
Basics of CafeOBJ and
Peano Style Natural Numbers

Lecture Note 01
Formal Methods (i613-0912)

LectureNote1, i613-0912 2

Topics

♦  Basic concepts for modeling, specification,
verification in CafeOBJ

♦  Basics of CafeOBJ language system: module,
signature, equation, term, reduce, parse

♦  Specification and verification of Peano style
natural numbers

LectureNote1, i613-0912 3

Modeling, Specifying, and Verifying in CafeOBJ

1.  By understanding a problem to be modeled/
specified, determine several sorts of objects
(entities, data, agents, states) and operations
(functions, actions, events) over them for
describing the problem

2.  Define the meanings/functions of the
operations by declaring equations over
expressions/terms composed of the operations

3.  Write proof scores for properties to be verified

LectureNote1, i613-0912 4

Natural Numbers -- Signature --

objects:　 Nat
operations:　0 : returns zero without arguments
 s : given a natural number n returns the

next natural number (s n) of n

-- sort
[Nat]
--constructor operators
op 0 : -> Nat {constr}
op s_: Nat -> Nat {constr}

0 0+1 0+1+1 0+1+1+1 0+1+1+1+1 …

0 s(0) s(s(0)) s(s(s(0))) s(s(s(s(0)))) …

Nat
0

S_

LectureNote1, i613-0912 5

1.   0 is a natural number
2.  If n is natural number then (s n) is a natural

number
3.  An object which is to be a natural number by 1 and 2

is only a natural number

Natural Number
 -- Expressions/terms composed of operators --

Nat = {0, s(0), s(s(0)), s(s(s(0))), s(s(s(s(0)))) … }

Nat = {0, s 0, s s 0, s s s 0, s s s s 0, … }

Describe a concept in expressions/terms!

Peano’s definition of natural numbers （１８８９）, Giuseppe Peano (1858-1932)

CafeOBJ module specifying PNAT
 -- Peano Style natural numbers

LectureNote1, i613-0912 6

mod! PNAT {
 [Nat]
 op 0 : -> Nat {constr} .
 op s_ : Nat -> Nat {constr} .

 op _=_ : Nat Nat -> Bool {comm} .
 eq (N:Nat = N) = true .
 eq (0 = s(N2:Nat)) = false .
 eq (s(N1:Nat) = s(N2:Nat)) = (N1 = N2) .
}

Constructors (indicated by {constr}) define recursively/
inductively the set of terms which constitute a sort.

LectureNote1, i613-0912 7

Mathematical Induction over Natural Numbers
 -- induced by declaration of constructors

Goal: Prove that a property P(n) is true
 for any natural number n ∈ {0, s 0, s s 0,…}
Induction Scheme:

 P(0) 　∀n∈N.[P(n) => P(s n)]

∀n∈N.P(n)

Concrete Procedure: (induction with respect to n)
1.   Prove P(0) is true
2.   Assume that P(n) holds,
 and prove that P(s n) is true

The recursive structure defined by two constructors
of sort Nat induces the following induction scheme.

LectureNote1, i613-0912 8

Natural numbers with addition operation
　　　　-- signature and expressions/terms

-- sort
[Nat]
-- operations
op 0 : -> Nat {constr}
op s_: Nat -> Nat {constr}
op _+_: Nat Nat -> Nat

Nat
0

S_

+

Nat = { 0 } ∪ { s n ¦ n ∈ Nat }
 ∪ { n1 + n2 ¦ n1 ∈ Nat ∧ n2 ∈ Nat }

LectureNote1, i613-0912 9

Natural numbers with addition
　 -- expressions/terms composed by operators --

Nat = {
0, s 0, s s 0, s s s 0, ... ,
0 + 0, 0 + (s 0), 0 + (s s 0), 0 + (s s s 0), ...,
(s 0) + 0, (s 0) + (s 0), (s 0) + (s s 0),
 (s 0) + (s s s 0), ...,
(s s 0) + 0, (s s 0) + (s 0), (s s 0) + (s s 0),
 (s s 0) + (s s s 0), ...,
... ...
0 + (0 + 0), 0 + (0 + (s 0)), ...
...
(0 + 0) + 0, (0 + (s 0)) + 0, ...
...
. }

