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Describing the problem I
G = (V , E) - graph

1 V - set of vertices

2 E - (multi)set of edges

Example:

1 2 3

4 5 6

7 8 9

V = {1, . . . , 9}
E = {< 1, 2 >; < 1, 4 >; < 2, 3 >; < 2, 5 >; < 3, 6 >; < 4, 5 >; < 4, 7 >; < 5, 6 >; < 5, 8 >;

< 6, 9 >; < 7, 8 >; < 8, 9 >}
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Describing the problem II
G = (V , E) connected;
T = (V , E ′) spanning tree of G when

1 T tree,

2 E ′ ⊆ E .

Theorem

Every connected graph has a spanning tree.
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Towards formalization

1 connected(G)⇒ ∃G’⊆ G.tree(G’)

2 connected(G)⇒ connected(mktree(G))∧ nocycle(mktree(G))

To do :

1 data representations for mathematical objects (graphs);
2 define

connected
nocycle
mktree
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Functions on graphs

G = ({1, 2, 3, 4, 5, 6, 7, 8}, < 1, 2 >; < 1, 6 >; < 1, 5 >; < 3, 4 >; < 3, 7 >; < 4, 7 >; < 5, 6 >)

1

======= 2 3 4

�������

5 6 7 8

mcc(A,G) = max. connected comp. of A in G.
mcc(6,G) = {1, 2, 5, 6}, mcc(8,G) = {8}

#cc(G) = no. of max. connected components
#cc(G) = 3

nocycle(G) = false
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Spanning forests I

in the attempt of proving the desired properties we realized is
much easier to prove a more general result:

Every graph has a spanning forest!

Definition
A spanning forest of a graph is a subgraph that consists of a
set of spanning trees, one for each maximal connected
component of the initial graph.

We define the function mktree which returns the spanning
forest of a graph.
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Spanning forests II

G=({1,2,3,4,5,6,7,8}, <1,2>;<1,6>;<1,5>;<3,4>;<3,7>;<4,7>;<5,6>)

1

======= 2 3 4

�������
1

======= 2 3 4

5 6 7 8

mktree−−−−→

5 6 7 8

mktree(G)=({1,2,3,4,5,6,7,8},<1,2>;<1,6>;<1,5>;<3,4>;<3,7>)

Remark
The value is relative to the order chosen for the edges.
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Properties to be proved

Assuming that we have defined

mcc, #cc, nocycle, mktree

we need to prove

1 mcc(A,G)=mcc(A,mktree(G))

2 #cc(G)=#cc(mktree(G))

3 nocycle(mktree(G))

Then we define connected(G):= (#cc(G)=1) which implies

connected(G)⇒ connected(mktree(G))∧ nocycle(mktree(G))
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Set I
mod* ID {
[Id]
- equality on Id
op _=_ : Id Id -> Bool {comm}
vars I J : Id
eq [i1] : (I = I) = true .
ceq [i2] : I = J if (I = J) .
}

mod* SET(I :: ID) {
[Id < Set]
op empty : -> Set {constr}
op (_U_) : Set Set -> Set {constr assoc comm}
eq (S:Set U S) = S .
vars I I’ : Id
vars S S’ : Set
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Set II
- (I in S) indicates whether I is an element of S or not
op _in_ : Id Set -> Bool .
eq I in empty = false .
eq I in I’ = if I = I’ then true else false fi .
eq I in I’ U S = if I = I’ then true else I in S fi .

- (S <s S’) indicates whether S is subset of S’
op _<s_ : Set Set -> Bool .
eq empty <s S = true .
eq I <s S = if I in S then true else false fi .
eq (I U S) <s S’ = if I in S’ then (S <s S’)
else false fi .
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Set III

- equality on Set
op _=_ : Set Set -> Bool {comm}
eq [s1]: (S = S) = true .
eq [s2]: (S = S’) = (S <s S’) and (S’ <s S) .
ceq [s3]: S = S’ if (S = S’) .

}
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GRAPH I
mod* VERTEX {
[Vertex]
op _=_ : Vertex Vertex -> Bool {comm}
vars A B : Vertex
eq [v1] : (A = A) = true .
ceq [v2] : A = B if (A = B) .
}

mod* GRAPH(V :: VERTEX){
[Edge]
[Graph]
op < _,_ > : Vertex Vertex -> Edge {constr}
op nil : -> Graph {constr}
op _;_ : Edge Graph -> Graph {constr}
}
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GRAPH II

Remark

Edge and Graph are constrained.

Models consist of interpretations of terms formed with
constructor and elements of sort Vertex.
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SFOREST I

mod* SFOREST (V :: VERTEX){
inc(INT)
inc(SET(V{sort Id -> Vertex})*{sort Set -> VtxSet})
inc(GRAPH(V))

vars A B C : Vertex
var G : Graph

- mcc(A,G) = max. connected component of A in G
op mcc : Vertex Graph -> VtxSet
eq mcc(A,nil) = A .
eq mcc(A, < B,C > ; G) =
if mcc(A,G) = mcc(B,G) or mcc(A,G) = mcc(C,G)
then (mcc(B,G) U mcc(C,G)) else mcc(A,G) fi .
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SFOREST II
op nocycle : Graph -> Bool
eq nocycle(nil) = true .
eq nocycle(< A,B > ; G) =
if mcc(A,G) = mcc(B,G) then false
else nocycle(G) fi .

