
Introduction Design Specification Verification Conclusions

Connected Graphs and Spanning Trees

GAINA, Daniel

Japan Advanced Institute of Science and Technology

January 22, 2010

Japan Advanced Institute of Science and Technology

1 / 26



Introduction Design Specification Verification Conclusions

Describing the problem I
G = (V , E) - graph

1 V - set of vertices

2 E - (multi)set of edges

Example:

1 2 3

4 5 6

7 8 9

V = {1, . . . , 9}
E = {< 1, 2 >; < 1, 4 >; < 2, 3 >; < 2, 5 >; < 3, 6 >; < 4, 5 >; < 4, 7 >; < 5, 6 >; < 5, 8 >;

< 6, 9 >; < 7, 8 >; < 8, 9 >}

Japan Advanced Institute of Science and Technology

2 / 26



Introduction Design Specification Verification Conclusions

Describing the problem II
G = (V , E) connected;
T = (V , E ′) spanning tree of G when

1 T tree,

2 E ′ ⊆ E .

Theorem

Every connected graph has a spanning tree.

1
(4)

(1)

2

(3)

(12)
3

(11)

1

(1)

2

(3)

3

(11)

4
(2)

(5)

5
(10)

(7)

6 4
(2)

(5)

5 6

7
(6)

8
(8)

9

(9)

7
(6)

8
(8)

9

(9)

Japan Advanced Institute of Science and Technology

3 / 26



Introduction Design Specification Verification Conclusions

Towards formalization

1 connected(G)⇒ ∃G’⊆ G.tree(G’)

2 connected(G)⇒ connected(mktree(G))∧ nocycle(mktree(G))

To do :

1 data representations for mathematical objects (graphs);
2 define

connected
nocycle
mktree

Japan Advanced Institute of Science and Technology

4 / 26



Introduction Design Specification Verification Conclusions

Functions on graphs

G = ({1, 2, 3, 4, 5, 6, 7, 8}, < 1, 2 >; < 1, 6 >; < 1, 5 >; < 3, 4 >; < 3, 7 >; < 4, 7 >; < 5, 6 >)

1

======= 2 3 4

�������

5 6 7 8

mcc(A,G) = max. connected comp. of A in G.
mcc(6,G) = {1, 2, 5, 6}, mcc(8,G) = {8}

#cc(G) = no. of max. connected components
#cc(G) = 3

nocycle(G) = false

Japan Advanced Institute of Science and Technology

5 / 26



Introduction Design Specification Verification Conclusions

Spanning forests I

in the attempt of proving the desired properties we realized is
much easier to prove a more general result:

Every graph has a spanning forest!

Definition
A spanning forest of a graph is a subgraph that consists of a
set of spanning trees, one for each maximal connected
component of the initial graph.

We define the function mktree which returns the spanning
forest of a graph.

Japan Advanced Institute of Science and Technology

6 / 26



Introduction Design Specification Verification Conclusions

Spanning forests II

G=({1,2,3,4,5,6,7,8}, <1,2>;<1,6>;<1,5>;<3,4>;<3,7>;<4,7>;<5,6>)

1

======= 2 3 4

�������
1

======= 2 3 4

5 6 7 8

mktree−−−−→

5 6 7 8

mktree(G)=({1,2,3,4,5,6,7,8},<1,2>;<1,6>;<1,5>;<3,4>;<3,7>)

Remark
The value is relative to the order chosen for the edges.

Japan Advanced Institute of Science and Technology

7 / 26



Introduction Design Specification Verification Conclusions

Properties to be proved

Assuming that we have defined

mcc, #cc, nocycle, mktree

we need to prove

1 mcc(A,G)=mcc(A,mktree(G))

2 #cc(G)=#cc(mktree(G))

3 nocycle(mktree(G))

Then we define connected(G):= (#cc(G)=1) which implies

connected(G)⇒ connected(mktree(G))∧ nocycle(mktree(G))

Japan Advanced Institute of Science and Technology

8 / 26



Introduction Design Specification Verification Conclusions

Set I
mod* ID {
[Id]
- equality on Id
op _=_ : Id Id -> Bool {comm}
vars I J : Id
eq [i1] : (I = I) = true .
ceq [i2] : I = J if (I = J) .
}

mod* SET(I :: ID) {
[Id < Set]
op empty : -> Set {constr}
op (_U_) : Set Set -> Set {constr assoc comm}
eq (S:Set U S) = S .
vars I I’ : Id
vars S S’ : Set

Japan Advanced Institute of Science and Technology

9 / 26



Introduction Design Specification Verification Conclusions

Set II
- (I in S) indicates whether I is an element of S or not
op _in_ : Id Set -> Bool .
eq I in empty = false .
eq I in I’ = if I = I’ then true else false fi .
eq I in I’ U S = if I = I’ then true else I in S fi .

