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Topics 

♦  Brushup of the previous lecture 

♦  Verification that (an abstract model of) NSLPK enjoys 
Agreement property 

♦  proof score templates 

♦  Case analysis & lemma conjecture 

♦  Simultaneous induction 



Brushup (1) 
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♦ NSLPK: 
Init: p → q { np, p }k(q) 

Resp: q → p { np, nq, q }k(p) 

Ack: p → q { nq }k(q) 

♦ Agreement Property: Whenever a protocol run is 
successfully completed by p and q, 
•  the principal with which p is communicating is really q, and 
•  the principal with which q is communicating is really p. 



Brushup (2) 
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♦ Nonces: n(p,q,r) denotes a nonce made by p for 
q, where r makes it unique and unguessable. 

♦ Messages: mi(p?,p,q,ei) (i = 1,2,3) denotes a 
message (an Init, Resp, or Ack message) that seems 
to have been sent by p to q but has been created by 
p?, which may not be p, where ei is the message 
body (ciphertext). 

♦ Networks: Modeled as bags of messages. 
•  Sending a message is formalized as putting it in the bag. 
•  If the bag contains mi(p?,p,q,ei), then q can receive it. 
•  Then q believes that it originates in p, although it is not true. 
•  Suppose that messages are never deleted from the bag. 



Brushup (3) 
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♦  Three observable values: 
op network : System -> Network 
op rands   : System -> RandBag 
op nonces  : System -> NonceBag 

♦  Formalization of sending messages: 
op sdm1 : System Principal Principal Random -> System {constr} 
op sdm2 : System Principal Principal Principal 
                               Random Nonce -> System {constr} 
op sdm3 : System Principal Principal Principal 
                                Nonce Nonce -> System {constr} 

♦  Formalization of faking messages: 
op fkm11 : System Principal Principal Message1    -> System {constr} 
op fkm12 : System Principal Principal Nonce       -> System {constr} 
op fkm21 : System Principal Principal Message2    -> System {constr} 
op fkm22 : System Principal Principal Nonce Nonce -> System {constr} 
op fkm31 : System Principal Principal Message3    -> System {constr} 
op fkm32 : System Principal Principal Nonce       -> System {constr} 



Brushup (4) 
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♦  Equations for sdm2: 
ceq network(sdm2(S,Q?,P,Q,R,N))   
 = m2(P,P,Q,enc2(Q,N,n(P,Q,R),P)) network(S) 
 if c-sdm2(S,Q?,P,Q,R,N) . 
ceq rands(sdm2(S,Q?,P,Q,R,N))     
 = R rands(S) if c-sdm1(S,P,Q,R) . 
ceq nonces(sdm2(S,Q?,P,Q,R,N)) 
 = (if Q = intruder then N n(P,Q,R) nonces(S)  
                    else nonces(S) fi) 
 if c-sdm2(S,Q?,P,Q,R,N) . 
ceq sdm2(S,Q?,P,Q,R,N)  
 = S if not c-sdm2(S,Q?,P,Q,R,N) . 

where 
eq c-sdm2(S,Q?,P,Q,R,N)  
 = (m1(Q?,Q,P,enc1(P,N,Q)) \in network(S) and  
   not(R \in rands(S))) . 



Brushup (5) 
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♦  Equations for fkm22: 
ceq network(fkm22(S,P,Q,N1,N2))   
 = m2(intruder,P,Q,enc2(Q,N1,N2,P)) network(S) 
 if c-fkm22(S,P,Q,N1,N2) . 
 eq rands(fkm22(S,P,Q,N1,N2)) = rands(S) . 
 eq nonces(fkm22(S,P,Q,N1,N2)) = nonces(S) . 
ceq fkm22(S,P,Q,N1,N2)  
 = S if not c-fkm22(S,P,Q,N1,N2) . 

where 
eq c-fkm22(S,P,Q,N1,N2)  
 = N1 \in nonces(S) and N2 \in nonces(S) . 



