
Verification of NSLPK

Lecture Note 09
Formal Methods (i613-0912)

LectureNote9, i613-0912 2

Topics

♦  Brushup of the previous lecture

♦  Verification that (an abstract model of) NSLPK enjoys
Agreement property

♦  proof score templates

♦  Case analysis & lemma conjecture

♦  Simultaneous induction

Brushup (1)

LectureNote9, i613-0912 3

♦ NSLPK:
Init: p → q { np, p }k(q)

Resp: q → p { np, nq, q }k(p)

Ack: p → q { nq }k(q)

♦ Agreement Property: Whenever a protocol run is
successfully completed by p and q,
•  the principal with which p is communicating is really q, and
•  the principal with which q is communicating is really p.

Brushup (2)

LectureNote9, i613-0912 4

♦ Nonces: n(p,q,r) denotes a nonce made by p for
q, where r makes it unique and unguessable.

♦ Messages: mi(p?,p,q,ei) (i = 1,2,3) denotes a
message (an Init, Resp, or Ack message) that seems
to have been sent by p to q but has been created by
p?, which may not be p, where ei is the message
body (ciphertext).

♦ Networks: Modeled as bags of messages.
•  Sending a message is formalized as putting it in the bag.
•  If the bag contains mi(p?,p,q,ei), then q can receive it.
•  Then q believes that it originates in p, although it is not true.
•  Suppose that messages are never deleted from the bag.

Brushup (3)

LectureNote9, i613-0912 5

♦  Three observable values:
op network : System -> Network
op rands : System -> RandBag
op nonces : System -> NonceBag

♦  Formalization of sending messages:
op sdm1 : System Principal Principal Random -> System {constr}
op sdm2 : System Principal Principal Principal
 Random Nonce -> System {constr}
op sdm3 : System Principal Principal Principal
 Nonce Nonce -> System {constr}

♦  Formalization of faking messages:
op fkm11 : System Principal Principal Message1 -> System {constr}
op fkm12 : System Principal Principal Nonce -> System {constr}
op fkm21 : System Principal Principal Message2 -> System {constr}
op fkm22 : System Principal Principal Nonce Nonce -> System {constr}
op fkm31 : System Principal Principal Message3 -> System {constr}
op fkm32 : System Principal Principal Nonce -> System {constr}

Brushup (4)

LectureNote9, i613-0912 6

♦  Equations for sdm2:
ceq network(sdm2(S,Q?,P,Q,R,N))
 = m2(P,P,Q,enc2(Q,N,n(P,Q,R),P)) network(S)
 if c-sdm2(S,Q?,P,Q,R,N) .
ceq rands(sdm2(S,Q?,P,Q,R,N))
 = R rands(S) if c-sdm1(S,P,Q,R) .
ceq nonces(sdm2(S,Q?,P,Q,R,N))
 = (if Q = intruder then N n(P,Q,R) nonces(S)
 else nonces(S) fi)
 if c-sdm2(S,Q?,P,Q,R,N) .
ceq sdm2(S,Q?,P,Q,R,N)
 = S if not c-sdm2(S,Q?,P,Q,R,N) .

where
eq c-sdm2(S,Q?,P,Q,R,N)
 = (m1(Q?,Q,P,enc1(P,N,Q)) \in network(S) and
 not(R \in rands(S))) .

Brushup (5)

LectureNote9, i613-0912 7

♦  Equations for fkm22:
ceq network(fkm22(S,P,Q,N1,N2))
 = m2(intruder,P,Q,enc2(Q,N1,N2,P)) network(S)
 if c-fkm22(S,P,Q,N1,N2) .
 eq rands(fkm22(S,P,Q,N1,N2)) = rands(S) .
 eq nonces(fkm22(S,P,Q,N1,N2)) = nonces(S) .
ceq fkm22(S,P,Q,N1,N2)
 = S if not c-fkm22(S,P,Q,N1,N2) .

where
eq c-fkm22(S,P,Q,N1,N2)
 = N1 \in nonces(S) and N2 \in nonces(S) .

