
1

Verification of QLOCK
with Proof Score

CafeOBJ Team of JAIST

LectureNote6, Sinaia School, 03-10 March 2008
2

Topics

Verification method for SPEC |= prop with Proof
Score

QLOCK example is used to explain the method

2

LectureNote6, Sinaia School, 03-10 March 2008
3

Flow Chart for
Verification with Proof Scores in CafeOBJ

Understand problem
and construct model

Write system spec SPEC and
Write property spec prop

Construct proof scores of
SPEC |= prop

LectureNote6, Sinaia School, 03-10 March 2008
4

Signature Diagram of QLOCKviaOTS

…
kj i

i

k

j

is i?

is j?
put

get

get

…

put

Queue

Label

Pid

Sys

want

try

pc

queue

exit

init

qlock.mod

3

LectureNote6, Sinaia School, 03-10 March 2008
5

RQLOCK (set of reachable states) of
OTSQLOCK (OTS defined by the module QLOCK)

-- any initial state
op init : -> Sys

-- actions
bop want : Sys Pid -> Sys
bop try : Sys Pid -> Sys
bop exit : Sys Pid -> Sys

Signature determining RQLOCK

RQLOCK = {init} ∪
{want(s,i)|s∈RQLOCK,i∈Pid} ∪
{try(s,i) |s∈RQLOCK,i∈Pid} ∪
{exit(s,i)|s∈RQLOCK,i∈Pid}

Recursive definition of RQLOCK

qlock.mod

LectureNote6, Sinaia School, 03-10 March 2008
6

Formalization of mutual exclusion property
as an invariant

mod INV1 {
pr(QLOCK)

-- declare a predicate to verify to be an invariant
pred inv1 : Sys Pid Pid

-- CafeOBJ variables
var S : Sys .
vars I J : Pid .

-- define inv1 to be the mutual exclusion property
eq inv1(S,I,J)

= (((pc(S,I) = cs) and (pc(S,J) = cs)) implies I = J) .
}

INV1 |= ∀s∈RQLOCK∀i,j∈Pid.inv1(s,i,j)
Formulation of proof goal for mutual exclusion property

invariants-0.mod

4

LectureNote6, Sinaia School, 03-10 March 2008
7

Theorem of constants

INV1 |= ∀s∈Sys∀i,j∈Pid.inv1(s,i,j)

INV1 |= inv1(s:Sys,i:Pid,j:Pid)

INV1∪{op s : -> Sys}∪{ops i j : -> Pid} |= inv1(s,i,j)

All the above three state:
for any model (or INV1-algebra) andany objects s:Sys,
i:Pid, j:Pid, the proposition inv1(s,i,j) holds.

||def

||TC

LectureNote6, Sinaia School, 03-10 March 2008
8

Fresh constants and variables:
Theorem of Constants

Let p’ be the boolean term obtained from a boolean term p
by replacing all variables in p with “fresh constants” which do
not appear anywhere in the specification SP=<S,E> then
(TC) S,E |= p iff (S U C),E |= p’
where C is the set of the introduced fresh constants.

Notice that different occurrences of a “same variable” should
be replaced with a same fresh constant. Notice also that a
fresh constant introduced will have much longer scope than
the original variable.

5

LectureNote6, Sinaia School, 03-10 March 2008
9

Constants and variables: Differences
(model/interpretation is assumed to be fixed
and p is assumed to contain no variables in S,E|= p)

A constant of the same name which appears in several
different places in S,E|= p denotes the same object,
because a constant constitutes the signature S.

A variable of the same name which appears in several
different equations in S,E|= p denotes any object
independently, and does not necessary denote the same
object.

A variable of the same name which appears in the same
equation in S,E|= p denotes arbitrarily but the same
object.

