Analysis of
Alternating Bit Protocol (1)

- Modeling and Specification -

Roadmap

Alternating Bit Protocol (ABP)
Modeling ABP

Specification in CafeOB)J
Experiments based on Specification

Alternating Bit Protocol (ABP)

Communication Protocols

e Two processes that do not have any memories
in common but share com. channels.

e Com. channels may be unreliable.
— Data in channels may be lost and/or duplicated.
e For one process (a sender) to send packets to
the other (a receiver) reliably over unreliable

channels, mechanisms should be devised:
communication protocols.

Alternating Bit Protocol

bit1 fifol bit2

Ei /'| <bitl,pac> ... <bitl,pac> }\A%
Sendevr\i bit2 ... bit2 |‘/Rece.iver

fifo2

e Datain the channels may be lost and/or duplicated, but neither
exchanged nor damaged.

Initially, channels are empty & both bits are the same.
e Sender & Receiver do the following:

— Sender puts a pair <bit1,pac> of the bit & a packet into fifol
repeatedly.

— Receiver puts the bit bit2 into fifo2 repeatedly.

— When Sender gets a bit b from fifo2, if b does not equal bit1, Sender
selects the next packet and alternates bit1.

— When Receiver gets a pair <b,p> from fifol, if b equals bit2, Receiver
receives p and alternates bit2.

Animation
<f,pQ>
bitl: £ fifol bit2: £
| <f.p0> <fp0> <fp0> <fp0> <fp0> <fp0> |\,
B
Sender \| ff f f £ f f I/ Receiver
fifo2

next: p0 £ list: pd)p0)

One Desirable Property

e When Receiver receives the nth packet,

— Receiver has received the n+1 packets pO, ..., pn
in this order,

—each pi fori = 0,...,n has been received only
once, and

— no other packets have been received.
 The property is called

the reliable communication property

in this talk.

Modeling ABP

Observations

Sender-to-Receiver channel

bop fifol : Sys -> PFifo
Receiver-to-Sender channel

bop fifo2 : Sys -> BFifo
Sender's bit

bop bitl : Sys -> Bool
Receiver's bit

bop bit2 : Sys -> Bool
The ordinal of the packet sent next by Sender
bop next : Sys -> Nat
The packets received by Receiver
bop list : Sys -> List

Transitions (1)

Sender's sending pairs of bits & packets
bop sendl : Sys -> Sys
Sender's receiving bits

bop recl : Sys -> Sys
Receiver's sending bits

bop send2 : Sys -> Sys
Receiver's receiving pairs of bits & packets
bop rec2 : Sys -> Sys

Transitions (2)

e Any data in a channel can be lost and/or
duplicated.

e Since only the top data in a channel is
extracted, however, it suffices that the effects
of losing and duplicating data can be seen
when the data becomes top in the channel.

Transitions (3)

e Dropping the 1st of fifol

bop dropl : Sys -> Sys
e Duplicating the 1st of fifol

bop dupl : Sys -> Sys
* Dropping the 1st of fifo2

bop drop2 : Sys -> Sys
e Duplicating the 1st of fifo2

bop dup2 : Sys -> Sys

Transition Diagram of Sender

<*, true> <* true>
<recl, ow> <recl, ow>

bitl: t
next: 1
<recl, fifo2 =/= empty <recl, fifo2 =/= empty
and top(fifo2) =/= > and top(fifo2) =/= t>

@ @ * |f the condition cond holds in the state S, then the
<trans, cond> .)
transition trans can change Sto S’.

» <trans,ow> means that if any other conditions for
trans do not hold, trans can change Sto S’.

* * represents any transition except those explicitly
stated.

Transition Diagram of Receiver

<*, true>
<rec2, ow>

<* true>
<rec2, ow>

bit2: f bit2: t

list: nil list: pO ist:
<rec2, fifol =/= empty <rec2, fifol =/= empty

and fst(top(fifol)) =/=f> and fst(top(fifol)) =/= t>
where snd(top(fifol)) = p0 where snd(top(fifol)) = p1

fst(<el,e2>)=el
snd(<el,e2>) =e2

Transition Diagram of Channels

\@

<dupi, true>

<* true>

cp . < } > FIRER
(flfoz: empty> sendi, true @<

Specification in CafeOBJ

Overview of Specification

e The specification consists of two parts:
— Multiple modules in which data used are specified.

— One module in which the model of ABP is
specified.

Data Used

Boolean values for bits

Natural numbers for ordinals of packets

Packets

Pairs of Boolean values & packets

Queues (for channels) of pairs of BVs & pacs

Queues (for channels) of Boolean values

List of packets

Data Modules

e Modules

EQBOOL, PNAT, PACKET, PAIR, QUEUE, L1ST,
PACKET-LIST, BOOL-PACKET-PAIR,
BOOL-QUEUE, BOOL-PACKET-PAIR-QUEUE,
EQTRIV

e Views

EQTRIV2PACKET, EQTRI1V2EQBOOL,
EQTRIV2BOOL-PACKET-PAIR

Let us take a look at the file “abp . mod”.

Equations Defining Transitions

* Foreacht - H Dy .. Dy, => H,
—Foreacho - H D,; .. Doy => D,,
ceq o(t(S, X, »X)>Y1505Y)

= NewValue
1T c-t(5S,X,...X,) -
— One more equation:
bceq t(S,X{,..,X) = S
iIf not c-t(S,X;,.. X)) -

System Modules

e Modules
ABP

Let us take a look at the file “abp . mod”.

Experiments based on
Specification

Naive Way to Experiment

* Some experiments

eq sl = rec2(dupl(dropl(sendl(send2(sendl(init)))))) .
red fifol(sl) .

eq s2 = recl(recl(send2(sl))) -

red fifol(s2) .

eq s3 = rec2(rec2(rec2(dupl(sendi(s2))))) .

red fifol(s3) .

e How much time does it take?

Let t be O(t, (L, (. 1,(S)..))).
Suppose that c-t; uses & (> 1) observations.

The order of reducing t is k.

Explicit States

e States of ABP are expressed as collections of

values returned by observers.

[Observation < State]
op _ _ - State State -> State {assoc comm}
op fifol: : PFifo -> Observation

 The hidden state In1t is expressed as the

explicit state:
Tfifol: empty fifo2: empty bitl: false bit2: false
next: O list: nil

Conversion between
Hidden & Explict States

e Conversion of hidden states into explicit ones

op hs2es : Sys -> State

eq hs2es(S) = (fifol: fiftol(S)) (fifo2: Tito2(S))
(bitl: bitl(S)) (bit2: bit2(S))
(next: next(S)) (list: list(S)) .

e Conversion of explicit states into hidden ones

op es2hs : State -> Sys

op sendl : State -> State {strat: (1 0)}

eq Tifol(es2hs((fifol: PF) SS)) = PF .

* Relations b/w transitions of hidden & explicit states
eq sendl1(SS) = hs2es(sendl(es2hs(SS))) .

Experiments

eq sO = hs2es(init) .
red sO .

eq sl = rec2(dupl(dropl(sendl(send2(send1(s0)))))) .-

red sl .
eq s2 = recl(recl(send2(sl))) .
red s2 .

eq s3 = rec2(rec2(rec2(dupl(sendi(s2))))) -
red s3 .

e Let us take a look at the file
“experimentl.mod”.