Brushup (6)

LectureNote9, i613-0912 8

♦ Formalization of Agreement Property:
eq inv1(S,P,Q,Q?,R,N)
 = (not(P = intruder) and
 m1(P,P,Q,enc1(Q,n(P,Q,R),P)) \in network(S) and
 m2(Q?,Q,P,enc2(P,n(P,Q,R),N,Q)) \in network(S)
 implies
 m2(Q,Q,P,enc2(P,n(P,Q,R),N,Q)) \in network(S)) .

eq inv2(S,P,Q,P?,R,N)
 = (not(Q = intruder) and
 m2(Q,Q,P,enc2(P,N,n(Q,P,R),Q)) \in network(S) and
 m3(P?,P,Q,enc3(Q,n(Q,P,R))) \in network(S)
 implies
 m3(P,P,Q,enc3(Q,n(Q,P,R))) \in network(S)) .

Preparation for Verification (1)

LectureNote9, i613-0912 9

♦ Module PRED-NSLPK: Properties to verify are
declared.
mod* PRED-NSLPK {
 inc(NSLPK)
 op inv1 : System Principal Principal Principal
 Random Nonce -> Bool
 op inv2 : System Principal Principal Principal
 Random Nonce -> Bool
 …
 eq inv1(S,P,Q,Q?,R,N) = … .
 eq inv2(S,P,Q,P?,R,N) = … .
}

Preparation for Verification (2)

LectureNote9, i613-0912 10

♦ Module BASE-NSLPK: Verification is done by
structural induction on System. Fresh constants
used in proof scores are declared.

mod* BASE-NSLPK {
 inc(PRED-NSLPK)
 ops s s' : -> System
 op r : -> Random
 op n : -> Nonce
 ops p q p? q? : -> Principal
}

Preparation for Verification (3)

LectureNote9, i613-0912 11

♦  Module ISTEP-NSLPK: Basic formulas to prove in the
induction case (step) and induction hypotheses are
declared

mod* ISTEP-NSLPK { inc(BASE-NSLPK)
 op istep1 : -> Bool
 op istep2 : -> Bool

 eq istep1 = inv1(s,p,q,q?,r,n)

 implies inv1(s',p,q,q?,r,n) .

 eq istep2 = inv2(s,p,q,p?,r,n)
 implies inv2(s',p,q,p?,r,n) .
 -- eq inv1(s,P,Q,Q?,R,N) = true .
 -- eq inv2(s,P,Q,P?,R,N) = true .
}

An instance of the I.H.

The formula to prove

I.H.

Proof Score Templates (1)

LectureNote9, i613-0912 12

♦  The following proof score can be systematically written:

open BASE-NSLPK
-- check
 red inv1(init,p,q,q?,r,n) .
close

open ISTEP-NSLPK
-- fresh constants
 op a1 : -> S1 . …
-- assumptions
-- successor state
 eq s’ = t(s,a1,…) .
-- check
 red istep1 .
close

I.  Base case:

II.  Induction case: For each transition operator t,

eq istep1 = inv1(s,p,q,q?,r,n)
 implies
 inv1(s',p,q,q?,r,n) .

Fragments enclosed with open &
close in proof scores are called
proof passages.

  Done

Proof Score Templates (2)

LectureNote9, i613-0912 13

♦  If t has a non-trivial effective condition c-t, the case
is split into two sub-cases based on c-t.

open ISTEP-NSLPK
-- fresh constants
 op x1 : -> S1 . …
-- assumptions
 eq c-t(s,x1,…) = true .
-- successor state
 eq s’ = t(s,x1,…) .
-- check
 red istep1 .
close

open ISTEP-NSLPK
-- fresh constants
 op x1 : -> S1 . …
-- assumptions
 eq c-t(s,x1,…) = false .
-- successor state
 eq s’ = t(s,x1,…) .
-- check
 red istep1 .
close

  Done

Proof Score Templates (3)

LectureNote9, i613-0912 14

eq c-t(S,X1,…) = C1(S,X1,…) and … and Cn(S,X1,…).

