Basics of CafeOBJ and
Peano Style Natural Numbers

Lecture Note 01
Formal Methods (i613-0912)

Topics

Basic concepts for modeling, specification,
verification in CafeOBJ

Basics of CafeOBJ language system: module,
sighature, equation, term, reduce, parse

Specification and verification of Peano style
natural numbers

LectureNote1, i613-0912

Modeling, Specifying, and Verifying in CafeOBJ

1. By understanding a problem to be modeled/
specified, determine several sorts of objects
(entities, data, agents, states) and operations
(functions, actions, events) over them for
describing the problem

2. Define the meanings/functions of the
operations by declaring equations over
expressions/terms composed of the operations

3. Write proof scores for properties to be verified

LectureNote1, i613-0912

Natural Numbers -- Signature --

0 0+1 0+1+1 0+1+1+1 0+1+1+1+1 ...
0 s(0) s(s(0)) s(s(s(0))) s(s(s(s(0)))) ---

objects: Nat
operations: 0 : returns zero without arguments
s : given a natural number n returns the
next natural number (s n) of n

-— sort

[Nat] 0)
-—constructor operators Cl
op 0 : -> Nat {constr}

op s : Nat -> Nat {constr}

LectureNote1, i613-0912

Natural Number
-- Expressions/terms composed of operators --

1. 0 is a natural number

2. If n is natural number then (s n) is a natural
number

3. An object which is to be a natural number by 1 and 2
is only a natural number

Peano’s definition of natural numbers (1889), Giuseppe Peano (1858-1932)

Nat = {0, s(0), s(s(0)), s(s(s(0))), s(s(s(s(0)))) ..}

Nat = {0, s 0, s s 0, s s s 0, s sss 0, ..}

H Describe a concept in expressions/terms! “

LectureNote1, i613-0912

CafeOBJ module specifying PNAT
-- Peano Stxle natural numbers

mod! PNAT ({
[Nat]
op 0 : -> Nat {constr} .
op s : Nat -> Nat {constr} .

op = : Nat Nat -> Bool {comm} .

eq (N:Nat = N) = true .

eq (0 = s(N2:Nat)) = false .

eq (s(Nl:Nat) = s(N2:Nat)) = (N1 = N2)
}

Constructors (indicated by {constr}) define recursively/
inductively the set of terms which constitute a sort.

LectureNote1, i613-0912

Mathematical Induction over Natural Numbers
-- induced by declaration of constructors

The recursive structure defined by two constructors
of sort Nat induces the following induction scheme.

Goal: Prove that a property P(n) is true
for any natural number n € {0, s 0, s s 0,..}
Induction Scheme:

P(0) VneEN. [P(n) => P(s n)]

VnEN.P(n)

Concrete Procedure: (induction with respect to n)

1. Prove P(0) is true
2. Assume that P(n) holds,
and prove that P(s n) is true

LectureNote1, i613-0912

Natural numbers with addition operation
-- sighature and expressions/terms

S—
-— sort
[Nat]
-—- operations 0
op 0 : -> Nat {constr}
op s : Nat -> Nat {constr}
op + : Nat Nat -> Nat
+

Nat = {0} U {sn| n e Nat }
U {nl+n2| nl € Nat A n2 € Nat }

LectureNote1, i613-0912

Natural numbers with addition
-- expressions/terms composed by operators --

Nat = {

0O, s 0, ssO, sss©O, ...,
O+0, 0O+ (s 0), 0+ (s s 0),

O + (s s s 0),
(s 0) + 0, (s 0) + (s 0),

(s 0) + (s s 0),
(s 0) + (s s s 0), ..
(s s 0) + 0, (s sO0) + (s 0), (s s O0) + (s s 0),

(s s 0) + (s s s 0),

L 4

0+ (0+ 0), 0+ (0 + (s 0)),

(0+ o) + 0, (0O + (s O0)) + 0,

.}

LectureNote1, i613-0912

Natural numbers with addition
-- equations define meaning/function

Inference/Computation
with the equations

CafeOBJ module PNAT+ defining
Peano Natural numbers with addition

(s s 0) + (s 0)
s((s 0) + (s 0))
s s(0 + (s 0))

mod! PNAT+ ({

pr (PNAT) —sss 0
op + : Nat Nat -> Nat .
vars N1 N2 : Nat . CafeOBJ> select PNAT+
—-— equations PNAT+> red s s 0 + s 0 .
eq O + N2 = N2 . PNAT+> -- reduce in PNAT+ :
eq (s N1) + N2 = s(N1 + N2) . || ((s (s 0)) + (s 0)):Nat

} (s (s (s 0))):NzNat

(0.000 sec for parse,
3 rewrites (0.000 sec),
5 matches)

LectureNote1, i613-0912

Reduction of CafeOBJ is
honest to equational reasoning

The basic mechanism of CafeOBJ verification is
equational reasoning. Equational reasoning is to
deduce an equation (a candidate of a theorem)
from a given set of equations (axioms of a
specification).

The CafeOBJ system supports an automatic
equational reasoning based on term rewriting.

