Constructor-based Logics

GAINA, Daniel

Japan Advanced Institute of Science and Technology

January 22, 2010

Japan Advanced Institute of Science and Technology

Image: A matrix

Introduction

- Algebras consist of sorted-sets + functions
- Programs as algebras

- Signatures : sort and operation names
- Equations : describe the behavior of operations
- Signatures + Equations = (Basic) specifications
- Algebras of specifications interpret
 - each sort name as a set,
 - each operation name as a function, and
 - satisfy the equations.
- Specifications describe the behavior of algebras/programs

Specification of natural numbers

```
mod* PNAT {
 [Nat]
 op 0 : -> Nat
 op s_ : Nat -> Nat
 op _+_ : Nat Nat -> Nat
 vars X Y : Nat
 eq [ladd1] : 0 + X = X .
 eq [ladd2] : s X + Y = s (X + Y) . }
```

- ladd1 and ladd2 are (S, F)-equations
- $\mathbb{N}, \mathbb{Z}, \mathbb{Z}_n$ are (S, F)-models

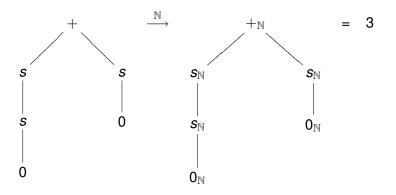
Remark

Logical notation: $\forall X.0 + X = X$ CafeOBJ notation: eq 0 + X = X. (Note that X is previously declared as a variable)

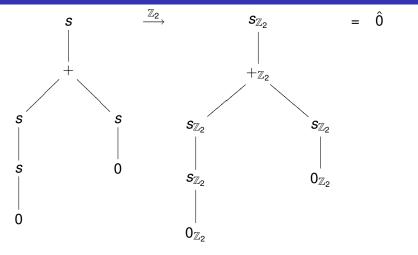
596

Terms and models I

Models interpret a ground term uniquely.



Terms and models II

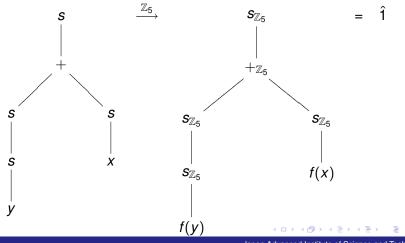


Japan Advanced Institute of Science and Technology

< 口 > < 🗗

Terms and models III

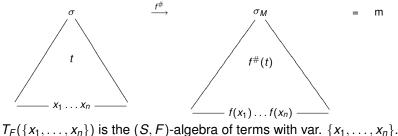
$$f: \{x, y\} \rightarrow \mathbb{Z}_5, f(x) = \hat{3} \text{ and } f(x) = \hat{4}$$



Terms and models IV

- **1** algebra (S, F)-algebra M, and
- **2** an assignment $f : \{x_1, \ldots, x_n\} \to M$.

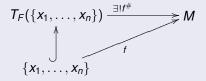
Terms *t* with var. $\{x_1, \ldots, x_n\}$ are uniquely interpreted (via *f*) in *M*



Terms and models V

Proposition

 $f: \{x_1, \ldots, x_n\} \to M$ can be uniquely extended to terms with variables from $\{x_1, \ldots, x_n\}$, $f^{\#}: T_F(\{x_1, \ldots, x_n\}) \to M$



Japan Advanced Institute of Science and Technology

.

Satisfaction I

M is (S, F)-algebra

• $(\forall X)t = t'$ is (S, F)-equation $M \models_{(S,F)} (\forall X)t = t' \Leftrightarrow f^{\#}(t) = f^{\#}(t'),$ for all $f : X \to M$.

•
$$M \models_{(S,F)} (\forall X)t = t'$$
 if $b \Leftrightarrow f^{\#}(b) = true_M \Rightarrow f^{\#}(t) = f^{\#}(t'),$
for all $f : X \to M$.

Overview	Semantics	Equational reasoning	Constructor-based equational reasoning
Satisfac	tion II		
Remar	k		
If $X =$	$\{x, y, z\}$ then	$(\forall X)e = (\forall x)(\forall y)(\forall x)$	z)e.
	ay drop the sul stood from the	$\begin{array}{l} \text{oscript} (S, F) \text{ from} \models \\ \text{context.} \end{array}$	$F_{(S,F)}$ when it is

