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Introduction

Algebras consist of sorted-sets + functions

Programs as algebras
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An overview

Signatures : sort and operation names

Equations : describe the behavior of operations

Signatures + Equations = (Basic) specifications

Algebras of specifications interpret
1 each sort name as a set,
2 each operation name as a function, and
3 satisfy the equations.

Specifications describe the behavior of algebras/programs
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Specification of natural numbers
mod* PNAT {
[Nat]
op 0 : -> Nat
op s_ : Nat -> Nat
op _+_ : Nat Nat -> Nat
vars X Y : Nat
eq [ladd1] : 0 + X = X .
eq [ladd2] : s X + Y = s (X + Y) . }

S = {Nat}, F = {0, s_,_ + _}
ladd1 and ladd2 are (S,F )-equations

N, Z, Zn are (S,F )-models

Remark

Logical notation: ∀X .0 + X = X
CafeOBJ notation: eq 0 + X = X .
(Note that X is previously declared as a variable)
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Terms and models I

Models interpret a ground term uniquely.
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Terms and models II
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Terms and models III
f : {x , y} → Z5, f (x) = 3̂ and f (x) = 4̂
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Terms and models IV

1 algebra (S,F )-algebra M, and

2 an assignment f : {x1, . . . , xn} → M.

Terms t with var. {x1, . . . , xn} are uniquely interpreted (via f ) in M
σ
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f #(t)

f (x1) . . . f (xn)

= m

TF ({x1, . . . , xn}) is the (S,F )-algebra of terms with var. {x1, . . . , xn}.
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Terms and models V

Proposition

f : {x1, . . . , xn} → M can be uniquely extended to terms with variables
from {x1, . . . , xn}, f # : TF ({x1, . . . , xn})→ M

TF ({x1, . . . , xn})
∃!f #

// M

{x1, . . . , xn}
?�
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f
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Satisfaction I

M is (S,F )-algebra

(∀X )t = t ′ is (S,F )-equation
M |=(S,F ) (∀X )t = t ′ ⇔ f #(t) = f #(t ′),
for all f : X → M.

M |=(S,F ) (∀X )t = t ′ if b ⇔
f #(b) = trueM ⇒ f #(t) = f #(t ′),
for all f : X → M.
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Satisfaction II
Remark
If X = {x , y , z} then (∀X )e = (∀x)(∀y)(∀z)e.

We may drop the subscript (S,F ) from |=(S,F ) when it is
understood from the context.
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Satisfaction III
S = {Nat} F = {0, s,+}

N is (S,F )-model

(∀x)(∀y)x + sy = s(x + y) is (S,F )-equation

f : {x , y} → N, f (x) = 3 and f (y) = 7

f #(x + sy) = f (x) +N sNf (y) = 3 +N sN7 = 3 +N 8 = 11

f #(s(x + y)) = sN(f (x) +N f (y)) = sN(3 +N 7) = sN10 = 11

Remark

N |= (∀x)(∀y)x + sy = s(x + y) iff f #(x + sy) = f #(s(x + y)),
for all f : X → N
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Specifications and models

Definition
Let Sp = ((S,F ),E) be a specification.

1 We say that M is a model of the specification Sp if M |= E
(i.e. M |= e for all e ∈ E).

2 E |= e iff M |= e for all models M of the specification Sp. In
this case we may write Sp |= e.

Exercise: Show that N, Z, Z2 are models of the specification
PNAT.
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What is verification about?

Some programs (models of the specifications) satisfies
some properties (written as equations).

The only effective way to prove formally the truth is by
syntactic means (using proof rules).
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Proof rules

1 Reflexivity:
∅ `Σ t = t

2 Symmetry:
t = t ′ `Σ t ′ = t

3 Transitivity:
{t = t ′, t ′ = t ′′} `Σ t = t ′′

4 Congruence:
t = t ′ `Σ t0(z ← t) = t0(z ← t ′)

5 Substitutivity:
(∀x)e `Σ (∀Y )e(x ← t)

, where t ∈ TΣ(Y )

