Connected Graphs and Spanning Trees

GAINA, Daniel

Japan Advanced Institute of Science and Technology

January 22, 2010

Japan Advanced Institute of Science and Technology
1/26

Introduction

Describing the problem |
G=(V,E)-graph

@ V - set of vertices
@ E - (multi)set of edges

Example:
1 2 3
4 5 6
7 8 9
V={1,...,9}

E={<1,2><1,4><2,83>,<2,5>,<38,6>,<4,5>,<4,7>,<5,6>,<5,8>;
<6,9><7,8><8,9>}

Japan Advanced Institute of Science and Technology
2/26

Introduction

Describing the problem Il

G = (V, E) connected;
T = (V, E’) spanning tree of G when

@ T tree,
QcEcE

Every connected graph has a spanning tree.

1 2 3 1 2 3
(1) ®) (11 M ® (1)
(10)
4 5 6 4 5 6
@ (2
(5 @ ©) ©))
7 8 9 7 8 9

Japan Advanced Institute of Science and Technology
3/26

Design

Towards formalization

@ connected (G)= 3G’ C G.tree (G’)

e connected (G) = connected(mktree (G))A nocycle (mktree (G))

Todo:

@ data representations for mathematical objects (graphs);
Q@ define

@ connected
@ nocycle
@ mktree

Japan Advanced Institute of Science and Technology
4/26

Specification

Functions on graphs

G=({1,2,3,4,5,6,7,8},<1,2>,< 1,6 >,<1,5>,<3,4>,<3,7>,<4,7>,<5,6>)

@ mcc (A, G) = max. connected comp. of & in G.
mcc (6,G) = {1,2,5,6}, mcc(8,G) = {8}

@ #cc(G) = no. of max. connected components
#cc(G) = 3

@ nocycle(G) = false

Japan Advanced Institute of Science and Technology
5/26

Specification

Spanning forests |

in the attempt of proving the desired properties we realized is
much easier to prove a more general result:

Every graph has a spanning forest!

Definition

A spanning forest of a graph is a subgraph that consists of a
set of spanning trees, one for each maximal connected
component of the initial graph.

We define the function mkt ree which returns the spanning
forest of a graph.

Japan Advanced Institute of Science and Technology
6/26

Specification

Spanning forests |l

G=({1,2,3,4,5,6,7,8}, <1,2>;<1,6>;<1,5>;<3,4>;<3,7>;<4,7>;<5,6>)

1—2 3—4 1—2

37
N LN
5 6 7

5——6 7 8

4

8

mktree (G)=({1,2,3,4,5,6,7,8},<1,2>;<1,6>;<1,5>;<3,4>;<3,7>)

Remark

The value is relative to the order chosen for the edges.

Japan Advanced Institute of Science and Technology
7/26

Specification

Properties to be proved

Assuming that we have defined
@ mcc, #cc, nocycle, mktree
we need to prove
0 mcc (A, G) =mcc (A, mktree (G))
Q #cc (G) =#cc (mktree (G))
9 nocycle (mktree (G))
Then we define connected (G) := (#cc (G)=1) which implies

@ connected(G)= connected (mktree (G))A nocycle (mktree (G))

Japan Advanced Institute of Science and Technology
8/26

Specification

mod* ID {

[Id]

- equality on Id

op _=_ : Id Id -> Bool {comm}
vars I J : Id

eq [il] : (I = I) = true

ceq [i2] : I =J if (I = J)

}

mod* SET(I :: 1ID) {

[Id < Set]

op empty : -—> Set {constr}

op (_U_) : Set Set —-> Set {constr assoc comm}

eq (S:Set U S) =S
vars I I' : Id
vars S S’ : Set

Japan Advanced Institute of Science and Technology
9/26

Specification

- (I in S) indicates whether I is an element of S or not

op _in_ : Id Set -> Bool
eq I in empty = false
eq I in I’ = if I = I’ then true else false fi

eq I in I’ U S = if I = I’ then true else I in S fi

- (S <s S’) indicates whether S is subset of S’

op _<s_ : Set Set -> Bool
eq empty <s S = true
eq I <s S = 1if I in S then true else false fi

eq (I US) <s 8" = 1if I in S’ then (S <s S’)
else false fi

ed Institute of Science and Technology

/26

Specification

Set Il

- equality on Set

op _=_ : Set Set -> Bool {comm}

eq [sl]: (S = S) = true

eq [s2]: (S =98") = (S <s S’) and (S’ <s 9)
ceq [s3]: S =S8 if (S = S')