Japan Advanced Institute of Science and Technology

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● ● ●

Satisfaction III

● N is (*S*, *F*)-model

• $(\forall x)(\forall y)x + sy = s(x + y)$ is (S, F)-equation

•
$$f: \{x, y\} \rightarrow \mathbb{N}, f(x) = 3 \text{ and } f(y) = 7$$

•
$$f^{\#}(x + sy) = f(x) +_{\mathbb{N}} s_{\mathbb{N}} f(y) = 3 +_{\mathbb{N}} s_{\mathbb{N}} 7 = 3 +_{\mathbb{N}} 8 = 11$$

•
$$f^{\#}(s(x+y)) = s_{\mathbb{N}}(f(x) + s_{\mathbb{N}} f(y)) = s_{\mathbb{N}}(3+s_{\mathbb{N}} 7) = s_{\mathbb{N}} 10 = 11$$

Remark

$$\mathbb{N} \models (\forall x)(\forall y)x + sy = s(x + y) \text{ iff } f^{\#}(x + sy) = f^{\#}(s(x + y)),$$
for all $f : X \to \mathbb{N}$

Specifications and models

Definition

Let Sp = ((S, F), E) be a specification.

- We say that *M* is a model of the specification *Sp* if $M \models E$ (i.e. $M \models e$ for all $e \in E$).
- ② $E \models e$ iff $M \models e$ for all models M of the specification Sp. In this case we may write $Sp \models e$.

Exercise: Show that $\mathbb{N},\,\mathbb{Z},\,\mathbb{Z}_2$ are models of the specification PNAT.

Japan Advanced Institute of Science and Technology

What is verification about?

- Some programs (models of the specifications) satisfies some properties (written as equations).
- The only effective way to prove formally the truth is by syntactic means (using proof rules).

Proof rules

a Reflexivity:
$$\overline{\emptyset \vdash_{\Sigma} t = t}$$
b Symmetry: $\overline{t = t' \vdash_{\Sigma} t' = t}$
c Transitivity: $\overline{t = t', t' = t''}$
c Congruence: $\overline{t = t' \vdash_{\Sigma} t_0(z \leftarrow t) = t_0(z \leftarrow t')}$
c Substitutivity: $\overline{(\forall x)e \vdash_{\Sigma} (\forall Y)e(x \leftarrow t)}$, where $t \in T_{\Sigma}(Y)$
c Implications: $\frac{E \vdash_{\Sigma} t = t' \text{ if } b}{E \cup \{b = true\} \vdash t = t'}$ and $\frac{E \cup \{b = true\} \vdash_{\Sigma} t = t'}{E \vdash_{\Sigma} t = t' \text{ if } b}$
c Generalization: $\frac{E \vdash_{\Sigma} (\forall x)e}{E \vdash_{\Sigma(x)} e}$ and $\frac{E \vdash_{\Sigma(x)} e}{E \vdash_{\Sigma} (\forall x)e}$

Japan Advanced Institute of Science and Technology

< □ > < □ > < □ > < □ > < □ >

크

Proof properties

・ロット (四マ (山)) (日)

Equational proof I

 $E \subseteq Sen(\Sigma)$ is a set of sentences and $e \in Sen(\Sigma)$ is a sentence, where $\Sigma = (S, F)$. A proof of *e* from *E*, written as $E \vdash_{\Sigma} e$, is a (finite) sequence of goals $E_1 \vdash_{\Sigma} e_1, \ldots E_n \vdash_{\Sigma} e_n$ such that

$$I E_n = E and e_n = e$$

2 $E_{i+1} \vdash_{\Sigma} e_{i+1}$ is obtained by applying a proof rule/property to the subset of $\{E_1 \vdash_{\Sigma} e_1, \dots, E_i \vdash_{\Sigma} e_i\}$

We may drop the subscript from $E \vdash_{\Sigma} e$ and write $E \vdash e$ when there is no danger of confusion.

Proposition (Soundness)

 $E \vdash e_n \text{ implies } E \models e_n$

Japan Advanced Institute of Science and Technology

Equational proof II

```
mod* GROUP {
 [Group]
 op 0 : -> Group
 op _+_ : Group Group -> Group
 op -_ : Group -> Group
 vars X Y Z : Group
 eq [lid] : 0 + X = X .
 eq [linv] : (- X) + X = 0 .
 eq [assoc] : X + (Y + Z) = (X + Y) + Z . }
```

Japan Advanced Institute of Science and Technology

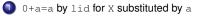
Equational proof III

•
$$\Sigma = (S, F)$$

 $S = \{\text{Group}\}$
 $F = \{0, +, -\}$
 $E = \{\text{lid, linv, assoc}\}$

- Assume
 eq [rinv] : X + (-X) = 0 .
 and prove
 eq [rid] : X + 0 = X .
- By Generalization: *E* ⊢_Σ (∀X)X+0=X iff *E* ⊢_{Σ(a)}a+0=a, where a is a any constant of sort Group.