- (S <s S’) indicates whether S is subset of S’
op _<s_ : Set Set -> Bool .
eq empty <s S = true .
eq I <s S = if I in S then true else false fi .
eq (I U S) <s S’ = if I in S’ then (S <s S’)
else false fi .

Japan Advanced Institute of Science and Technology

10 / 26



Introduction Design Specification Verification Conclusions

Set III

- equality on Set
op _=_ : Set Set -> Bool {comm}
eq [s1]: (S = S) = true .
eq [s2]: (S = S’) = (S <s S’) and (S’ <s S) .
ceq [s3]: S = S’ if (S = S’) .

}

Japan Advanced Institute of Science and Technology

11 / 26



Introduction Design Specification Verification Conclusions

GRAPH I
mod* VERTEX {
[Vertex]
op _=_ : Vertex Vertex -> Bool {comm}
vars A B : Vertex
eq [v1] : (A = A) = true .
ceq [v2] : A = B if (A = B) .
}

mod* GRAPH(V :: VERTEX){
[Edge]
[Graph]
op < _,_ > : Vertex Vertex -> Edge {constr}
op nil : -> Graph {constr}
op _;_ : Edge Graph -> Graph {constr}
}

Japan Advanced Institute of Science and Technology

12 / 26



Introduction Design Specification Verification Conclusions

GRAPH II

Remark

Edge and Graph are constrained.

Models consist of interpretations of terms formed with
constructor and elements of sort Vertex.

Japan Advanced Institute of Science and Technology

13 / 26



Introduction Design Specification Verification Conclusions

SFOREST I

mod* SFOREST (V :: VERTEX){
inc(INT)
inc(SET(V{sort Id -> Vertex})*{sort Set -> VtxSet})
inc(GRAPH(V))

vars A B C : Vertex
var G : Graph

- mcc(A,G) = max. connected component of A in G
op mcc : Vertex Graph -> VtxSet
eq mcc(A,nil) = A .
eq mcc(A, < B,C > ; G) =
if mcc(A,G) = mcc(B,G) or mcc(A,G) = mcc(C,G)
then (mcc(B,G) U mcc(C,G)) else mcc(A,G) fi .

Japan Advanced Institute of Science and Technology

14 / 26



Introduction Design Specification Verification Conclusions

SFOREST II
op nocycle : Graph -> Bool
eq nocycle(nil) = true .
eq nocycle(< A,B > ; G) =
if mcc(A,G) = mcc(B,G) then false
else nocycle(G) fi .

- #cc(G) = no. of max. connected comp. of G
op #cc : Graph -> Int .
op #vertices : -> Nat .
eq #cc(nil) = #vertices . - no. of vertices
eq #cc(< A,B > ; G) = if mcc(A,G) = mcc(B,G) then

#cc(G) else #cc(G) - 1 fi .

Japan Advanced Institute of Science and Technology

15 / 26



Introduction Design Specification Verification Conclusions

SFOREST III

- mktree(G) returns the spanning forest of G
op mktree : Graph -> Graph
eq mktree(nil) = nil .
eq mktree(< A,B > ; G) =
if mcc(A,G) = mcc(B,G) then mktree(G)
else < A,B > ; mktree(G) fi .

}

Japan Advanced Institute of Science and Technology

16 / 26



Introduction Design Specification Verification Conclusions

Properties to be proved

Theorem
mktree(G) is a spanning forest of G.

1 ∀G.∀A.mcc(A,mktree(G))=mcc(A,G)

2 ∀G.#cc(mktree(G))=#cc(G)

3 ∀G.nocycle(mktree(G))

Japan Advanced Institute of Science and Technology

17 / 26



Introduction Design Specification Verification Conclusions

First Theorem I

Lemma
Max. connected comp. of G are the same as max.connected
comp. of mktree(G) i.e.
∀G.∀A.mcc(A,mktree(G))=mcc(A,G)

Proof by induction on the structure of G.