LectureNote1, i613-0912 10

Natural numbers with addition
-- equations define meaning/function

CafeOBJ module PNAT+ defining
Peano Natural numbers with addition

mod! PNAT+ {
 pr(PNAT)
 op _+_ : Nat Nat -> Nat .
 vars N1 N2 : Nat .
 -- equations
 eq 0 + N2 = N2 .
 eq (s N1) + N2 = s(N1 + N2) .
}

Inference/Computation
with the equations

 (s s 0) + (s 0)
= s((s 0) + (s 0))
= s s(0 + (s 0))
= s s s 0

CafeOBJ> select PNAT+
PNAT+> red s s 0 + s 0 .
PNAT+> -- reduce in PNAT+ :
((s (s 0)) + (s 0)):Nat
(s (s (s 0))):NzNat
(0.000 sec for parse,
3 rewrites(0.000 sec),
5 matches)

LectureNote1, i613-0912 11

Reduction of CafeOBJ is
honest to equational reasoning

♦  The basic mechanism of CafeOBJ verification is
equational reasoning. Equational reasoning is to
deduce an equation (a candidate of a theorem)
from a given set of equations (axioms of a
specification).

♦  The CafeOBJ system supports an automatic
equational reasoning based on term rewriting.

♦  “reduce” or “red” command of CafeOBJ helps to
do equational reasoning by term rewriting.

LectureNote1, i613-0912 12

What can be done with
red (reduction) command?

Let us fix a context M (a module M in CafeOBJ), and let
(t1 =*M> t2) denote that t1 is reduced to t2 in the
context. That is, (red in M : t1 .) returns t2 .
Let (t1 =M t2) denote that t1 is equal to t2 in the
context M. That is (t1 = t2) can be inferred by
equational reasoning in M. It is important to notice:

 (t1 =*M> t2) implies (t1 =M t2)

but

 (t1 =M t2) does not implies (t1 =*M> t2)

LectureNote1, i613-0912 13

Proof Score
for the proof of right zero of addition _+_

-- opening module PNAT+
open PNAT+
--> declare that n stands for any Nat value
op n : -> Nat .

**> Proof of (n + 0 = n) by induction on n
**> base case of n = 0:
red 0 + 0 = 0 .
**> induction hypothesis:
eq n + 0 = n .
**> induction step proof for (s n):
red s n + 0 = s n .
**> QED {end of proof}
close

LectureNote1, i613-0912 14

Declaring constants and equations then reduce

While a module is opened, declaring constants and equations
represents assumptions for equational reasoning done by red.

%PNAT+> op n : -> Nat .
...
%PNAT+> **> induction hypothesis:
%PNAT+> eq n + 0 = n .
%PNAT+> **> induction step proof for (s n):
**> induction step proof for (s n):
%PNAT+> red s n + 0 = s n .
*
-- reduce in %PNAT+ : (((s n) + 0) = (s n)):Bool
(true):Bool

This is a proof of
“+(N, 0) = N implies +(s(N), 0) = s(N) for any natural number N” .

LectureNote1, i613-0912 15

Proof Score
for the proof of associativity of addition _+_

-- opening module PNAT+
open PNAT+
--> declaring constants for arbitrary values
ops n1 n2 n3 : -> Nat .
**> Proof of associativity:
**> (n1 + n2) + n3 = n1 +(n2 + n3)
**> by induction on n1
**> base case proof for 0:
red 0 + (n2 + n3) = (0 + n2) + n3 .
**> induction hypothesis:
eq (n1 + n2) + n3 = n1 + (n2 + n3) .
**> induction step proof for (s n1):
red ((s n1) + n2) + n3 = (s n1) + (n2 + n3) .
**> QED {end of proof}
close

LectureNote1, i613-0712 16

Comments

A line beginning with “--” (or “**”) is ignored, and
A line beginning with “-->” (or “**>”) is echoed back.