Equational proof IV



- a+ (-a) =0 by rinv for X substituted by a
- (a+(-a))+a=0+a by Congruence with t₀=z+a
 - (a+(-a))+a=a by Transitivity applied to 3 and 1
- 6 a+ (-a+a) = (a+ (-a)) +a by assoc for X=a, Y=-a and Z=a
- a+ (-a+a) =a by Transitivity applied to 5 and 4
- 🕖 -a+a=0 by linv for X=a
- 0=-a+a by Symmetry
- a+0=a+(-a+a) by Congruence with t₀=a+z
- a+0=a by Transitivity applied to 9 and 6

Subterm replacement

- Specification (Σ, E) with $\Sigma = (S, F)$ Substitution $\theta : \{x\} \to T_F(Y)$ Conditional equation $(\forall x)t = t'$ if *b* in *E*
- Subterm replacement: $\frac{E \vdash \theta(b) = true}{E \vdash t_0(z \leftarrow \theta(t_1)) = t_0(z \leftarrow \theta(t_2))}$

CafeOBJ proofs

```
Assume GROUP satisfies eq [rinv] : X + (-X) = 0
and prove eq [rid] : X + 0 = X
```

```
open GROUP + EQL
vars X Y Z : Group .
eq [rinv] : X + (- X) = 0 .
op a : -> Group .
start a + 0 = a .
apply -.linv with X = a at (1 2) .
**> result a + (- a + a) = a : Bool
apply assoc at (1) .
**> result (a + (- a)) + a = a : Bool
apply red at term .
**> result true : Bool
close
```

Japan Advanced Institute of Science and Technology

A model of NAT

\mathbb{N}' model interpreting

- sort Nat: N∪{0'}
- Interpreter in the section of the

 $s_{N'} 0' = 1$

function _ + _:
 0' +_{N'} 0 = 0'
 0' +_{N'} X = X for all X∈ N - {0}
 X +_{N'} 0' = X for all X∈ N

Remark

 $0 +_{\mathbb{N}'} 0' \neq 0' +_{\mathbb{N}'} 0$

Japan Advanced Institute of Science and Technology

< - 17 →

Constructor-based signatures

- (S, F, F^c) signature: (S, F) algebraic signature $F^c \subseteq F$ constructors
- constrained sorts = sorts of constructors
- a sort which is not constrained is loose

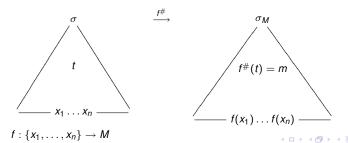
```
mod* PNAT {
 [Nat]
 op 0 : -> Nat {constr}
 op s_ : Nat -> Nat {constr}
 op _+_ : Nat Nat -> Nat
 vars X Y : Nat
 eq 0 + X = X .
 eq s X + Y = s (X + Y) . }
```

Remark

constrained sorts $\{Nat\}$ loose sorts \emptyset

Constructor-based models I

Constructor-based algebras *M* consist of interpretation of constructor terms formed with constructors and elements of sort loose, i.e. for every element *m* of constrained sort there exists a constructor term $t \in T_{F^c}(\{x_1, \ldots, x_n\})$, where variables x_i have loose sorts, and an assignment $f : \{x_1, \ldots, x_n\} \to M$ such that $f^{\#}(t) = m$.



Constructor-based models II

for NAT: no loose sorts

- N constructor-based algebra for all n ∈ N there is s...s 0 such that s_N...s_N0_N=n
- \mathbb{Z}_2 constructor-based algebra

 $0_{\mathbb{Z}_2} = 0$ and $s_{\mathbb{Z}_2} 0_{\mathbb{Z}_2} = 1$

- ℤ is not constructor-based algebra there exists no term s...s 0 such that s_N...s_N0_N=-1
- ℕ' is not constructor-based algebra there is no term s...s 0 s. t. s_ℕ...s_ℕ0_ℕ=0'

Overview	Equational reasoning	Constructor-based equational reasoning
Induction		

(Σ, E) specification

.

 $(\forall x)e$ conditional equation, x is constrained var.