  C(S,x1,…) may not be derived
from c-t(S,x1,…) = true with
reriting.

  Moreover, each Ci(S,x1,…) may
not be derived from C(S,x1,…) =
true with rewriting.

  The left proof passage on the
previous page is rewritten as this:

open ISTEP-NSLPK
-- fresh constants
 op x1 : -> S1 . …
-- assumptions
 -- eq c-t(s,x1,…) = true .
 eq C1(s,x1,…) = true .
 …
 eq Cn(s,x1,…) = true .
 --
-- successor state
 eq s’ = t(s,x1,…) .
-- check
 red istep1 .
close

C(S,X1,…)

Proof Score Templates (4)

LectureNote9, i613-0912 15

♦ Some equations used as assumptions in proof
passages may also need to be rewritten.

eq m1(q10?,q10,p10,enc1(p10,n10,q10))
 \in network(s) = true .

  In the induction case for sdm2 where c-sdm2(s,…) holds.
 One of the equations is as follows:

  This says that network(s) contains m1(…) and then there
exists a bag NW10 such that network(s) = m1(…) NW10.
  Hence, the following equation can be used:

eq network(s)
 = m1(q10?,q10,p10,enc1(p10,n10,q10)) nw10 .

where nw10 is a constant of Network.

rewriting

Proof Score Templates (5)

LectureNote9, i613-0912 16

♦ Assume that two sets E1, E2 of equations are
equivalent in a proof passage. If each equation in
E2 can be derived from E1 (together with the
equations available in the proof passage) with
rewriting, then E1 is preferable to E2.

♦ Use preferable equations as assumptions in
proof passages!

Proof Score Templates (6)

LectureNote9, i613-0912 17

♦ The proof score obtained so far is called a proof
score template. (See file template.mod.)

♦ The initial proof score can be used to verify any
(invariant) properties of the abstract model of
NSLPK.

  Assumption on the form of effective conditions: Although any forms
can be used, the recommended form is a conjunction of literals.
If you want to use a different form such as
 (C1(S,X1,…) or C2(S,X1,…)) and C3(S,X1,…),
then convert it into a disjunctive normal form (DNF) such as
 (C1(S,X1,…) and C3(S,X1,…)) or (C2(S,X1,…) and C3(S,X1,…))
and use the same number of transition operators as that of the
conjuncts in the DNF such as two.

Induction Case for fkm21 (1)

LectureNote9, i613-0912 18

♦  Let us consider the case where c-fkm21(s,…) holds.

open ISTEP-NSLPK
-- fresh constants
 ops p10 q10 : -> Principal .
 op m20 : -> Message2 .
 op nw10 : -> Network .
-- assumptions
 -- eq c-fkm21(s,…) = true .
 eq network(s) = m20 nw10 .
 --
 eq p = intruder .
-- successor state
 eq s' = fkm21(s,p10,q10,m20) .
-- check
 red istep1 .
close

  CafeOBJ does not return
any results.

  So, let us look at the formula
to prove
 inv1(s',p,q,q?,r,n)
which contains
 not(P = intruder)
in the premise.

  Then, this is used to split the
case into two sub-cases.

Induction Case for fkm21 (2)

LectureNote9, i613-0912 19

♦  In the case where “p = intrude”, CafeOBJ returns
true, while in the case where “(p = intruder)
= false”, it does not returns true.

♦ The difference of s and s’ that affects the property:
network(s) and network(s’), whose diff. is
m2(intruder,p10,q10,cipher2(m20)).