CafeOBJ> -- this is a comment
CafeOBJ>

CafeOBJ> ** this is a comment
CafeOBJ>

CafeOBJ> --> this is a comment
--> this is a comment
CafeOBJ>

CafeOBJ> **> this is a comment
**> this is a comment
CafeOBJ>

It is very important to write as much appropriate
comments as possible for explaining specifications
and proof scores (verifications/proofs).

LectureNote1, i613-0912 17

CafeOBJ specification is composed of modules.
There are three kinds of modules.

Three kinds of modules

mod! <module_name> {
 <modlue_element> *
}

[Naming convention] module name starts with two successive
upper case characters
(example：TEST, NAT, PNAT+，ACCOUNT-SYS,…)

mod* <module_name> {
 <modlue_element> *
}

mod! declares that the module denotes tight denotation
mod* declares that the module denotes loose denotation
mod does not declare any semantic denotation

mod <module_name> {
 <modlue_element>*
}

LectureNote1, i613-0912 18

A module is composed of
signature and axioms/equations

 axioms/equations

 signature

mod* PNAT {
 [Nat]
 op 0 : -> Nat {constr} .
 op s_ : Nat -> Nat {constr} .
 op _=_ : Nat Nat -> Bool {comm} .

 eq (N:Nat = N) = true .
 eq (0 = s(N2:Nat)) = false .
 eq (s(N1:Nat) = s(N2:Nat))
 = (N1 = N2) .
}

LectureNote1, i613-0912 19

rank

Signature:
sort name, operator name, arity, co-arity, rank

A signature is a pair of a set of sorts and a set of
operations.

 Signature

Mod* PNAT {
 [Nat]
 op 0 : -> Nat {constr}
 op s : Nat -> Nat {constr}
 op _=_ : Nat Nat -> Nat {comm}
 ... }

sorts

operators

op _=_ : Nat Nat -> Nat

arity co-arity (rang)

[Convention] The first and second letter of a sort name is written in a
upper case and lower case letter respectively. (E.g. Nat, Set)

[Convention] The first letter of an operation name is written in a
lowerl case letter or a non-alphabet letter. (E.g. 0, s, +)

LectureNote1, i613-0912 20

Order sorted signature and sorted terms
-- Natural numbers with predecessor function

-- signature
-- sorts
[Zero NzNat < Nat]
-- operators
op 0 : -> Zero {constr}
op s_ : Zero -> NzNat {constr}
op s_: NzNat -> NzNat {constr}
op p_: NzNat -> Nat
eq p s N:Nat = N .

Sorted terms
Zero = {0}
NzNat = {s 0} ∪ {s n | n ∈ NzNat}
Nat = Zero ∪ NzNat ∪ {p n | n ∈ NzNat}

s_

Nat

0
NzNat Zero

p_ (p 0) is handled as an error!

LectureNote1, i613-0912 21

Recursive definition of terms
 - term is also called expression or tree

For a given signature, t is a term of a sort S if and
only if t is
•  a variable X:S,
•  a constant c declared by “op c : -> S”, or
•  a term f(t1,,tn) for “op f : S1 Sn -> S”

and a term ti of a sort Si (i =1, ,n).
•  a term of a sort S’ which is a sub-sort of S

(Example: Since Zero < Nat, a term 0:Zero is
also a term of sort Nat)

LectureNote1, i613-0912 22

Several forms of function application:
standard, prefix, infix, postfix, distfix

op f : Nat Nat -> Nat .
 f(2,3) standard
op (f_ _) : Nat Nat -> Nat . -- recommended
 -- for succesive __
 (f 2 3) prefix
op f__ : Nat Nat -> Nat .
 (f 2 3) prefix
op _+_ : Nat Nat -> Nat .
 (2 + 3) infix
op _! : Nat -> Nat .
 (5 !) postfix
op if_then_else_fi : Bool Nat Nat -> Nat .
 (if 2 < 3 then 4 else 5 fi) distfix

“(“ and “)” are meta-charactors for grouping expressions
in CafeOBJ and can not be used foranother purpose.

