Analysis of Alternating Bit Protocol (1)

- Modeling and Specification -

CafeOBJ Team of JAIST

Sinaia School, Mar 03-10, 2008

1

Roadmap

- Alternating Bit Protocol (ABP)
- Modeling ABP
- Specification in CafeOBJ
- Experiments based on Specification

Sinaia School, Mar 03-10, 2008

Alternating Bit Protocol (ABP)

Sinaia School, Mar 03-10, 2008

Communication Protocols

- Two processes that do not have any memories in common but share com. channels.
- Com. channels may be unreliable.
 - Data in channels may be lost and/or duplicated.
- For one process (a sender) to send packets to the other (a receiver) reliably over unreliable channels, mechanisms should be devised: communication protocols.

Sinaia School, Mar 03-10, 2008

Alternating Bit Protocol

- Data in the channels may be lost and/or duplicated, but neither exchanged nor damaged.
 - Initially, channels are empty & both bits are the same.
- Sender & Receiver do the following:
 - Sender puts a pair <bit1,pac> of the bit & a packet into fifo1 repeatedly.
 - Receiver puts the bit bit2 into fifo2 repeatedly.
 - When Sender gets a bit b from fifo2, if b does not equal bit1, Sender selects the next packet and alternates bit1.
 - When Receiver gets a pair < b,p > from fifo1, if b equals bit2, Receiver receives p and alternates bit2.

Sinaia School, Mar 03-10, 2008

Е

Animation

Sinaia School, Mar 03-10, 2008

One Desirable Property

- When Receiver receives the nth packet,
 - Receiver has received the n+1 packets p0, ..., pn in this order,
 - each pi for i = 0,...,n has been received only once, and
 - no other packets have been received.
- The property is called the reliable communication property in this talk.

Sinaia School, Mar 03-10, 2008

-

Modeling ABP

Sinaia School, Mar 03-10, 2008

Observations

Sender-to-Receiver channel

bop fifo1 : Sys -> PFifo

• Receiver-to-Sender channel

bop fifo2 : Sys -> BFifo

Sender's bit

bop bit1 : Sys -> Bool

Receiver's bit

bop bit2 : Sys -> Bool

• The ordinal of the packet sent next by Sender

bop next : Sys -> Nat

The packets received by Receiver

bop list : Sys -> List

Sinaia School, Mar 03-10, 2008

С

Transitions (1)

Sender's sending pairs of bits & packets

bop send1 : Sys -> Sys

Sender's receiving bits

bop rec1 : Sys -> Sys

Receiver's sending bits

bop send2 : Sys -> Sys

Receiver's receiving pairs of bits & packets

bop rec2 : Sys -> Sys

Sinaia School, Mar 03-10, 2008

Transitions (2)

- Any data in a channel can be lost and/or duplicated.
- Since only the top data in a channel is extracted, however, it suffices that the effects of losing and duplicating data can be seen when the data becomes top in the channel.

Sinaia School, Mar 03-10, 2008

11

Transitions (3)

• Dropping the 1st of fifo1

bop drop1 : Sys -> Sys

Duplicating the 1st of fifo1

bop dup1 : Sys -> Sys

• Dropping the 1st of fifo2

bop drop2 : Sys -> Sys

Duplicating the 1st of fifo2

bop dup2 : Sys -> Sys

Sinaia School, Mar 03-10, 2008

Transition Diagram of Sender

- If the condition cond holds in the state S, then the transition trans can change S to S'.
- < trans, ow > means that if any other conditions for trans do not hold, trans can change S to S.
- * represents any transition except those explicitly stated.

Sinaia School, Mar 03-10, 2008

13

Transition Diagram of Receiver

$$fst(< e1,e2>) = e1$$

 $snd(< e1,e2>) = e2$

Sinaia School, Mar 03-10, 2008

Transition Diagram of Channels

Specification in CafeOBJ

Overview of Specification

- The specification consists of two parts:
 - Multiple modules in which data used are specified.
 - One module in which the model of ABP is specified.

Sinaia School, Mar 03-10, 2008

17

Data Used

- Boolean values for bits
- Natural numbers for ordinals of packets
- Packets
- Pairs of Boolean values & packets
- Queues (for channels) of pairs of BVs & pacs
- Queues (for channels) of Boolean values
- List of packets

Sinaia School, Mar 03-10, 2008

Data Modules

Modules

EQBOOL, PNAT, PACKET, PAIR, QUEUE, LIST, PACKET-LIST, BOOL-PACKET-PAIR, BOOL-QUEUE, BOOL-PACKET-PAIR-QUEUE, EQTRIV

Views

EQTRIV2PACKET, EQTRIV2EQBOOL, EQTRIV2BOOL-PACKET-PAIR

Let us take a look at the file "abp.mod".

Sinaia School, Mar 03-10, 2008

10

Equations Defining Transitions

```
• For each t : H D_{t1} ... D_{tm} -> H,

- For each o : H D_{o1} ... D_{on} -> D_{o},

ceq o(t(S, X<sub>1</sub>, ..., X<sub>m</sub>), Y<sub>1</sub>, ..., Y<sub>n</sub>)

= NewValue

if c-t(S, X<sub>1</sub>, ..., X<sub>m</sub>) .

- One more equation:

bceq t(S, X<sub>1</sub>, ..., X<sub>m</sub>) = S

if not c-t(S, X<sub>1</sub>, ..., X<sub>m</sub>) .
```

Sinaia School, Mar 03-10, 2008

System Modules

ModulesABP

Let us take a look at the file "abp.mod".

Sinaia School, Mar 03-10, 2008

21

Experiments based on Specification

Sinaia School, Mar 03-10, 2008

Naïve Way to Experiment

Some experiments

```
eq s1 = rec2(dup1(drop1(send1(send2(send1(init)))))) .
red fifo1(s1) .
eq s2 = rec1(rec1(send2(s1))) .
red fifo1(s2) .
eq s3 = rec2(rec2(rec2(dup1(send1(s2))))) .
red fifo1(s3) .
```

How much time does it take?

```
Let t be o(t_n(t_{n-1}(...t_1(s)...))). Suppose that c-t_i uses k (> 1) observations. The order of reducing t is k^n.
```

Sinaia School, Mar 03-10, 2008

23

Explicit States

 States of ABP are expressed as collections of values returned by observers.

```
[Observation < State]
op _ _ : State State -> State {assoc comm}
op fifo1:_ : PFifo -> Observation
...
```

 The hidden state init is expressed as the explicit state:

Sinaia School, Mar 03-10, 2008

Conversion between Hidden & Explict States

Conversion of hidden states into explicit ones

Conversion of explicit states into hidden ones

```
op es2hs : State -> Sys
op send1 : State -> State {strat: (1 0)}
...
eq fifo1(es2hs((fifo1: PF) SS)) = PF .
```

Relations b/w transitions of hidden & explicit states

```
eq send1(SS) = hs2es(send1(es2hs(SS))) ...
```

Sinaia School, Mar 03-10, 2008

25

Experiments

```
eq s0 = hs2es(init) .
red s0 .
eq s1 = rec2(dup1(drop1(send1(send2(send1(s0)))))) .
red s1 .
eq s2 = rec1(rec1(send2(s1))) .
red s2 .
eq s3 = rec2(rec2(rec2(dup1(send1(s2))))) .
red s3 .
```

• Let us take a look at the file "experiment1.mod".

Sinaia School, Mar 03-10, 2008