♦ So, the following formula is used to split the case into
two sub-cases:
m2(intruder,p10,q10,cipher2(m20))
= m2(q?,q,p,enc2(p,n(p,q,r),n,q))

A3

Induction Case for fkm21 (3)

LectureNote9, i613-0912 20

♦  If A3 does not hold, CafeOBJ returns true.

♦  In the case where A3 holds, instead of one equation, the
following four equations are used:
eq q? = intruder .
eq p10 = q .
eq q10 = p .
eq cipher2(m20) = enc2(p,n(p,q,r),n,q) .

♦  CafeOBJ does not return true for the case.

♦  We notice that if “q = intruder”, then “m2(q?,…)” in
the premise of inv1(s',p,q,q?,r,n) equals “m2(q,
…)” in the conclusion.

♦  So, “q = intruder” is used to split the case into two
sub-cases.

Induction Case for fkm21 (4)

LectureNote9, i613-0912 21

♦  If “q = intruder”, CafeOBJ returns true.
 But, if “(q = intruder) = false”, it does not.

♦ For the latter case, we notice that if the formula

m1(p,p,q,enc1(q,n(p,q,r),p)) \in nw10

 does not hold, the premise of inv1(s',p,q,q?,r,n)
 does not hold.

A5

Induction Case for fkm21 (5)

LectureNote9, i613-0912 22

♦  If A5 does not hold, CafeOBJ returns true.
 But, if A5 holds, it does not.

♦ For the latter case, we also notice that if the formula
m2(q,q,p,enc2(p,n(p,q,r),n,q)) \in nw10

 holds, the conclusion of inv1(s',p,q,q?,r,n)
holds.

♦  If A6 holds, CafeOBJ returns true.
 But, if A5 does not hold, it does not.

A6

Induction Case for fkm21 (6)

LectureNote9, i613-0912 23

♦ The remaining case is characterized by the following
equations:
network(s) = m20 nw10,
(p = intruder) = false ,
q? = intruder , p10 = q , q10 = p ,
cipher2(m20) = enc2(p,n(p,q,r),n,q) ,
(q = intruder) = false ,
m1(p,p,q,enc1(q,n(p,q,r),p)) \in nw10 ,
m2(q,q,p,enc2(p,n(p,q,r),n,q)) \in nw10 = false

♦ We can do further case analysis, but our
understanding of NSLPK tells us that there seems to
be some contradiction in the set of equations.

Induction Case for fkm21 (7)

LectureNote9, i613-0912 24

♦ The assumptions say that
•  There exists a valid Init message really sent by a non-

intruder p to a non-intruder q.
•  There exists a Resp message m20 whose body

(ciphertext) is valid as the reply to the Init message.
•  But, q has not replied to the Init message.

♦ These must imply that m20 has been faked by
the intruder.

Induction Case for fkm21 (8)

LectureNote9, i613-0912 25

♦ To this end, the intruder needs to get either enc2
(p,n(p,q,r),n,q) or n(p,q,r).
•  It seems impossible to get the former because q has

not replied to the Init message.
•  It also seems impossible to get the latter because n
(p,q,r) only appears in enc1(q,n(p,q,r),p),
which cannot be decrypted by the intruder.

Induction Case for fkm21 (9)

LectureNote9, i613-0912 26

♦  A lemma candidate:
not(P = intruder) and not(Q = intruder) and
m1(P,P,Q,enc1(Q,n(P,Q,R),P)) \in network(S) and
M2 \in network(S) and
cipher2(M2) = enc2(P,n(P,Q,R),N,Q)
implies
m2(Q,Q,P,enc2(P,n(P,Q,R),N,Q)) \in network(S)

♦  inv4(s,p,q,n,r,m20) can be used to discharge the
remaining case:
inv4(s,p,q,n,r,m20) implies istep1

inv4(S,P,Q,N,R,M2)

On Lemma Conjecture (1)

LectureNote9, i613-0912 27

♦ A systematic method of lemma conjecture:
•  Case analyses are conducted until CafeOBJ returns

either true or false for each proof passage.
•  For each proof passage for which CafeOBJ returns
false, we need to conjecture a lemma.