6 Implications:
E `Σ t = t ′ if b

E ∪ {b = true} ` t = t ′
and

E ∪ {b = true} `Σ t = t ′

E `Σ t = t ′ if b

7 Generalization:
E `Σ (∀x)e
E `Σ(x) e

and
E `Σ(x) e

E `Σ (∀x)e
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Proof properties

1 Monotonicity:
E `Σ E ′

if E ′ ⊆ E

2 Transitivity:
E1 `Σ E2,E2 `Σ E3

E1 `Σ E3

3 Unions:
E `Σ E1,E `Σ E2

E `Σ E1 ∪ E2
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Equational proof I
E ⊆ Sen(Σ) is a set of sentences and e ∈ Sen(Σ) is a sentence,
where Σ = (S,F ). A proof of e from E , written as E `Σ e, is a (finite)
sequence of goals E1 `Σ e1, . . .En `Σ en such that

1 En = E and en = e

2 Ei+1 `Σ ei+1 is obtained by applying a proof rule/property to the
subset of {E1 `Σ e1, . . .Ei `Σ ei}

We may drop the subscript from E `Σ e and write E ` e when there is
no danger of confusion.

Proposition (Soundness)

E ` en implies E |= en
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Equational proof II
mod* GROUP {
[Group]
op 0 : -> Group
op _ + _ : Group Group -> Group
op −_ : Group -> Group
vars X Y Z : Group
eq [lid] : 0 + X = X .
eq [linv] : (- X) + X = 0 .
eq [assoc] : X + (Y + Z) = (X + Y) + Z . }
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Equational proof III
Σ = (S,F )
S = {Group}
F = {0,+,-}
E = {lid, linv, assoc}

Assume
eq [rinv] : X + (-X) = 0 .
and prove
eq [rid] : X + 0 = X .

By Generalization:
E `Σ (∀X)X+0=X iff E `Σ(a)a+0=a,
where a is a any constant of sort Group.
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Equational proof IV

1 0+a=a by lid for X substituted by a

2 a+(-a)=0 by rinv for X substituted by a

3 (a+(-a))+a=0+a by Congruence with t0=z+a

4 (a+(-a))+a=a by Transitivity applied to 3 and 1

5 a+(-a+a)=(a+(-a))+a by assoc for X=a, Y=-a and Z=a

6 a+(-a+a)=a by Transitivity applied to 5 and 4

7 -a+a=0 by linv for X=a

8 0=-a+a by Symmetry

9 a+0=a+(-a+a) by Congruence with t0=a+z

10 a+0=a by Transitivity applied to 9 and 6
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Subterm replacement

Specification (Σ,E) with Σ = (S,F )
Substitution θ : {x} → TF (Y )
Conditional equation (∀x)t = t ′ if b in E

Subterm replacement:
E ` θ(b) = true

E ` t0(z ← θ(t1)) = t0(z ← θ(t2))
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CafeOBJ proofs

Assume GROUP satisfies eq [rinv] : X + (-X) = 0
and prove eq [rid] : X + 0 = X

open GROUP + EQL
vars X Y Z : Group .
eq [rinv] : X + (- X) = 0 .
op a : -> Group .
start a + 0 = a .
apply -.linv with X = a at (1 2) .

**> result a + (- a + a) = a : Bool
apply assoc at (1) .

**> result (a + (- a)) + a = a : Bool
apply red at term .

**> result true : Bool
close
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A model of NAT

N′ model interpreting
1 sort Nat:

N ∪ {0′}
2 function s_:
sN′ 0’ = 1

3 function _ + _:
0’ +N′ 0 = 0’
0’ +N′ X = X for all X∈ N− {0}
X +N′ 0’ = X for all X∈ N

Remark
0 +N′ 0’ 6= 0’ +N′ 0
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Constructor-based signatures
(S,F ,F c) signature: (S,F ) - algebraic signature

F c ⊆ F - constructors
1 constrained sorts = sorts of constructors
2 a sort which is not constrained is loose

mod* PNAT {
[Nat]
op 0 : -> Nat {constr}
op s_ : Nat -> Nat {constr}
op _+_ : Nat Nat -> Nat
vars X Y : Nat
eq 0 + X = X .

eq s X + Y = s (X + Y) . }

Remark

constrained sorts {Nat}
loose sorts ∅
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Constructor-based models I

Constructor-based algebras M consist of interpretation of
constructor terms formed with constructors and elements of
sort loose, i.e. for every element m of constrained sort there
exists a constructor term t ∈ TF c ({x1, . . . , xn}), where variables
xi have loose sorts, and an assignment f : {x1, . . . , xn} → M
such that f #(t) = m.