Brushup (6) 
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♦ Formalization of Agreement Property: 
eq inv1(S,P,Q,Q?,R,N) 
 = (not(P = intruder) and 
    m1(P,P,Q,enc1(Q,n(P,Q,R),P)) \in network(S) and 
    m2(Q?,Q,P,enc2(P,n(P,Q,R),N,Q)) \in network(S) 
    implies 
    m2(Q,Q,P,enc2(P,n(P,Q,R),N,Q)) \in network(S)) . 

eq inv2(S,P,Q,P?,R,N) 
 = (not(Q = intruder) and 
    m2(Q,Q,P,enc2(P,N,n(Q,P,R),Q)) \in network(S) and 
    m3(P?,P,Q,enc3(Q,n(Q,P,R))) \in network(S) 
    implies 
    m3(P,P,Q,enc3(Q,n(Q,P,R))) \in network(S)) . 



Preparation for Verification (1) 
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♦ Module PRED-NSLPK: Properties to verify are 
declared. 
mod* PRED-NSLPK { 
  inc(NSLPK) 
  op inv1 : System Principal Principal Principal  
                                Random Nonce -> Bool 
  op inv2 : System Principal Principal Principal  
                                Random Nonce -> Bool 
  … 
  eq inv1(S,P,Q,Q?,R,N) = … . 
  eq inv2(S,P,Q,P?,R,N) = … . 
} 



Preparation for Verification (2) 
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♦ Module BASE-NSLPK: Verification is done by 
structural induction on System. Fresh constants 
used in proof scores are declared. 

mod* BASE-NSLPK { 
  inc(PRED-NSLPK) 
  ops s s' : -> System 
  op r : -> Random 
  op n : -> Nonce 
  ops p q p? q? : -> Principal 
} 



Preparation for Verification (3) 
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♦  Module ISTEP-NSLPK: Basic formulas to prove in the 
induction case (step) and induction hypotheses are 
declared 

mod* ISTEP-NSLPK {  inc(BASE-NSLPK) 
  op istep1 : -> Bool 
  op istep2 : -> Bool 

  eq istep1 = inv1(s,p,q,q?,r,n) 

              implies inv1(s',p,q,q?,r,n) . 

  eq istep2 = inv2(s,p,q,p?,r,n)  
              implies inv2(s',p,q,p?,r,n) . 
  -- eq inv1(s,P,Q,Q?,R,N) = true . 
  -- eq inv2(s,P,Q,P?,R,N) = true . 
} 

An instance of the I.H. 

The formula to prove 

I.H. 



Proof Score Templates (1) 
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♦  The following proof score can be systematically written: 

open BASE-NSLPK 
-- check 
  red inv1(init,p,q,q?,r,n) . 
close 

open ISTEP-NSLPK 
-- fresh constants 
  op a1 : -> S1 . … 
-- assumptions 
-- successor state 
  eq s’ = t(s,a1,…) . 
-- check 
  red istep1 . 
close 

I.  Base case: 

II.  Induction case: For each transition operator t, 

eq istep1 = inv1(s,p,q,q?,r,n) 
            implies  
            inv1(s',p,q,q?,r,n) . 

Fragments enclosed with open & 
close in proof scores are called 
proof passages. 

  Done 



Proof Score Templates (2) 
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♦  If t has a non-trivial effective condition c-t, the case 
is split into two sub-cases based on c-t. 

open ISTEP-NSLPK 
-- fresh constants 
  op x1 : -> S1 . … 
-- assumptions 
  eq c-t(s,x1,…) = true . 
-- successor state 
  eq s’ = t(s,x1,…) . 
-- check 
  red istep1 . 
close 

open ISTEP-NSLPK 
-- fresh constants 
  op x1 : -> S1 . … 
-- assumptions 
  eq c-t(s,x1,…) = false . 
-- successor state 
  eq s’ = t(s,x1,…) . 
-- check 
  red istep1 . 
close 

  Done 



Proof Score Templates (3) 
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eq c-t(S,X1,…) = C1(S,X1,…) and … and Cn(S,X1,…). 