•  Let e1,…, en be the set of equations used as the
assumptions in such a proof passage.

•  The formula not(E1 and … and En), referred as a
necessary lemma NL, obtained by substituting each
(fresh) constant in “not(e1 and … and en)” with an
appropriate variable is one possible lemma candidate.

On Lemma Conjecture (2)

LectureNote9, i613-0912 28

♦  It is often the case that a necessary lemma NL cannot be
proved in a reasonably straightforward way.

♦  So, we may need to find another candidate L such that L
implies NL and can be proved in a reasonably
straightforward way.
•  One possible way to find L is to delete some Ei from NL, namely

that not(E1 and … and Ei–1 and Ei+1 and En … and En)
may be L.

♦  Crème, an automatic invariant prover, basically uses this
systematic method.

 Masahiro Nakano, Kazuhiro Ogata, Masaki Nakamura, Kokichi
Futatsugi: Crème: an Automatic Invariant Prover of Behavioral
Specifications. International Journal of Software Engineering and
Knowledge Engineering 17(6): 783-804 (2007)

On Lemma Conjecture (3)

LectureNote9, i613-0912 29

♦ Generally, however, we do not conduct case
analyses until CafeOBJ returns either true or
false for each proof passage because:
•  Too many cases (for human verifiers) are generated.
•  When you understand your target system enough well, you

may find some contradiction in the set of equations used as
the assumptions in a proof passage even if CafeOBJ does
not return false for the proof passage, as you have seen.

♦ Try to understand your target system as much as
possible; a verification attempt lets you understand
your target system better partly because you need to
understand it better.

Lemmas for Verification of inv1

LectureNote9, i613-0912 30

♦ We need two more lemmas:
eq inv3(S,M2)
 = (M2 \in network(S)

 implies

 random(nonce1(cipher2(M2))) \in rands(S) and

 random(nonce2(cipher2(M2))) \in rands(S)) .

eq inv5(S,N)
 = (N \in nonces(S)

 implies creator(N) = intruder or

 forwhom(N) = intruder) .

•  The latter is what is called (Nonce) Secrecy Property.

Verification of inv3

LectureNote9, i613-0912 31

♦ We need two lemmas:
eq inv8(S,M1)
 = (M1 \in network(S)

 implies

 random(nonce(cipher1(M1))) \in rands(S)) .

eq inv9(S,N)

 = (N \in nonces(S)
 implies random(N) \in rands(S)) .

•  But, verification of inv8 needs inv9, and verification
of inv9 needs inv3 and inv8.

•  Circularity?

Simultaneous Induction (1)

LectureNote9, i613-0912 32

♦  Inductive invariant w.r.t. an OTS S: A state predicate p is
inductive invariant w.r.t. S iff
•  p(init) for an arbitrary initial state init, and
•  p(s) implies p(s’) for an arbitrary state s and an arbitrary

successor state s’ of s.

♦  Invariant w.r.t. an OTS S : A state predicate q is invariant
w.r.t. S iff there exists an inductive invariant p w.r.t. S
such that p implies q.

♦  A standard way of proving that a given state predicate q
is invariant w.r.t. an OTS is to find an inductive invariant p
w.r.t. S such that p implies q.

q is invariant w.r.t. S

∃ p such that p implies q,
p(init), p(s) implies p(s’)

Simultaneous Induction (2)

LectureNote9, i613-0912 33

♦ It is often the case that p is in the form
q and q1 and … qn.

♦ Suppose that p is proved by structural induction
on the reachable state space.
•  Base case: All needed to do is to prove p(init), but

it suffices to prove each qi(init) for i = 0,1,…,n.
•  Induction case: All needed to do is, on the assumption

p(s) for an arbitrary state s, to prove p(s’) for an
arbitrary successor state s’ of s, but it suffices to
prove each qi (s’) for i = 0,1,…,n on the assumption
p(s).