σ
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t

x1 . . . xn

f #

−→ σM
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f #(t) = m

f (x1) . . . f (xn)

f : {x1, . . . , xn} → M
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Constructor-based models II

for NAT: no loose sorts

N constructor-based algebra
for all n ∈ N there is s. . .s 0 such that sN . . .sN0N=n

Z2 constructor-based algebra
0Z2 = 0 and sZ20Z2=1

Z is not constructor-based algebra
there exists no term s. . .s 0 such that sN . . .sN0N=-1

N′ is not constructor-based algebra
there is no term s. . .s 0 s. t. sN . . .sN0N=0’
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Induction

(Σ,E) specification

(∀x)e conditional equation, x is constrained var.

Induction:
{E `c (∀Y )e(x ← t) | t constructor term}

E `c (∀x)e

(Σ,E)=NAT and e = (∀y)x + sy = s(x + y)

By Induction we need to prove
1 (∀y)0 + sy = s(0 + y)
2 (∀y)s0 + sy = s(s0 + y)
3 (∀y)ss0 + sy = s(ss0 + y)

...
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Induction scheme

IB E `c
Σ (∀y)0 + sy = s(0 + y)

IS E ∪ (∀y)a + sy = s(a + y) `c
Σ(a) (∀y)sa + sy = s(sa + y)

CafeOBJ code:
IB open PNAT

red 0 + s Y = s(0 + Y) .
close

IS open PNAT
op a : -> Nat .
eq [IH] : a + s Y = s(a + Y) .
red s a + s Y = s(s a + Y) .
close
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Equality _=_

mod* SPEC {
[Elt]
ops a b : -> Elt
op _=_ : Elt Elt -> Bool
vars X Y : Elt
eq [equal] : (X = X) = true .
ceq [cequal] : X = Y if (X = Y) .
}

Lemma (Equality)
We have that

1 {equal, cequal,a=b} `c (a=b)=true

2 {equal, cequal,(a=b)=true} `c a=b
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Inconsistency I

Definition
(Σ,E) is inconsistent if E `c true = false

Remark
(Σ,E) admits initial model even it is inconsistent.
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Inconsistency II
Proposition (Inconsistency)
Assume
mod* SP{
inc(SPEC)
eq a = b .
eq (a = b) = false . }

Then SP is inconsistent and SP`c ∀x .∀y .x = y.
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Inconsistency III
mod* QUEUE(D :: SPEC){
[Queue]
op nil : -> Queue {constr}
op _@_ : Elt Queue -> Queue {constr}
op _in_ : Elt Queue -> Bool
op empty? : Queue -> Bool
var Q : Queue
vars X Y : Elt
eq X in nil = false .
eq X in (Y @ Q) = (X = Y) or (X in Q) .
eq empty?(nil) = true .
eq empty?(X @ Q) = false . }
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Inconsistency IV

The following spec. is inconsistent

mod* QUEUE-I{
inc(QUEUE)
op q : -> Queue
eq a @ q = nil . }
We would have
false = empty?(a @ q) = empty?(nil) = true
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Case analysis I

(Σ,E), specification with Σ = (S,F ,F c).
σ ∈ (F − F c) operation of constrained sort s
t1, . . . , tn constructor terms
σ(t1, . . . , tn) is "not defined", there is no constructor term t
such that E |=c σ(t1, . . . , tn) = t .

Case analysis:
{E ∪ {σ(t1, . . . , tn) = t} `c e | t constructor term}

E `c e
mod* SPEC-CA{
[Elt]
op a : -> Elt {constr}
op b : -> Elt }

We have that SPEC-CA `c a = b.
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Case analysis II

mod* QUEUE={
inc(QUEUE)
eq a @ nil = b @ nil . }

Using Case analysis
eq (a = b) = true .
eq (a = b) = false .
one may easily prove that QUEUE= `c a = b
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Soundness

Proposition (Soundness)

E `c e implies E |=c e.

Remark
The proof rules of constructor-based equational logic are not
sound for equational logic, i.e. E `c e does not imply E |= e.

Consider PNAT and the model N′ of PNAT.
We have PNAT`c ∀x .∀y .x + y = y + x but
PNAT 6|= ∀x .∀y .x + y = y + x because N′ is a model of PNAT but
N′ 6|= ∀x .∀y .x + y = y + x .
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Exercises

Using CafeOBJ prove
1 Group|=rinv
2 Lemma Equality
3 QUEUE-I |=c ∀x .∀y .x = y
4 SPEC-CA |=c a = b

5 QUEUE= |=c a = b
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