IB ∀A.mcc(A,mktree(nil))=mcc(A,nil)

IS ∀G.∀A’.mcc(A’,mktree(G)) = mcc(A’,G) ⇒
∀A.∀B.∀C.mcc(A,mktree(<B,C>;G)) = mcc(A,<B,C>;G)

Japan Advanced Institute of Science and Technology

18 / 26



Introduction Design Specification Verification Conclusions

First Theorem II
For the induction base

open SFOREST
op a : -> Vertex .
red mcc(a,mktree(nil)) = mcc(a,nil) .

close

For the induction step

ops a b c : -> Vertex .
op g : -> Graph .
eq [IH] : mcc(A:Vertex,mktree(g)) = mcc(A,g) .
- equations corresponding to each subcase ...

red mcc(a,mktree(< b,c > ; g)) = mcc(a, < b,c > ; g) .

Japan Advanced Institute of Science and Technology

19 / 26



Introduction Design Specification Verification Conclusions

First Theorem III

Equations corresponding to each subcase
1 eq mcc(b,g) = mcc(c,g)

eq mcc(a,g) = mcc(c,g)

2 eq mcc(b,g) = mcc(c,g) .
eq (mcc(a,g) = mcc(c,g)) = false .

3 eq (mcc(b,g) = mcc(c,g)) = false .
eq mcc(a,g) = mcc(b,g) .

4 eq (mcc(b,g) = mcc(c,g)) = false .
eq mcc(a,g) = mcc(c,g) .

5 eq (mcc(b,g) = mcc(c,g)) = false .
eq (mcc(a,g) = mcc(b,g)) = false .
eq (mcc(a,g) = mcc(c,g)) = false .

Japan Advanced Institute of Science and Technology

20 / 26



Introduction Design Specification Verification Conclusions

Second Theorem I

Theorem
mktree preserves the number of maximal connected
components, i.e. ∀G.#cc(mktree(G))=#cc(G).

Proof by induction on the structure of G.

IB #cc(mktree(nil))=#cc(nil)

IS ∀G.#cc(mktree(G)) = #cc(G) ⇒
∀B.∀C.#cc(mktree(<B,C>;G)) = #cc(<B,C>;G)

Japan Advanced Institute of Science and Technology

21 / 26



Introduction Design Specification Verification Conclusions

Second Theorem II

For the induction base

open SFOREST + EQL
red #cc(mktree(nil)) = #cc(nil) .

close

For the induction step

open SFOREST + EQL
ops a b : -> Vertex .
op g : -> Graph .
eq [IH] : #cc(mktree(g)) = #cc(g) .

1 eq mcc(a,g) = mcc(b,g) .

2 eq (mcc(a,g) = mcc(b,g)) = false .

red #cc(mktree(< a,b > ; g)) = #cc(< a,b > ; g) .

Japan Advanced Institute of Science and Technology

22 / 26



Introduction Design Specification Verification Conclusions

Third theorem I

Theorem
mktree(G) has no cycles, i.e.
∀G.nocycle(mktree(G))=true.

Proof by induction on the structure of G.

IB nocycle(mktree(nil))=true

IS ∀G.nocycle(mktree(G)) = true ⇒
∀B.∀C.nocycle(mktree(<B,C>;G)) = true

Japan Advanced Institute of Science and Technology

23 / 26



Introduction Design Specification Verification Conclusions

Third theorem II

For the induction base

open SFOREST
red nocycle(mktree(nil)) .

close

For the induction step

open SFOREST
ops a b : -> Vertex .
op g : -> Graph .
eq [IH] : nocycle(mktree(g)) = true .

1 eq mcc(a,g) = mcc(b,g) .

2 eq (mcc(a,g) = mcc(b,g)) = false .

red nocycle(mktree(< a,b > ; g)) .

Japan Advanced Institute of Science and Technology

24 / 26



Introduction Design Specification Verification Conclusions

Conclusions

we have proved a more general property (e.g every graph
has a spanning forest) in order to achieve our goal;
we didn’t use initial semantics;
constructor-based logics sufficient for verifications;
the data structure VERTEX for the set of vertices is very
general and can be instantiated with natural numbers;

Japan Advanced Institute of Science and Technology

25 / 26



Introduction Design Specification Verification Conclusions

Exercise

1 Prove ∀G.∀A.∀B.(< A,B > in G) if (< A,B > in mktree(G))

2 A path between the vertex A and vertex B is a sequence of
edges < A1, B1 > . . . < An, Bn > such that

1 A1 = A,
2 Bn = B and
3 Ai+1 = Bi for all i ∈ {1, . . . , n − 1}.

A cycle is a path < A1, B1 > . . . < An, Bn > such that
A1 = Bn
Prove that if there exists a path between A and B then there
exists a path with nocycles

Japan Advanced Institute of Science and Technology

26 / 26


	Introduction
	Design
	Specification
	Verification
	Conclusions