Let q0 be q.

Simultaneous Induction (3)

LectureNote9, i613-0912 34

♦ Consequently, the proof (fragment) of each qi
can be written separately.

♦ Simultaneous induction is a style of writing the
proof of q0 and q1 and … qn by induction such
that the proof of each qi is written separately.

♦ Some advantages:
•  Proofs can be written incrementally.

 Basically the proofs you have written do not have to be
modified.

•  We can avoid making CafeOBJ reduce a long formula.
 CafeOBJ may not return any results in a reasonable
time even after doing some case analyses.

Simultaneous Induction (4)

LectureNote9, i613-0912 35

♦ Precisely the proof of inv8 does not use inv9 as a
lemma (in a usual sense), but uses inv9(s,N) as
an induction hypothesis, and the proof of inv9 does
not use inv8 as a lemma, but uses inv8(s,M1) as
an induction hypothesis.

♦ Likewise the proof of inv1 uses inv3(s,M2), inv4
(s,P,Q,N,R,M2) and inv5(s,N) as induction
hypotheses.

♦ Term “lemma” refers to state predicates such as q1,
…,qn used to make an inductive invariant such as q0
and q1 and … qn to prove that a state predicate
such as q0 is invariant.

Verification of Secrecy Property (inv5)

LectureNote9, i613-0912 36

♦ We need two lemmas.
♦ It is left as an exercise to conjecture and prove

them, which has something to do with the
exercise of the lecture (see the final page).

Verification of inv2

LectureNote9, i613-0912 37

♦ inv1 is Agreement Property from the initiators’ (p’s)
point of view, while inv2 from the responders’ (q’s)
point of view.

♦ Although inv2 is not exactly symmetric to inv1
w.r.t. NSLPK, they have some similarities.

♦ Hence, inv2 can be proved in a similar way to prove
inv1.

♦ The proof of inv2 uses three lemmas, one of which
is Secrecy Property (inv5).

♦ To complete the verification, we need one more
lemma.

♦ The verification is left as an exercise.

Other Case Studies on Protocol Verification

LectureNote9, i613-0912 38

♦  iKP (Internet Key Protocol) Electronic Payment Protocol
 K. Ogata, K. Futatsugi: Formal analysis of the iKP electronic payment protocols,
1st ISSS, LNCS 2609, Springer, pp.441-460 (2003).

♦  Horn-Preneel Micropayment Protocol
 K. Ogata, K. Futatsugi: Formal verification of the Horn-Preneel micropayment
protocol, 4th VMCAI, LNCS 2575, Springer, pp.238-252 (2003).

♦  SET (Secure Electronic Transactions) Electronic Payment Protocol
 K. Ogata, K. Futatsugi: Equational Approach to Formal Verification of SET, 4th
QSIC, IEEE CS Press, pp.50-59 (2004).

♦  NetBill Electronic Commerce Protocol
 K. Ogata, K. Futatsugi: Formal Analysis of the NetBill Electronic Commerce
Protocol, 2nd ISSS, LNCS 3233, Springer, pp.45-64 (2004).

♦  TLS (Transaction Layer Security) Authentication Protocol
 K. Ogata, K. Futatsugi: Equational Approach to Formal Analysis of TLS, 25th
ICDCS, IEEE CS Press, pp.795-804 (2005).

♦  Mondex Electronic Purse Protocol
 W. Kong, K. Ogata, K. Futatsugi: Algebraic Approaches to Formal Analysis of the
Mondex Electronic Purse System, 6th IFM, LNCS 4591, Springer, pp.393-412
(2007).

Exercise

LectureNote9, i613-0912 39

♦ Verify that the simpler abstract model of NSLPK
made in the exercise of the previous lecture
enjoys Secrecy Property.