Induction:
$$\frac{\{E \vdash^{c} (\forall Y)e(x \leftarrow t) \mid t \text{ constructor term}\}}{E \vdash^{c} (\forall x)e}$$

•
$$(\Sigma, E)$$
=NAT and $e = (\forall y)x + sy = s(x + y)$

By *Induction* we need to prove (∀y)0 + sy = s(0 + y) (∀y)s0 + sy = s(s0 + y) (∀y)ss0 + sy = s(ss0 + y)

Induction scheme

$$\begin{array}{ll} \mathsf{IB} & E \vdash_{\Sigma}^{c} (\forall y) 0 + sy = s(0+y) \\ \mathsf{IS} & E \cup (\forall y) a + sy = s(a+y) \vdash_{\Sigma(a)}^{c} (\forall y) sa + sy = s(sa+y) \end{array}$$

CafeOBJ code:

```
IB open PNAT
  red 0 + s Y = s(0 + Y) .
  close
IS open PNAT
  op a : -> Nat .
  eq [IH] : a + s Y = s(a + Y) .
  red s a + s Y = s(s a + Y) .
```

close

Equality _=_

```
mod* SPEC {
 [Elt]
 ops a b : -> Elt
 op _=_ : Elt Elt -> Bool
 vars X Y : Elt
 eq [equal] : (X = X) = true .
 ceq [cequal] : X = Y if (X = Y) .
}
```

Lemma (Equality)

We have that

$$\{equal, cequal, a=b\} \vdash^{c} (a=b) = true$$

{equal, cequal, (a=b)=true} ⊢^c a=b

Inconsistency I

Definition

 (Σ, E) is inconsistent if $E \vdash^c true = false$

Remark

 (Σ, E) admits initial model even it is inconsistent.

- * ロ * * @ * * 目 * * 目 * うへの

Inconsistency II

Assume
mod* SP{
inc(SPEC)
eq a = b .
eq (a = b) = false . }

Then SP is inconsistent and SP $\vdash^{c} \forall x.\forall y.x = y.$

Japan Advanced Institute of Science and Technology

イロト イヨト イヨト イヨト

æ

Inconsistency III

```
mod* QUEUE(D :: SPEC){
[Queue]
op nil : -> Queue {constr}
op _0_ : Elt Queue -> Queue {constr}
op _in_ : Elt Queue -> Bool
op empty? : Queue -> Bool
var O : Oueue
vars X Y : Elt
eq X in nil = false.
eq X in (Y @ Q) = (X = Y) or (X in Q).
eq empty?(nil) = true.
eq empty? (X @ Q) = false.
```

Japan Advanced Institute of Science and Technology

= nan

Inconsistency IV

The following spec. is inconsistent

```
mod* QUEUE-I{
inc(QUEUE)
op q : -> Queue
eq a @ q = nil . }
We would have
false = empty?(a @ q) = empty?(nil) = true
```

Japan Advanced Institute of Science and Technology

・ロト ・同ト ・ヨト ・ヨト

Case analysis I

- (Σ, E) , specification with $\Sigma = (S, F, F^c)$.
- $\sigma \in (F F^c)$ operation of constrained sort s
- t_1, \ldots, t_n constructor terms
- $\sigma(t_1, \ldots, t_n)$ is "not defined", there is no constructor term t such that $E \models^c \sigma(t_1, \ldots, t_n) = t$.

Case analysis: $\frac{\{E \cup \{\sigma(t_1, \ldots, t_n) = t\} \vdash^c e \mid t \text{ constructor term}\}}{E \vdash^c e}$

[Elt]
op a : -> Elt {constr}
op b : -> Elt }

We have that SPEC-CA \vdash^{c} a = b.

Case analysis II

mod* QUEUE={
inc(QUEUE)
eq a @ nil = b @ nil . }

Using Case analysis eq (a = b) = true . eq (a = b) = false . one may easily prove that $QUEUE = \vdash^{c} a = b$

Soundness

Proposition (Soundness)

 $E \vdash^{c} e$ implies $E \models^{c} e$.

Remark

The proof rules of constructor-based equational logic are not sound for equational logic, i.e. $E \vdash^c e$ does not imply $E \models e$.

Consider PNAT and the model \mathbb{N}' of PNAT. We have $PNAT\vdash^c \forall x.\forall y.x + y = y + x$ but $PNAT \not\models \forall x.\forall y.x + y = y + x$ because \mathbb{N}' is a model of PNAT but $\mathbb{N}' \not\models \forall x.\forall y.x + y = y + x$.

Japan Advanced Institute of Science and Technology

• • • • • • • • • • • •

Exercises

Using CafeOBJ prove

- O Group⊨rinv
- 2 Lemma Equality
- 3 QUEUE-I $\models^{c} \forall x. \forall y. x = y$
- SPEC-CA $\models^{c} a = b$
- QUEUE= $\models^{c} a = b$