  C(S,x1,…) may not be derived 
from c-t(S,x1,…) = true with 
reriting. 

  Moreover, each Ci(S,x1,…) may 
not be derived from C(S,x1,…) = 
true  with rewriting. 

  The left proof passage on the 
previous page is rewritten as this: 

open ISTEP-NSLPK 
-- fresh constants 
  op x1 : -> S1 . … 
-- assumptions 
  -- eq c-t(s,x1,…) = true . 
  eq C1(s,x1,…) = true . 
  … 
  eq Cn(s,x1,…) = true . 
  -- 
-- successor state 
  eq s’ = t(s,x1,…) . 
-- check 
  red istep1 . 
close 

C(S,X1,…) 



Proof Score Templates (4) 
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♦ Some equations used as assumptions in proof 
passages may also need to be rewritten. 

eq m1(q10?,q10,p10,enc1(p10,n10,q10))  
   \in network(s) = true . 

  In the induction case for sdm2 where c-sdm2(s,…) holds. 
    One of the equations is as follows: 

  This says that network(s) contains m1(…) and then there 
exists a bag NW10 such that network(s) = m1(…) NW10. 
  Hence, the following equation can be used: 

eq network(s)  
   = m1(q10?,q10,p10,enc1(p10,n10,q10)) nw10 . 

where nw10 is a constant of Network. 

rewriting 



Proof Score Templates (5) 
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♦ Assume that two sets E1, E2 of equations are 
equivalent in a proof passage. If each equation in 
E2 can be derived from E1 (together with the 
equations available in the proof passage) with 
rewriting, then E1 is preferable to E2.  

♦ Use preferable equations as assumptions in 
proof passages! 



Proof Score Templates (6) 
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♦ The proof score obtained so far is called a proof 
score template. (See file template.mod.) 

♦ The initial proof score can be used to verify any 
(invariant) properties of the abstract model of 
NSLPK. 

  Assumption on the form of effective conditions: Although any forms 
can be used, the recommended form is a conjunction of literals. 
If you want to use a different form such as  
    (C1(S,X1,…) or C2(S,X1,…)) and C3(S,X1,…),  
then convert it into a disjunctive normal form (DNF) such as  
    (C1(S,X1,…) and C3(S,X1,…)) or (C2(S,X1,…) and C3(S,X1,…))  
and use the same number of transition operators as that of the 
conjuncts in the DNF such as two. 



Induction Case for fkm21 (1) 
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♦  Let us consider the case where c-fkm21(s,…) holds. 

open ISTEP-NSLPK 
-- fresh constants 
  ops p10 q10 : -> Principal . 
  op m20 : -> Message2 . 
  op nw10 : -> Network . 
-- assumptions 
  -- eq c-fkm21(s,…) = true . 
  eq network(s) = m20 nw10 . 
  -- 
  eq p = intruder . 
-- successor state 
  eq s' = fkm21(s,p10,q10,m20) . 
-- check  
  red istep1 . 
close 

  CafeOBJ does not return 
any results. 

  So, let us look at the formula 
to prove 
    inv1(s',p,q,q?,r,n) 
which contains 
    not(P = intruder) 
in the premise. 

  Then, this is used to split the 
case into two sub-cases. 



Induction Case for fkm21 (2) 

LectureNote9, i613-0912 19 

♦  In the case where “p = intrude”, CafeOBJ returns 
true, while in the case where “(p = intruder) 
= false”, it does not returns true. 

♦ The difference of s and s’ that affects the property: 
network(s) and network(s’), whose diff. is 
m2(intruder,p10,q10,cipher2(m20)). 

