
 Combining Inference and Search
in Proof Scores (for QLOCK)

Lecture Note 11
Formal Methods (i613-0912)

LectureNote9, i613-0712
 2

Topics	

  Search predicate of CafeOBJ

  Falsification with search

  Verification with search

  Verification with search and inference

MSV with proof scores in CafeOBJ

Understand problem
and construct model

Write system spec SPsys and
Write property spec SPprop

Construct proof score of
SPprop w.r.t. SPsys

 3
Lecture Note 11, i613-0912

QLOCK using operators
in the CafeOBJ module QUEUE

Remainder Section

Critical Section

top(queue)=i

cs

put(queue,i)

get(queue)

wt

rm
true

false

Each agent i is executing: : atomic action

want

try

exit

 4
Lecture Note 11, i613-0912

qlock.mod	

Modeling QLOCK (via Signature Diagram)
with OTS (Observational Transition System)

…
k j i

i

k

j

is i?

is j?
put

get

get

…

put

Queue

Label

Pid

Sys

want

try

pc

queue

exit

init
 5

Lecture Note 11, i613-0912

initial state declaration

system sort declaration

observation declaration

action declaration

visible sort declaration

CafeOBJ signature for QLOCKwithOTS
-- state space of the system
[Sys]

-- visible sorts for observation
[Queue Pid Label]

-- observations
bop pc : Sys Pid -> Label
bop queue : Sys -> Queue

-- any initial state
init : -> Sys (constr)
-- actions
bop want : Sys Pid -> Sys (constr)
bop try : Sys Pid -> Sys (constr)
bop exit : Sys Pid -> Sys (constr)

 6
Lecture Note 11, i613-0912

Transition system for QLOCK (1)

Lecture Note 11, i613-0912
 7

mod* QLOCKconfig {!
 inc(QLOCK)!
 [Config]!
 op <_> : Sys -> Config .!
}!
-- pre-transiton system with an agent/process p!
mod* QLOCKpTrans {!
 inc(QLOCKconfig)!
 op p : -> PidConst .!
 var S : Sys .!
 -- possible transitions!
 ctrans < S > => < want(S,p) > if c-want(S,p) .!
 ctrans < S > => < try(S,p) > if c-try(S,p) .!
 ctrans < S > => < exit(S,p) > if c-exit(S,p) .!
}!

qlockTrans.mod	

Transition system for QLOCK (2)

Lecture Note 11, i613-0912
 8

-- transition system with 2 agents i j!
mod* QLOCKijTrans {!
 inc((QLOCKpTrans * {op p -> i}) +!
 (QLOCKpTrans * {op p -> j}))!
}!

-- transition system with of 3 agents i j k!
mod* QLOCKijkTrans {!
 inc(QLOCKijTrans +!
 (QLOCKpTrans * {op p -> k}))!
}!

qlockTrans.mod	

Search predicate of CafeOBJ
 a la OBJ/Maude’s search command

pred _=(_,_)=>*_ : Any NzNat* NzNat* Any

CafeOBJ System has the following built-in predicate:
 - Any is any sort (that is, the command is available for any sort)
 - NzNat* is a built-in sort containing non-zero natural number

and the special symbol “*” which stands for infinity

(t1 =(m,n)=>* t2) returns true if t1 can be translated (or
rewritten), via more than 0 times transitions, to some term which
matches to t2. Otherwise, it returns false . Possible
transitions/rewritings are searched in breadth first fashion. n is
upper bound of the depth of the search, and m is upper bound of
the number of terms which match to t2. If either of the depth of
the search or the number of the matched terms reaches to the
upper bound, the search stops.

 9
Lecture Note 11, i613-0912

t1 =(m,n)=>* t2

…

…

…

…

…

…

t1

…

n : the depth of
 the search tree

m : the number of
 the searched terms

which match to t2

…
 …

 10
Lecture Note 11, i613-0912

suchThat	 predicate

pred1(t2) is a predicate about t2 and can
refer to the variables which appear in t2.
pred1(t2) enhances the condition used to
determine the term which matches to t2.

t1 =(m,n)=>* t2 suchThat pred1(t2)

 11
Lecture Note 11, i613-0912

t1 =(m,n)=>* t2 suchThat pred1(t2)

…

…

…

…

…

…

t1

…

n : the depth of
 the search tree

m : the number of
 the searched terms

which match to t2 and
satisfy pred(t2)

…
 …

 12
Lecture Note 11, i613-0912

Lecture Note 11, i613-0912
 13

Falsification by Searching	

red in (QLOCKijTrans + MEX) : !
 < init > =(1,5)=>* < S:Sys > !
 suchThat (not mutualEx(S,i,j)) .

Sys(i,j) = {init} ∪
 {want(s,a)|s∈Sys,a∈{i,j}} ∪
 {try(s,a) |s∈Sys,a∈{i,j}} ∪
 {exit(s,a)|s∈Sys,a∈{i,j}}

This CafeOBJ code searches for a counter
example of mutual exclusion property in
the state space Sys(i,j) of two agents
system up to 5 transitions.

qlock.mod
qlockTrans.mod

mex.mod
falisificationBySearch.mod	

Lecture Note 11, i613-0912
 14

Falsification with two agents system	

-- reduce in %QLOCKijTrans + MEX : !
-- ((< init >) = (1 , 5) =>* (< S >) !
-- suchThat (not mutualEx(S,i,j))):Bool!
-- reached to the specified search depth 5.!
(false):Bool!
(0.000 sec for parse, !
 153655 rewrites(1.670 sec), !
 318255 matches)!