“reduce” or “red” command of CafeOBJ helps to
do equational reasoning by term rewriting.

LectureNote1, i613-0912

What can be done with

red greductionl command?

Let us fix a context M (a module M in CafeOBJ), and let
(t1 =*M> t2) denote that t1 is reduced to t2 in the
context. Thatis, (red in M : t1 .) returns t2 .
Let (t1 =M t2)denote that t1 isequalto t2 inthe
context M. Thatis (t1 = t2) can be inferred by
equational reasoning in M. It is important to notice:

(tl =*M> t2)implies(tl =M t2)

but

(tl =M t2)does notimplies (tl =*M> t2)

LectureNote1, i613-0912

Proof Score
for the proof of right zero of addition _+_

-—- opening module PNAT+
open PNAT+
--> declare that n stands for any Nat wvalue

op n : -> Nat

**> Proof of (n + 0

**> base case of n = 0:
red 0 + 0 =0
**> induction hypothesis:

n) by induction on n

eqn+ 0 =n

**> induction step proof for (s n):
red s n+ 0 =sn

**> QED {end of proof}

close

LectureNote1, i613-0912

Declaring constants and equations then reduce

While a module is opened, declaring constants and equations

represents assumptions for equational reasoning done by red.

e N
$PNAT+> op n : -> Nat .

$PNAT+> **> induction hypothesis:

$PNAT+> egqn + 0 = n

$PNAT+> **> induction step proof for (s n):

**> induction step proof for (s n):

$PNAT+> red s n + 0 = s n

*

—-— reduce in %$PNAT+ : (((s n) + 0) = (s n)) :Bool
\(true):Bool

J

This is a proof of
“+ (N, 0) = N implies+(s(N), 0) = s(N) forany natural number N’ .

LectureNote1, i613-0912

Proof Score
for the proof of associativity of addition _+_

-—- opening module PNAT+
open PNAT+
--> declaring constants for arbitrary values

ops nl n2 n3 : -> Nat
**> Proof of associativity:
* k> (nl + n2) + n3 = nl1 +(n2 + n3)

**> by induction on nl

**> base case proof for O0:

red 0 + (n2 + n3) = (0 + n2) + n3

**> induction hypothesis:

eq (n1 + n2) + n3 = nl1 + (n2 + n3)

**> induction step proof for (s nl):

red ((s nl) + n2) + n3 = (s nl) + (n2 + n3)
**> QED {end of proof}

close

LectureNote1, i613-0912

Comments

A line beginning with “--" (or “**”) is ignored, and
A line beginning with “-->” (or “**>”) is echoed back.

CafeOBJ> -- this is a comment CafeOBJ> ** this is a comment
CafeOBJ> CafeOBJ>

CafeOBJ> --> this is a comment CafeOBJ> **> this is a comment
--> this is a comment **> this is a comment
CafeOBJI> CafeOBJ>

It is very important to write as much appropriate
comments as possible for explaining specifications
and proof scores (verifications/proofs).

LectureNotel, i613-0712 16

Three kinds of modules

CafeOBJ specification is composed of modules.
There are three kinds of modules.

mod! <module name> { mod* <module name> { mod <module name> {
<modlue element> * <modlue element> * <modlue element>*

}) U) U

mod! declares that the module denotes tight denotation
mod* declares that the module denotes loose denotation
mod does not declare any semantic denotation

[Naming convention] module name starts with two successive
upper case characters
(example: TEST, NAT, PNAT+, ACCOUNT-SYS,..)

LectureNote1, i613-0912

A module is composed of
signhature and axioms/equations

4 p
mod* PNAT {
[Nat]
op 0 : -> Nat {constr} .
op s_ : Nat -> Nat {constr} . signature
op = : Nat Nat -> Bool {comm} .
eq (N:Nat = N) = true .
eq (0 = s(N2:Nat)) = false .
eq (s(N1l:Nat) = s(N2:Nat))
= (N1 N2)

axioms/equations

LectureNote1, i613-0912

Signature:
sort name, operator name, arity, co-arity, rank

A signature is a pair of a set of sorts and a set of

operations.
[Mod* PNAT {
[Nat] - sorts
Signature op 0 : -> Nat {constr} <«
op s : Nat -> Nat {constr} <«
op = : Nat Nat -> Nat {comm}— operators
-}

[Convention] The first and second letter of a sort name is written in a
upper case and lower case letter respectively. (E.g. Nat, Set)

[Convention] The first letter of an operation name is written in a
lowerl case letter or a non-alphabet letter. (E.g. 0, s, +)

__

E op = :[Nat Nat|->|Nat
' arity co-arity (rang) rank

’

LectureNote1, i613-0912

Order sorted signature and sorted terms
-- Natural numbers with predecessor function

-— signature

—-—- sorts

[Zero NzNat < Nat]

-— operators

op 0 : -> Zero {constr}

op s_ : Zero -> NzNat {constr}

op s _: NzNat -> NzNat {constr} 0

op p_: NzNat -> Nat @
eq p s N:Nat = N .