♦ So, the following formula is used to split the case into 
two sub-cases: 
m2(intruder,p10,q10,cipher2(m20))  
= m2(q?,q,p,enc2(p,n(p,q,r),n,q)) 

A3 



Induction Case for fkm21 (3) 
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♦  If A3 does not hold, CafeOBJ returns true. 

♦   In the case where A3 holds, instead of one equation, the 
following four equations are used: 
eq q? = intruder . 
eq p10 = q . 
eq q10 = p . 
eq cipher2(m20) = enc2(p,n(p,q,r),n,q) . 

♦  CafeOBJ does not return true for the case.  

♦  We notice that if “q = intruder”, then “m2(q?,…)” in 
the premise of inv1(s',p,q,q?,r,n) equals “m2(q,
…)” in the conclusion. 

♦  So, “q = intruder” is used to split the case into two 
sub-cases. 



Induction Case for fkm21 (4) 
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♦  If “q = intruder”, CafeOBJ returns true. 
    But, if “(q = intruder) = false”, it does not. 

♦ For the latter case, we notice that if the formula 

m1(p,p,q,enc1(q,n(p,q,r),p)) \in nw10 

 does not hold, the premise of inv1(s',p,q,q?,r,n)  
 does not hold.   

A5 



Induction Case for fkm21 (5) 
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♦  If A5 does not hold, CafeOBJ returns true. 
    But, if A5 holds, it does not. 

♦ For the latter case, we also notice that if the formula 
m2(q,q,p,enc2(p,n(p,q,r),n,q)) \in nw10 

 holds, the conclusion of inv1(s',p,q,q?,r,n) 
holds. 

♦  If A6 holds, CafeOBJ returns true. 
    But, if A5 does not hold, it does not. 

A6 



Induction Case for fkm21 (6) 
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♦ The remaining case is characterized by the following 
equations: 
network(s) = m20 nw10, 
(p = intruder) = false , 
q? = intruder ,  p10 = q ,  q10 = p , 
cipher2(m20) = enc2(p,n(p,q,r),n,q) , 
(q = intruder) = false , 
m1(p,p,q,enc1(q,n(p,q,r),p)) \in nw10 , 
m2(q,q,p,enc2(p,n(p,q,r),n,q)) \in nw10 = false 

♦ We can do further case analysis, but our 
understanding of NSLPK tells us that there seems to 
be some contradiction in the set of equations. 



Induction Case for fkm21 (7) 
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♦ The assumptions say that 
•  There exists a valid Init message really sent by a non-

intruder p to a non-intruder q. 
•  There exists a Resp message m20 whose body 

(ciphertext) is valid as the reply to the Init message. 
•  But, q has not replied to the Init message. 

♦ These must imply that m20 has been faked by 
the intruder. 



Induction Case for fkm21 (8) 
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♦ To this end, the intruder needs to get either enc2
(p,n(p,q,r),n,q) or n(p,q,r). 
•  It seems impossible to get the former because q has 

not replied to the Init message. 
•  It also seems impossible to get the latter because n
(p,q,r) only appears in enc1(q,n(p,q,r),p), 
which cannot be decrypted by the intruder. 



Induction Case for fkm21 (9) 
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♦  A lemma candidate: 
not(P = intruder) and not(Q = intruder) and 
m1(P,P,Q,enc1(Q,n(P,Q,R),P)) \in network(S) and 
M2 \in network(S) and  
cipher2(M2) = enc2(P,n(P,Q,R),N,Q) 
implies 
m2(Q,Q,P,enc2(P,n(P,Q,R),N,Q)) \in network(S) 

♦  inv4(s,p,q,n,r,m20) can be used to discharge the 
remaining case: 
inv4(s,p,q,n,r,m20) implies istep1 

inv4(S,P,Q,N,R,M2) 



On Lemma Conjecture (1) 
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♦ A systematic method of lemma conjecture: 
•  Case analyses are conducted until CafeOBJ returns 

either true or false for each proof passage. 
•  For each proof passage for which CafeOBJ returns 
false, we need to conjecture a lemma. 