LectureNote1, i613-0912 23

Parsing – precedence of operators

s 0 + 0 represents (s 0) + 0, because the
operator (s _) has high precedence than the
operator (_ + _)

+

s_ 0

0

s_

0

+

0

s 0 + 0

(s 0) + 0 s(0 + 0)

describe op (s _)
describe op (_ + _)

The preceedences of the
operators can be checked by
the commands

LectureNote1, i613-0912 24

Equation

♦  Most important kind of axioms of CafeOBJ specification are
equations

♦  Properties to be verified are also expressed as equations

An equation is a pair of terms of a same sort, and
written as:
 eq l = r .
in CafeOBJ. Where l is called the left-hand
side (LHS) of the equation and r is the right-
hand side (RHS). An equation can have a
condition (COND) c like:
 ceq l = r if c .

LectureNote2, i613-0712 25

Conditions for an equation to be a rewriting rule

For an equation to be used as a rewriting rule for
doing reductions, the following conditions must be
satisfied.

(1) LHS is not a variable.
 an example violating this condition:
 eq N:Nat = N:Nat + 0 .

(2) All variables in RHS are in LHS.
 an example violating this condition:
 eq 0 = N:Nat * 0 .

LectureNote1, i613-0912 26

Two way of declaring variables
 - use appropriate one based on the situation

mod! PNAT+ { [Nat] …
 eq 0 + N2:Nat = N .
 eq (s N1:Nat) + N2:Nat = s(N1 + N2) .
}

Variables can be declared before equations. The scope
of the variable ends at the end of the module.
mod! PNAT+ { [Nat] …
 vars M N : Nat .
 eq 0 + N = N .
 eq (s M) + N = s(M + N) .
}

Variable can be declared in an equation directly. The
scope of the variable ends at the end of the equation.

LectureNote1, i613-0912 27

Two equality predicates _=_ and _==_

Assume that (t1 =*> t1’) and (t2 =*> t2’) in any context
 then
 if (t1’ and t2’ are the same term)
 then (red t1 = t2 .) returns true
 and
 (red t1 == t2 .) returns true
 if (t1’ and t2’ are different terms)
 then (red t1 = t2 .) returns (t1’ = t2’)
 but
 (red t1 == t2 .) returns false

If reduction/rewriting is not complete w.r.t. a set of
equations, _==_ may returns false even if two terms
may have a possibility of being equal w.r.t. the set of
equations.

LectureNote1, i613-0912 28

Constant v.s. variable

Using a variable in an equation instead of a constant makes a
drastic change of meaning of the proof score. Be careful!

•  The scope of a constant is to the end of a open-close
session assuming that the declared constants are fresh.

•  The scope of a variable is inside of the equation.

open PNAT+
op n : -> Nat .
eq n + 0 = n .
red (s n) + 0 = s n .
close

open PNAT+
var N : Nat .
Eq N + 0 = N .
red (s N) + 0 = s N .
close

Constant: ∀N:Nat. [+(N,0)=N ⇒ +(s(N),0)=s(N)]

Variable: ∀N:Nat.[+(N,0)=N] ⇒∀N:Nat.[+(s(N),0)=s(N)]

Exercise

LectureNote1, i613-0912 29

Write proof scores to verify that binary operators _+_
and _*_ in PNAT+* are associative and commutative.
Write also proof scores to verify that _*_ distributes
over _+_, that is
 (N1 + N2) * N3 = (N1 * N3) + (N2 * N3) .

mod! PNAT+* { pr(PNAT)
 vars X Y Z : Nat .
 op _+_ : Nat Nat -> Nat {prec: 30}
 eq 0 + Y = Y .
 eq s(X) + Y = s(X + Y) .
 op _*_ : Nat Nat -> Nat {prec: 29}
 eq 0 * Y = 0 .
 eq s(X) * Y = Y + (X * Y) . }