Sorted terms

Zero = {0}

NzNat = {s 0} U {s n | n € NzNat}

Nat = Zero U NzNat U {p n | n € NzNat}

(p 0) is handled as anerror! | P-

LectureNote1, i613-0912

Recursive definition of terms
- term is also called expression or tree

For a given signature, t is a term of a sort s if and
only if t is

* a variable X: s,

* a constant c declared by “op ¢ : -> S”, or

caterm£(t,, ,t) for“op £ : S, S,Z -> S”

n

and aterm t. ofasorts. (i=1, ,n).

e aterm of a sort S’ which is a sub-sort of S
(Example: Since Zero < Nat,aterm 0:Zero is
also a term of sort Nat)

LectureNote1, i613-0912

Several forms of function application:
standard, prefix, infix, postfix, distfix

op £ : Nat Nat -> Nat .
£f(2,3) standard
op (£) : Nat Nat -> Nat . -- recommended
—-— for succesive

(f 2 3) prefix

op £ : Nat Nat -> Nat .
(£ 2 3) prefix

op + : Nat Nat -> Nat .
(2 + 3) infix

op ! : Nat -> Nat .

75 1) postfix
op if then else fi : Bool Nat Nat -> Nat .
(if 2 < 3 then 4 else 5 fi) distfix

‘(" and *)” are meta-charactors for grouping expressions
iIn CafeOBJ and can not be used foranother purpose.

LectureNote1, i613-0912

Parsing — precedence of operators

s 0 + 0 represents (s 0) + 0, because the
operator (s) has high precedence than the
operator (+)

s 0+ 0
The preceedences of the
operators can be checked by
- S the commands
/\ .—
s_ 0 N describe op (s)
| AN describeop (+)
o /\ _ T
0 0

(s 0) + 0 s(0 + 0)

LectureNote1, i613-0912

Equation

An equation is a pair of terms of a same sort, and
written as:

eql =r .
in CafeOBJ. Where 1 is called the left-hand
side (LHS) of the equation and r is the right-

hand side (RHS). An equation can have a
condition (COND) ¢ like:

ceq 1 = r 1if c

Most important kind of axioms of CafeOBJ specification are
equations

Properties to be verified are also expressed as equations

LectureNote1, i613-0912

Conditions for an equation to be a rewriting rule

For an equation to be used as a rewriting rule for
doing reductions, the following conditions must be
satisfied.

(1) LHS is not a variable.
an example violating this condition:
eq N:Nat = N:Nat + O

(2) All variables in RHS are in LHS.
an example violating this condition:
eq 0 = N:Nat * 0

LectureNote2, i613-0712

Two way of declaring variables
- use appropriate one based on the situation

Variable can be declared in an equation directly. The
scope of the variable ends at the end of the equation.

mod! PNAT+ { [Nat] ..
eq 0 + N2:Nat = N .
eq (s Nl:Nat) + N2:Nat = s (N1 + N2)

}

Variables can be declared before equations. The scope
of the variable ends at the end of the module.
mod! PNAT+ { [Nat] ..

vars M N : Nat .

eq O + N=N .

eq (s M) + N=s(M + N)
}

LectureNote1, i613-0912

Two equality predicates = and ==

Assume that (t1 =*> t1’ Jand (t2 =*> t2’)in any context
then
if (tl’ and t2’ are the same term)
then (red t1 = t2 .)returns true
and
(red t1 == t2 .)returns true
if (11" and t2’ are different terms)
then(red t1 = t2 .)retumns(tl’ = t2’)

but
(red t1 == t2 .)returns false

If reduction/rewriting is not complete w.r.t. a set of
equations, ==_may returns false even if two terms
may have a possibility of being equal w.r.t. the set of
equations.

LectureNote1, i613-0912

Constant v.s. variable

Using a variable in an equation instead of a constant makes a
drastic change of meaning of the proof score. Be careful!

* The scope of a constant is to the end of a open-close
session assuming that the declared constants are fresh.

* The scope of a variable is inside of the equation.

open PNAT+
oOp n :

red (s n) + 0
close

-> Nat .
eqn+ 0 =n .

S

n .

open PNAT+

var N : Nat .
EQN+ 0O =N .
red (s N) + 0 = s
close

N .

Constant: VYN:Nat.

[+(N,0)=N = +(s(N),0)=s(N)]

Variable: YN:Nat.[+(N,0)=N] =YN:Nat.[+(s(N),0)=s(N)]

LectureNote1, i613-0912

Exercise

mod! PNAT+* { pr (PNAT)
vars X Y Z : Nat .
op + : Nat Nat -> Nat {prec: 30}
eq 0 + Y =Y.
eq s(X) + ¥Y=s(X +Y) .

op * : Nat Nat -> Nat {prec: 29}
eq 0 * Y =0 .
eq s(X) * Y=Y+ (X *Y) . }

Write proof scores to verify that binary operators _+
and _* in PNAT+* are associative and commutative.
Write also proof scores to verify that _* distributes
over + thatis

(N1 + N2)* N3 =(N1*N3)+ (N2 *N3).

LectureNote1, i613-0912