•  Let e1,…, en be the set of equations used as the 
assumptions in such a proof passage. 

•  The formula not(E1 and … and En), referred as  a 
necessary lemma NL, obtained by substituting each 
(fresh) constant in “not(e1 and … and en)” with an 
appropriate variable is one possible lemma candidate. 



On Lemma Conjecture (2) 
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♦  It is often the case that a necessary lemma NL cannot be 
proved in a reasonably straightforward way. 

♦  So, we may need to find another candidate L such that L 
implies NL and can be proved in a reasonably 
straightforward way. 
•  One possible way to find L is to delete some Ei from NL, namely 

that not(E1 and … and Ei–1 and Ei+1 and En … and En) 
may be L. 

♦  Crème, an automatic invariant prover, basically uses this 
systematic method. 

 Masahiro Nakano, Kazuhiro Ogata, Masaki Nakamura, Kokichi 
Futatsugi: Crème: an Automatic Invariant Prover of Behavioral 
Specifications. International Journal of Software Engineering and 
Knowledge Engineering 17(6): 783-804 (2007) 



On Lemma Conjecture (3) 
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♦ Generally, however, we do not conduct case 
analyses until CafeOBJ returns either true or 
false for each proof passage because: 
•  Too many cases (for human verifiers) are generated. 
•  When you understand your target system enough well, you 

may find some contradiction in the set of equations used as 
the assumptions in a proof passage even if CafeOBJ does 
not return false for the proof passage, as you have seen. 

♦ Try to understand your target system as much as 
possible; a verification attempt lets you understand 
your target system better partly because you need to 
understand it better. 



Lemmas for Verification of inv1 
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♦ We need two more lemmas: 
eq inv3(S,M2) 
   = (M2 \in network(S) 

      implies 

      random(nonce1(cipher2(M2))) \in rands(S) and 

      random(nonce2(cipher2(M2))) \in rands(S)) . 

eq inv5(S,N) 
   = (N \in nonces(S) 

      implies creator(N) = intruder or  

              forwhom(N) = intruder) . 

•  The latter is what is called (Nonce) Secrecy Property. 



Verification of inv3 
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♦ We need two lemmas: 
eq inv8(S,M1) 
   = (M1 \in network(S) 

      implies  

      random(nonce(cipher1(M1))) \in rands(S)) . 

eq inv9(S,N) 

   = (N \in nonces(S)  
      implies random(N) \in rands(S)) . 

•  But, verification of inv8 needs inv9, and verification 
of inv9 needs inv3 and inv8. 

•  Circularity? 



Simultaneous Induction (1) 
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♦  Inductive invariant w.r.t. an OTS S: A state predicate p is 
inductive invariant w.r.t. S iff 
•  p(init) for an arbitrary initial state init, and 
•  p(s) implies p(s’) for an arbitrary state s and an arbitrary 

successor state s’ of s. 

♦  Invariant w.r.t. an OTS S : A state predicate q is invariant 
w.r.t. S iff there exists an inductive invariant p w.r.t. S 
such that p implies q. 

♦  A standard way of proving that a given state predicate q 
is invariant w.r.t. an OTS is to find an inductive invariant p 
w.r.t. S such that p implies q. 

q is invariant w.r.t. S 

∃ p such that p implies q, 
p(init), p(s) implies p(s’)  



Simultaneous Induction (2) 
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♦ It is often the case that p is in the form 
q and q1 and … qn. 

♦ Suppose that p is proved by structural induction 
on the reachable state space. 
•  Base case: All needed to do is to prove p(init), but 

it suffices to prove each qi(init) for i = 0,1,…,n. 
•  Induction case: All needed to do is, on the assumption 

p(s) for an arbitrary state s, to prove p(s’) for an 
arbitrary successor state s’ of s, but it suffices to 
prove each qi (s’) for i = 0,1,…,n on the assumption 
p(s).  