}

Japan Advanced Institute of Science and Technology
11/26

Specification

GRAPH |

mod* VERTEX {

[Vertex]

op _=_ : Vertex Vertex —> Bool {comm}
vars A B : Vertex

eq [vl] : (A = A) = true

ceq [v2] : A =B if (A = B)

}

mod+ GRAPH(V :: VERTEX){

[Edge]

[Graph]

op <_,_> : Vertex Vertex —> Edge {constr}
op nil : -> Graph {constr}

op _;j_ : Edge Graph —-> Graph {constr}

}

Japan Advanced Institute of Science and Technology
12/26

Specification

GRAPH I

@ Edge and Graph are constrained.

@ Models consist of interpretations of terms formed with
constructor and elements of sort vertex.

Japan Advanced Institute of Science and Technology
13/26

Specification

SFOREST |

mod* SFOREST (V :: VERTEX){

inc (INT)

inc (SET (V{sort Id —-> Vertex})«*{sort Set -> VtxSet})
inc (GRAPH (V))

vars A B C : Vertex
var G : Graph

- mcc(A,G) = max. connected component of A in G
op mcc : Vertex Graph —-> VtxSet

eq mcc(A,nil) = A

eq mcc(A, < B,C > ; G) =

if mcc(A,G) = mcc(B,G) or mcc(A,G) = mcc(C,G)
then (mcc(B,G) U mcc(C,G)) else mcc(A,G) fi

Japan Advanced Institute of Science and Technology
14/26

Specification

SFOREST Il

op nocycle : Graph -> Bool
eqg nocycle(nil) = true
eqg nocycle(< A,B > ; G) =
if mcc(A,G) = mcc(B,G) then false

else nocycle(G) fi

- #cc(G) = no. of max. connected comp. of G

op #cc : Graph -> Int

op #vertices : -> Nat

eq #cc(nil) = F#vertices . - no. of vertices

eq #cc(< A,B > ; G) = if mcc(A,G) = mcc(B,G) then
#cc(G) else FHcc(G) - 1 fi

Japan Advanced Institute of Science and Technology
15/26

Specification

SFOREST I

- mktree (G) returns the spanning forest of G

op mktree : Graph —-> Graph

eq mktree(nil) = nil

eq mktree(< A,B > ; G) =

if mcc(A,G) = mcc(B,G) then mktree (G)

else < A,B > ; mktree(G) fi

}

Japan Advanced Institute of Science and Technology
16/26

Verification

Properties to be proved

mktree (G) IS a spanning forest of G.
@ VG.VA.mcc (A, mktree (G))=mcc (A, G)
@ VG.#cc (mktree (G)) =#cc (G)

© VG.nocycle (mktree (G))

Japan Advanced Institute of Science and Technology
17/26

Verification

First Theorem |

Lemma

Max. connected comp. of G are the same as max.connected
comp. of mktree (G) i.e.
VG.VA.mcc (A, mktree (G)) =mcc (A, G)

Proof by induction on the structure of G.