LectureNote6, Sinaia School, 03-10 March 2008
10

Assertion and Proof Passage

-- [mx]*
open INV1
op s : -> Sys .
ops i j : -> Pid .
-- |=
red inv1(s,i,j) .
close

Proof Passage

INV1 ∪
{op s : -> Sys} ∪
{ops i j : -> Pid}
|=

inv1(s,i,j)

Assertion

Logical Statement
of stating that
Specification satisfies
property

Logical Statement
and
CafeOBJ Code
If reduction part of
the CafeOBJ code
returns true then
the assertion holds

～

proof-00.mod

6

LectureNote6, Sinaia School, 03-10 March 2008
11

If [mx]* returns true the verification is done,
but ...

A name of assertion/proof-passage(p.-p.)
which ends with the character * (like
[mx]*) indicates that it does not return
true. An assertion/p.-p. which return
true is called to be effective. An
effective p.p. has a name without * at
the end.

-- [mx]*
open INV1
op s : -> Sys .
ops i j : -> Pid .
-- |=
red inv1(s,i,j) .
close

This assertion states
that mutual exclusion
property holds for any
reachable states.

If this proof passage
returns true the game is
over. But it does not
return true.

LectureNote6, Sinaia School, 03-10 March 2008
12

Proof Scores and Assertion Splitting Rules (1)

The goal of verification of an assertion A via
proof score is to get a set of assertions/p.-p.s
{A1,A2,…An} such that:
(1) (A1 and A2 and … and An) implies A,

and
(2) All the A1,A2,…,An are effective.

A set of assertions which satisfies (1) and (2) is
called a proof score (in a narrow sense) for A.

7

LectureNote6, Sinaia School, 03-10 March 2008
13

Proof Scores and Assertion Splitting Rules (2)

For constructing proof scores, several kinds of assertion
splitting rules of the form:

(Ai1 and Ai2 and … and Ain) implies Ai
are used. An assetion splitting rule is also written as:

{Ai1,Ai2, … Ain} implies Ai .
If n = 1 the assertion splitting rule is also called assertion
transformation rule and is written like:

Ai1 implies A .

LectureNote6, Sinaia School, 03-10 March 2008
14

Assertion Splitting
via Induction Scheme induced by RQLOCK

proof-01.mod
RQLOCK = {init} ∪

{want(s,i)|s∈RQLOCK,i∈Pid} ∪
{try(s,i) |s∈RQLOCK,i∈Pid} ∪
{exit(s,i)|s∈RQLOCK,i∈Pid}

In [mx]*, s : -> Sys means s : -> RQLOCK,
and the following induction scheme follows.

{[1-init],[1-want]*,[1-try]*,[1-exit]*}
implies [mx]*

Induction Scheme (Assertion Splitting via I.S.)

8

LectureNote6, Sinaia School, 03-10 March 2008
15

Assertion Splitting via Case Splitting

proof-02.mod

For any INV1-algebra (a model of INV1) c-want(s,k)
is either true or false. Hence the following assertion
splitting is justified.

{[1-want,c-w]*, [1-want,~c-w]}
implies [1-want]*

Assertion Splitting via Case Splitting

(CS) { (E |= (p1 or p2)), (E U {p1=true} |= p) ,
(E U {p2=true} |= p) }

implies E |= p

LectureNote6, Sinaia School, 03-10 March 2008
16

Meta Level Equation and Object Level Equation

--> [1-want,c-w]*
open INV1
op s : -> Sys .
ops i j k : -> Pid .
eq inv1(s,I:Pid,J:Pid) = true .
-- eq c-want(s,k) = true .
eq pc(s,k) = rm .
-- |=
red inv1(want(s,k),i,j) .
close

--> [1-want,c-w-org]*
open INV1
op s : -> Sys .
ops i j k : -> Pid .
eq inv1(s,I:Pid,J:Pid) = true .
eq c-want(s,k) = true .
-- |=
red inv1(want(s,k),i,j) .
close

(EQ) E U { t1 = t2 } |= p iff E U { (t1 = t2) = true } |= p

(p = true) iff p

EQ

iff
as assertion

as p.p.