Let q0 be q. 



Simultaneous Induction (3) 
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♦ Consequently, the proof (fragment) of each qi 
can be written separately.  

♦ Simultaneous induction is a style of writing the 
proof of q0 and q1 and … qn by induction such 
that the proof of each qi is written separately. 

♦ Some advantages: 
•  Proofs can be written incrementally.  

 Basically the proofs you have written do not have to be 
modified. 

•  We can avoid making CafeOBJ reduce a long formula. 
 CafeOBJ may not return any results in a reasonable 
time even after doing some case analyses. 



Simultaneous Induction (4) 
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♦ Precisely the proof of inv8 does not use inv9 as a 
lemma (in a usual sense), but uses inv9(s,N) as 
an induction hypothesis, and the proof of inv9 does 
not use inv8 as a lemma, but uses inv8(s,M1) as 
an induction hypothesis. 

♦ Likewise the proof of inv1 uses inv3(s,M2), inv4
(s,P,Q,N,R,M2) and inv5(s,N) as induction 
hypotheses. 

♦ Term “lemma” refers to state predicates such as q1,
…,qn used to make an inductive invariant such as q0 
and q1 and … qn to prove that a state predicate 
such as q0 is invariant. 



Verification of Secrecy Property (inv5) 
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♦ We need two lemmas. 
♦ It is left as an exercise to conjecture and prove 

them, which has something to do with the 
exercise of the lecture (see the final page). 



Verification of inv2 
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♦ inv1 is Agreement Property from the initiators’ (p’s) 
point of view, while inv2 from the responders’ (q’s) 
point of view. 

♦ Although inv2 is not exactly symmetric to inv1 
w.r.t. NSLPK, they have some similarities. 

♦ Hence, inv2 can be proved in a similar way to prove 
inv1. 

♦ The proof of inv2 uses three lemmas, one of which 
is Secrecy Property (inv5). 

♦ To complete the verification, we need one more 
lemma. 

♦ The verification is left as an exercise. 



Other Case Studies on Protocol Verification 
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♦  iKP (Internet Key Protocol) Electronic Payment Protocol 
 K. Ogata, K. Futatsugi: Formal analysis of the iKP electronic payment protocols, 
1st ISSS, LNCS 2609, Springer, pp.441-460 (2003). 

♦  Horn-Preneel Micropayment Protocol 
 K. Ogata, K. Futatsugi: Formal verification of the Horn-Preneel micropayment 
protocol, 4th VMCAI, LNCS 2575, Springer, pp.238-252 (2003). 

♦  SET (Secure Electronic Transactions) Electronic Payment Protocol 
 K. Ogata, K. Futatsugi: Equational Approach to Formal Verification of SET, 4th 
QSIC, IEEE CS Press, pp.50-59 (2004). 

♦  NetBill Electronic Commerce Protocol 
 K. Ogata, K. Futatsugi: Formal Analysis of the NetBill Electronic Commerce 
Protocol, 2nd ISSS, LNCS 3233, Springer, pp.45-64 (2004). 

♦  TLS (Transaction Layer Security) Authentication Protocol 
 K. Ogata, K. Futatsugi: Equational Approach to Formal Analysis of TLS, 25th 
ICDCS, IEEE CS Press, pp.795-804 (2005). 

♦  Mondex Electronic Purse Protocol 
 W. Kong, K. Ogata, K. Futatsugi: Algebraic Approaches to Formal Analysis of the 
Mondex Electronic Purse System, 6th IFM, LNCS 4591, Springer, pp.393-412 
(2007). 



Exercise 
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♦ Verify that the simpler abstract model of NSLPK 
made in the exercise of the previous lecture 
enjoys Secrecy Property. 