- #cc(G) = no. of max. connected comp. of G
op #cc : Graph -> Int .
op #vertices : -> Nat .
eq #cc(nil) = #vertices . - no. of vertices
eq #cc(< A,B > ; G) = if mcc(A,G) = mcc(B,G) then

#cc(G) else #cc(G) - 1 fi .
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SFOREST III

- mktree(G) returns the spanning forest of G
op mktree : Graph -> Graph
eq mktree(nil) = nil .
eq mktree(< A,B > ; G) =
if mcc(A,G) = mcc(B,G) then mktree(G)
else < A,B > ; mktree(G) fi .

}
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Properties to be proved

Theorem
mktree(G) is a spanning forest of G.

1 ∀G.∀A.mcc(A,mktree(G))=mcc(A,G)

2 ∀G.#cc(mktree(G))=#cc(G)

3 ∀G.nocycle(mktree(G))
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First Theorem I

Lemma
Max. connected comp. of G are the same as max.connected
comp. of mktree(G) i.e.
∀G.∀A.mcc(A,mktree(G))=mcc(A,G)

Proof by induction on the structure of G.

IB ∀A.mcc(A,mktree(nil))=mcc(A,nil)

IS ∀G.∀A’.mcc(A’,mktree(G)) = mcc(A’,G) ⇒
∀A.∀B.∀C.mcc(A,mktree(<B,C>;G)) = mcc(A,<B,C>;G)
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First Theorem II
For the induction base

open SFOREST
op a : -> Vertex .
red mcc(a,mktree(nil)) = mcc(a,nil) .

close

For the induction step

ops a b c : -> Vertex .
op g : -> Graph .
eq [IH] : mcc(A:Vertex,mktree(g)) = mcc(A,g) .
- equations corresponding to each subcase ...

red mcc(a,mktree(< b,c > ; g)) = mcc(a, < b,c > ; g) .
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First Theorem III

Equations corresponding to each subcase
1 eq mcc(b,g) = mcc(c,g)

eq mcc(a,g) = mcc(c,g)

2 eq mcc(b,g) = mcc(c,g) .
eq (mcc(a,g) = mcc(c,g)) = false .

3 eq (mcc(b,g) = mcc(c,g)) = false .
eq mcc(a,g) = mcc(b,g) .

4 eq (mcc(b,g) = mcc(c,g)) = false .
eq mcc(a,g) = mcc(c,g) .

5 eq (mcc(b,g) = mcc(c,g)) = false .
eq (mcc(a,g) = mcc(b,g)) = false .
eq (mcc(a,g) = mcc(c,g)) = false .
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Second Theorem I

Theorem
mktree preserves the number of maximal connected
components, i.e. ∀G.#cc(mktree(G))=#cc(G).

Proof by induction on the structure of G.

IB #cc(mktree(nil))=#cc(nil)

IS ∀G.#cc(mktree(G)) = #cc(G) ⇒
∀B.∀C.#cc(mktree(<B,C>;G)) = #cc(<B,C>;G)
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Second Theorem II

For the induction base

open SFOREST + EQL
red #cc(mktree(nil)) = #cc(nil) .

close

For the induction step

open SFOREST + EQL
ops a b : -> Vertex .
op g : -> Graph .
eq [IH] : #cc(mktree(g)) = #cc(g) .

1 eq mcc(a,g) = mcc(b,g) .

2 eq (mcc(a,g) = mcc(b,g)) = false .

red #cc(mktree(< a,b > ; g)) = #cc(< a,b > ; g) .
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Third theorem I

Theorem
mktree(G) has no cycles, i.e.
∀G.nocycle(mktree(G))=true.

Proof by induction on the structure of G.

IB nocycle(mktree(nil))=true

IS ∀G.nocycle(mktree(G)) = true ⇒
∀B.∀C.nocycle(mktree(<B,C>;G)) = true
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Third theorem II

For the induction base

open SFOREST
red nocycle(mktree(nil)) .

close

For the induction step

open SFOREST
ops a b : -> Vertex .
op g : -> Graph .
eq [IH] : nocycle(mktree(g)) = true .

1 eq mcc(a,g) = mcc(b,g) .

2 eq (mcc(a,g) = mcc(b,g)) = false .

red nocycle(mktree(< a,b > ; g)) .
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Conclusions

we have proved a more general property (e.g every graph
has a spanning forest) in order to achieve our goal;
we didn’t use initial semantics;
constructor-based logics sufficient for verifications;
the data structure VERTEX for the set of vertices is very
general and can be instantiated with natural numbers;
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Exercise

1 Prove ∀G.∀A.∀B.(< A,B > in G) if (< A,B > in mktree(G))

2 A path between the vertex A and vertex B is a sequence of
edges < A1, B1 > . . . < An, Bn > such that

1 A1 = A,
2 Bn = B and
3 Ai+1 = Bi for all i ∈ {1, . . . , n − 1}.

A cycle is a path < A1, B1 > . . . < An, Bn > such that
A1 = Bn
Prove that if there exists a path between A and B then there
exists a path with nocycles
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