-- reduce in %QLOCKijTrans + MEX : !
-- ((< init >) = (1 , 6) =>* (< S >) !
-- suchThat (not mutualEx(S,i,j))):Bool!
-- reached to the specified search depth 6.!
(false):Bool!
(0.000 sec for parse, !
 491383 rewrites(5.120 sec), !
 1019619 matches)!

Lecture Note 11, i613-0912
 15

Falsification with three agents system (1)	

-- reduce in %QLOCKijkTrans + MEX : !
-- ((< init >) = (1 , 5) =>* (< S >) !
-- suchThat !
-- (not (mutualEx(S,i,j) and !
-- (mutualEx(S,i,k) and !
-- mutualEx(S,j,k))))):Bool!
-- reached to the specified search depth 5.!
(false):Bool!
(0.000 sec for parse, !
 1232435 rewrites(13.080 sec), !
 2557809 matches)!

Lecture Note 11, i613-0912
 16

Falsification with three agents system (2)	

-- reduce in %QLOCKijkTrans + MEX : !
-- ((< init >) = (1 , 6) =>* (< S >) !
-- suchThat !
-- (not (mutualEx(S,i,j) and !
-- (mutualEx(S,i,k) and !
-- mutualEx(S,j,k))))):Bool!
-- reached to the specified search depth 6.!
(false):Bool!
(0.000 sec for parse, !
 5526233 rewrites(57.730 sec), !
 11492616 matches)!

withStateEq predicate

t1 =(m,n)=>* t2
 withStateEq pred2(V1:St,V2:St)

Pred2(V1:St,V2:St) is a binary predicate of two
arguments with the same sort St of the term t2.
Pred2(V1:St,V2:St) is used to determine a newly
searched term (a state configuration) is already searched one.
If this withStateEq predicate is not given, the term identity
binary predicate is used for the purpose.

t1 =(m,n)=>* t2 suchThat pred1(t2)
 withStateEq pred2(S1:Sort,S2:Sort)

Using both of suchTant and withStateEq is also possible

 17
Lecture Note 11, i613-0912

t1 =(m,n)=>* t2
withStateEq pred2(V1:St,V2:St)

…

…

…

…

…

…

t1

…

n : the depth of
 the search tree

…
 …

m : the number of
 the searched terms

which match to t2

: pred2 = true

 18
Lecture Note 11, i613-0912

Lecture Note 11, i613-0912
 19

Verification by Searching with
Observational Equivalence	 qlockObEq.mod

verificationBySearchWithObEq.mod	

red in (QLOCKijTrans + QLOCKobEq + MEX) :!
 < init > =(*,*)=>* < S:Sys > !
 suchThat (not mutualEx(S,i,j))!
 withStateEq (C1:Config =ob= C2:Config) .!

This CafeOBJ code searches for a counter
example of mutual exclusion property in
the whole state space Sys(i,j) of two
agents system. If this returns false, the
two agents system is verified to have the
mutual exclusion property.

Lecture Note 11, i613-0912
 20

Simulation of any number of agents
systems by the two agents system (1)	

If all behaviors of any two agents with the
system of any number of agents can be
simulated by the system with only two agents,
all the properties checked by searching all
reachable states of the two-agents system are
verified to hold for the system of any number
of agents. 	

Lecture Note 11, i613-0912
 21

Simulation of any number of agents
systems by the two agents system (2)	

let
 (ops i j : -> PidConst .)
and let Sys(i,j) be a subsort of Sys which are composed of
terms of sort Sys which contain only i and j.

for any two distinct process identifiers i and j, and
for any reachable state s:Sys of QLOCK,
there exists a reachable state t:Sys(i,j) of QLOCK such that
 ((pc(s,i) = pc(t,i)) and (pc(s,j) = pc(t,j))) and
 (pij(queue(s)) = queue(t))
 where pij(nil) = nil
 pij(Q:Queue,I:Pid) = pij(Q),I if (I=i or I=j)
 = pij(Q) if not(I=i or I=j) 	

Lecture Note 11, i613-0912
 22

simOfQLOCKbyQLOCKijPS.mod
csQtopPS.mod	

CafeOBJ proof scores for
verifying the simulation 	

These proof scores are almost same amount
to the original proof score for verifying mutual
exclusion. However, once the simulation is
verified, many properties other than mutual
exclusion can be verified by searching over
the two-agents systems.	

Lecture Note 11, i613-0912
 23

 Remarks	

  OTS style definition of transition directly
corresponds to rewriting transition.

  Search is sometimes quite effective and easy to
use not only in falsification but also in verification.
Especially for small values of parameters.

  Proper combination of search and inference (with
proof score) can constitute transparent and
effective verification.	

Lecture Note 11, i613-0912
 24

 Exercise	

Complete the proof score in the file:
 csQtopPSforExcs.mod. 	

