-want(s,k) = true .
eq pc(s,k) = rm .
eq (i = k) = false .
eq (j = k) = false .

-- |=
red inv1(want(s,k),i,j) .

close
-- [1-want,c-w,~i=k,~j=k,inst]*
open INV1

op s : -> Sys . ops i j k : -> Pid .
eq inv1(s,I:Pid,J:Pid) = true .
eq inv1(s,i,j) = true .  **
-- eq c-want(s,k) = true .
eq pc(s,k) = rm .
eq (i = k) = false .
eq (j = k) = false .

-- |=
red inv1(want(s,k),i,j) .

close

INST

iff
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TRANS,HIDE

-- [1-want,c-w,~i=k,~j=k,inst,trans]*
open INV1

op s : -> Sys . ops i j k : -> Pid .
eq inv1(s,I:Pid,J:Pid) = true .
-- eq c-want(s,k) = true .
eq pc(s,k) = rm .
eq (i = k) = false .
eq (j = k) = false .

-- |=
red inv1(s,i,j) implies 

inv1(want(s,k),i,j) .  ** 
close

-- [1-want,c-w,~i=k,~j=k,inst,trans,hide]
open INV1

op s : -> Sys . ops i j k : -> Pid .
-- eq inv1(s,I:Pid,J:Pid) = true .  **
-- eq c-want(s,k) = true .
eq pc(s,k) = rm .
eq (i = k) = false .
eq (j = k) = false .

-- |=
red inv1(s,i,j) implies 

inv1(want(s,k),i,j) .  
close

TRANS

iff

HIDE

implies

iff
including comments

Comment-out-ed equations 
are effective for “assertions”

excluding comments
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Some basic properties of  E |= p (1)
(term or equation which moves across |= 
is assumed to include no variables)

Let t1’ and t2’ be the terms obtained from (a 
boolean: error) terms t1 and t2 by replacing 
variables in t1 and t2 with corresponding ground 
terms respectively then:

(INST)                            (E U {t1=t2})|= p   iff
(E U {t1=t2} U {t1’=t2’})|= p

(TRANS) E |= (( t1 = t2 ) implies p) iff
E U { t1 = t2 } |= p
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(IMP) E |= ( t1 = t2 ) implies 
( E U { t1 = t2 } |= p iff E |= p )

(HIDE)                      (E U {t1=t2})|= p  implies                        
(E U {t1=t2} U {t3=t4})|= p

Some basic properties of  E |= p (2)
(term or equation which moves across |= 
is assumed to include no variables)

This justifies to comment out any equation (removing 
by making it comment) at any moment. (as a p.-p.)

LectureNote6, Sinaia School, 03-10 March 2008
22

module ISTEP1
invarients-1.mod, proof-05.mod->proof-06.mod

eq istep1(I:Pid,J:Pid) = 
inv1(s,I,J) implies inv1(s',I,J) .

red inv1(s,i,j) implies inv1(want(s,k),i,j) .

red istep1(i,j) .

Notice that using INST,TRANS,HIDE, and istep1,
ops k l : -> Pid .  …
-- |=
red inv1(s,k,l) implies istep1(i,j) .

can also be used instead of instead of istep1(i,j) for any k and l.
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Simultaneous Induction Scheme
simultaniousIS.txt,invariants-2.mod, proof-09.mod->proof-10.mod

{ [1-init], [1-want2]*, [1-try2]*, [1-exit2]*,
[2-init], [2-want2]*, [2-try2]*, [2-exit2]* }
implies [mx]*

{ [1-init], [1-want2]*, [1-try2]*, [1-exit2]*,
[2-init], [2-want2]*, [2-try2]*, [2-exit2]* }
implies} [inv2]*

Simultaneous Induction Scheme

[1-init]
[1-want,c-w,i=k]
[1-want,c-w,~i=k,j=k]
[1-want,c-w,~i=k,~j=k,istep1]
[1-want,~c-w]
[1-try,c-t,i=k,j=k]
[1-try2,c-t,i=k,~j=k,inv2]
[1-try2,c-t,~i=k]*
[1-try2,~c-t]
[1-exit2]*
[2-inite]
[2-want2]*
[2-try2]*
[2-exit2]*

[1-init]
[1-want,c-w,i=k]
[1-want,c-w,~i=k,j=k]
[1-want,c-w,~i=k,~j=k,istep1]
[1-want,~c-w]
[1-try,c-t,i=k,j=k]
[1-try,c-t,i=k,~j=k]*
[1-try,c-t,~i=k]*
[1-try,~c-t]
[1-exit]*

Lemma Discovery/Introduction:
Invariant inv2 is decided to be a 
lemma to be introduced.

Lemma Usage: Invariant predicate 
inv2 can be declared in the premise 
part of any assertion/proof-passage 
after the introduction.
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used  lemma

declared lemma

Lemma declaration and its usage

-- [1-try2,c-t,i=k,~j=k,inv2]
open INV2

ops i j k : -> Pid .
-- eq inv1(s,I:Pid,J:Pid) = true .
-- eq inv2(s,J:Pid) = true .
-- eq c-try(s,k) = true .
eq pc(s,k) = wt .
eq top(queue(s)) = k .
eq i = k .
eq (j = k) = false .

-- successor state
eq s' = try(s,k) . 

-- |=
red inv2(s,j) implies istep1(i,j) .

close



13

LectureNote6, Sinaia School, 03-10 March 2008
25

No need to change already constructed 
assertions/proof-passages by lemma introduction

-- [1-want]*
open INV1

op s : -> Sys . 
ops i j k : -> Pid .
eq inv1(s,I:Pid,J:Pid) = true .

-- |=
red inv1(want(s,k),i,j) .

close

-- [1-want2]*
open ISTEP2

ops i j k : -> Pid .
-- eq inv1(s,I:Pid,J:Pid) = true .
-- eq inv2(s,I:Pid) = true .
eq s' = want(s,k) .

-- |=
red istep1(i) .

close

implies
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Final Proof Score for QLOCK

[1-init]
[1-want,c-w,i=k]
[1-want,c-w,~i=k,j=k]
[1-want,c-w,~i=k,~j=k,istep1]
[1-want,~c-w]
[1-try,c-t,i=k,j=k]
[1-try2,c-t,i=k,~j=k,inv2]
[1-try2,c-t,~i=k,j=k,inv2]
[1-try2,c-t,~i=k,~j=k] 
[1-try,~c-t]
[1-exit2,c-e,i=k] 
[1-exit2,c-e,~i=k,j=k]
[1-exit2,c-e,~i=k,~j=k]
[1-exit2,~c-e]

[2-init]
[2-want2,c-w,i=k]
[2-want2,c-w,~i=k,queue(s)=empty]
[2-want2,c-w,~i=k,queue(s)=j,q]
[2-want2,~c-w]
[2-try2,c-t,i=k] 
[2-try2,c-t,~i=k] 
[2-try2,~c-t]
[2-exit2,c-e,,i=k]
[2-exit2,c-e,~i=k,pc(s,i)=cs,inv1]
[2-exit2,c-e,~i=k,~pc(s,i)=cs]
[2-exit2,~c-e]