9

LectureNote6, Sinaia School, 03-10 March 2008
17

Assertion Transformation: INST,TRANS,HIDE,IMP

proof-4.mod

The proof passage [1-want,c-w,~i=k,~j=k]*
returns a boolean term witch is equivalent to
inv1(s,i,j). This should return true because
the boolean term is an instance of
inv1(s,I:Pid,J:Pid) which is declared in the
premise part (the part before |=) of this proof
passage. This assertion/proof-passage is
transformed to the effective one (the one which
return true) by using INST, TRANS, and HIDE
transforming rules.

LectureNote6, Sinaia School, 03-10 March 2008
18

INST

-- [1-want,c-w,~i=k,~j=k]*
open INV1

op s : -> Sys . ops i j k : -> Pid .
eq inv1(s,I:Pid,J:Pid) = true .
-- eq c-want(s,k) = true .
eq pc(s,k) = rm .
eq (i = k) = false .
eq (j = k) = false .

-- |=
red inv1(want(s,k),i,j) .

close
-- [1-want,c-w,~i=k,~j=k,inst]*
open INV1

op s : -> Sys . ops i j k : -> Pid .
eq inv1(s,I:Pid,J:Pid) = true .
eq inv1(s,i,j) = true . **
-- eq c-want(s,k) = true .
eq pc(s,k) = rm .
eq (i = k) = false .
eq (j = k) = false .

-- |=
red inv1(want(s,k),i,j) .

close

INST

iff

10

LectureNote6, Sinaia School, 03-10 March 2008
19

TRANS,HIDE

-- [1-want,c-w,~i=k,~j=k,inst,trans]*
open INV1

op s : -> Sys . ops i j k : -> Pid .
eq inv1(s,I:Pid,J:Pid) = true .
-- eq c-want(s,k) = true .
eq pc(s,k) = rm .
eq (i = k) = false .
eq (j = k) = false .

-- |=
red inv1(s,i,j) implies

inv1(want(s,k),i,j) . **
close

-- [1-want,c-w,~i=k,~j=k,inst,trans,hide]
open INV1

op s : -> Sys . ops i j k : -> Pid .
-- eq inv1(s,I:Pid,J:Pid) = true . **
-- eq c-want(s,k) = true .
eq pc(s,k) = rm .
eq (i = k) = false .
eq (j = k) = false .

-- |=
red inv1(s,i,j) implies

inv1(want(s,k),i,j) .
close

TRANS

iff

HIDE

implies

iff
including comments

Comment-out-ed equations
are effective for “assertions”

excluding comments

LectureNote6, Sinaia School, 03-10 March 2008
20

Some basic properties of E |= p (1)
(term or equation which moves across |=
is assumed to include no variables)

Let t1’ and t2’ be the terms obtained from (a
boolean: error) terms t1 and t2 by replacing
variables in t1 and t2 with corresponding ground
terms respectively then:

(INST) (E U {t1=t2})|= p iff
(E U {t1=t2} U {t1’=t2’})|= p

(TRANS) E |= ((t1 = t2) implies p) iff
E U { t1 = t2 } |= p

11

LectureNote6, Sinaia School, 03-10 March 2008
21

(IMP) E |= (t1 = t2) implies
(E U { t1 = t2 } |= p iff E |= p)

(HIDE) (E U {t1=t2})|= p implies
(E U {t1=t2} U {t3=t4})|= p

Some basic properties of E |= p (2)
(term or equation which moves across |=
is assumed to include no variables)

This justifies to comment out any equation (removing
by making it comment) at any moment. (as a p.-p.)

LectureNote6, Sinaia School, 03-10 March 2008
22

module ISTEP1
invarients-1.mod, proof-05.mod->proof-06.mod

eq istep1(I:Pid,J:Pid) =
inv1(s,I,J) implies inv1(s',I,J) .

red inv1(s,i,j) implies inv1(want(s,k),i,j) .

red istep1(i,j) .

Notice that using INST,TRANS,HIDE, and istep1,
ops k l : -> Pid . …
-- |=
red inv1(s,k,l) implies istep1(i,j) .

can also be used instead of instead of istep1(i,j) for any k and l.