IB VA.mcc (A, mktree (nil))=mcc (A, nil)

IS VG.VA’ .mcc (A’ ,mktree(G)) = mcc(A’,G) =
VA.VB.VC.mcc (A, mktree (<B,C>;G)) = mcc (A, <B,C>;G)

Japan Advanced Institute of Science and Technology
18/26

Verification

First Theorem Il

For the induction base

open SFOREST

op a : —> Vertex
red mcc(a,mktree(nil)) = mcc(a,nil)
close

For the induction step

ops a b ¢ : -> Vertex .
op g : —> Graph .
eq [IH] : mcc(A:Vertex,mktree(g)) = mcc(A,qg)

- equations corresponding to each subcase ...

red mcc (a,mktree(< b,c > ; g)) = mcc(a, < b,c > ; 9g)

Japan Advanced Institute of Science and Technology
19/26

Verification

First Theorem Il

Equations corresponding to each subcase

o eq mcc (b,g) = mcc(c,qg)
eq mcc(a,g) = mcc(c,qg)

e eq mcc (b,g) = mcc(c,qg)

eq (mcc(a,g) = mcc(c,g)) = false .

e eq (mcc(b,g) = mcc(c,g)) = false .
eq mcc(a,g) = mcc(b,qg)

e eq (mcc(b,g) = mcc(c,g)) = false .
eq mcc(a,g) = mcc(c,qg)

e eq (mcc(b,g) = mcc(c,qg)) = false .
eq (mcc(a,g) = mcc(b,g)) = false .
eq (mcc(a,g) = mcc(c,qg)) = false .

Japan Advanced Institute of Science and Technology

/26

Verification

Second Theorem |

Theorem

mktree preserves the number of maximal connected
components, i.e. VG.#cc (mktree (G)) =#cc (G) .

Proof by induction on the structure of G.
IB #cc (mktree (nil))=#cc(nil)
IS VG.#cc (mktree (G)) = #cc(G) =

VB.VC.#cc (mktree (<B,C>;G)) = #cc(<B,C>;G)

Japan Advanced Institute of Science and Technology
21/26

Verification

Second Theorem Il

For the induction base
open SFOREST + EQL

red #cc(mktree(nil)) = #cc(nil)

close

For the induction step

open SFOREST + EQL

ops a b : -> Vertex .
op g : —> Graph .
eq [IH] : #cc(mktree(g)) = #cc(qg)

G’ eq mcc(a,g) = mcc(b,qg)

‘a eq (mcc(a,g) = mcc(b,g)) = false

red #cc(mktree(< a,b > ; g)) = #cc(< a,b > ; g)

Japan Advanced Institute of Science and Technology
22/26

Verification

Third theorem |

Theorem

mktree (G) has no cycles, i.e.
VG.nocycle (mktree (G)) =true.

Proof by induction on the structure of G.
IB nocycle (mktree (nil))=true

IS VG.nocycle (mktree(G)) = true =

VB.VC.nocycle (mktree (<B,C>;G)) = true

Japan Advanced Institute of Science and Technology
23/26

Verification

Third theorem ||

For the induction base
open SFOREST

red nocycle (mktree(nil))

close

For the induction step

open SFOREST

ops a b : -> Vertex
op g : —> Graph
eq [IH] : nocycle(mktree(g)) = true

" eq mcc(a,g) = mcc(b,qg)

‘3 eq (mcc(a,g) = mcc(b,g)) = false

red nocycle (mktree(< a,b > ; g))

Japan Advanced Institute of Science and Technology
24/26

Conclusions

Conclusions

@ we have proved a more general property (e.g every graph
has a spanning forest) in order to achieve our goal;

@ we didn’t use initial semantics;
@ constructor-based logics sufficient for verifications;

@ the data structure VERTEX for the set of vertices is very
general and can be instantiated with natural numbers;

Japan Advanced Institute of Science and Technology
25/26

Conclusions

Exercise

@ Prove vc.va.ve. (< A,B > in G) if (< A,B > in mktree(G))
© o A path between the vertex A and vertex B is a sequence of
edges < Ay, By > ... < Ap, By > such that
Q A=A
@ B,=Band
@ Ay =Bforallie{1,...,n—1}.
e Acycleis apath < Ay,By > ... < Ay, B, > such that
A =B,
e Prove that if there exists a path between A and B then there
exists a path with nocycles

Japan Advanced Institute of Science and Technology
26/26

	Introduction
	Design
	Specification
	Verification
	Conclusions