12

LectureNote6, Sinaia School, 03-10 March 2008
23

Simultaneous Induction Scheme
simultaniousIS.txt,invariants-2.mod, proof-09.mod->proof-10.mod

{ [1-init], [1-want2]*, [1-try2]*, [1-exit2]*,
[2-init], [2-want2]*, [2-try2]*, [2-exit2]* }
implies [mx]*

{ [1-init], [1-want2]*, [1-try2]*, [1-exit2]*,
[2-init], [2-want2]*, [2-try2]*, [2-exit2]* }
implies} [inv2]*

Simultaneous Induction Scheme

[1-init]
[1-want,c-w,i=k]
[1-want,c-w,~i=k,j=k]
[1-want,c-w,~i=k,~j=k,istep1]
[1-want,~c-w]
[1-try,c-t,i=k,j=k]
[1-try2,c-t,i=k,~j=k,inv2]
[1-try2,c-t,~i=k]*
[1-try2,~c-t]
[1-exit2]*
[2-inite]
[2-want2]*
[2-try2]*
[2-exit2]*

[1-init]
[1-want,c-w,i=k]
[1-want,c-w,~i=k,j=k]
[1-want,c-w,~i=k,~j=k,istep1]
[1-want,~c-w]
[1-try,c-t,i=k,j=k]
[1-try,c-t,i=k,~j=k]*
[1-try,c-t,~i=k]*
[1-try,~c-t]
[1-exit]*

Lemma Discovery/Introduction:
Invariant inv2 is decided to be a
lemma to be introduced.

Lemma Usage: Invariant predicate
inv2 can be declared in the premise
part of any assertion/proof-passage
after the introduction.

LectureNote6, Sinaia School, 03-10 March 2008
24

used lemma

declared lemma

Lemma declaration and its usage

-- [1-try2,c-t,i=k,~j=k,inv2]
open INV2

ops i j k : -> Pid .
-- eq inv1(s,I:Pid,J:Pid) = true .
-- eq inv2(s,J:Pid) = true .
-- eq c-try(s,k) = true .
eq pc(s,k) = wt .
eq top(queue(s)) = k .
eq i = k .
eq (j = k) = false .

-- successor state
eq s' = try(s,k) .

-- |=
red inv2(s,j) implies istep1(i,j) .

close

13

LectureNote6, Sinaia School, 03-10 March 2008
25

No need to change already constructed
assertions/proof-passages by lemma introduction

-- [1-want]*
open INV1

op s : -> Sys .
ops i j k : -> Pid .
eq inv1(s,I:Pid,J:Pid) = true .

-- |=
red inv1(want(s,k),i,j) .

close

-- [1-want2]*
open ISTEP2

ops i j k : -> Pid .
-- eq inv1(s,I:Pid,J:Pid) = true .
-- eq inv2(s,I:Pid) = true .
eq s' = want(s,k) .

-- |=
red istep1(i) .

close

implies

LectureNote6, Sinaia School, 03-10 March 2008
26

Final Proof Score for QLOCK

[1-init]
[1-want,c-w,i=k]
[1-want,c-w,~i=k,j=k]
[1-want,c-w,~i=k,~j=k,istep1]
[1-want,~c-w]
[1-try,c-t,i=k,j=k]
[1-try2,c-t,i=k,~j=k,inv2]
[1-try2,c-t,~i=k,j=k,inv2]
[1-try2,c-t,~i=k,~j=k]
[1-try,~c-t]
[1-exit2,c-e,i=k]
[1-exit2,c-e,~i=k,j=k]
[1-exit2,c-e,~i=k,~j=k]
[1-exit2,~c-e]

[2-init]
[2-want2,c-w,i=k]
[2-want2,c-w,~i=k,queue(s)=empty]
[2-want2,c-w,~i=k,queue(s)=j,q]
[2-want2,~c-w]
[2-try2,c-t,i=k]
[2-try2,c-t,~i=k]
[2-try2,~c-t]
[2-exit2,c-e,,i=k]
[2-exit2,c-e,~i=k,pc(s,i)=cs,inv1]
[2-exit2,c-e,~i=k,~pc(s,i)=cs]
[2-exit2,~c-e]

