Constructor-based Inductive Theorem Prover
(CITP) - part 1

Lecture Note 03

December 27, 2013

Introduction

@ tool for proving inductive properties of Observational
Transition Systems (OTS)

@ implemented on top of Maude
http://www. jaist.ac.jp/~danielmg/citp.html

@ underlying logic - constructor-based order-sorted
preorder algebra

http://www.jaist.ac.jp/~danielmg/citp.html

Specifications

set of axioms Ax(sp)

signature Sig(sp)
SP
class of models Mod(sP)

A specification is constructed from
@ basic specifications (X, ') by applying
© specification building operators

Signatures

Order-Sorted Signatures

Order-sorted signature (S, <, F, F°):
— set of sorts

1. S
2. (S, — poset
3. F = (Fw=s)wes+ses — funct. symb.
4. F°CF — constructors
Assumptions:
e o¢cFy,s

each (S, <, F, FC)issensible: forall [o o€ Fy_,o
o w=cw

) we have s=< &’

Signatures

Numbers

modx NUMBERS

{ [Zero < Nat]

op 0 : -> Zero {constr}

op s_ : Nat —-> Nat {constr}
op _+_ : Nat Nat —-> Nat

}

Sig(NUMBERS):

@ constrained sorts:
- Zero has one constructor {0 : -> Zero}
- Nat has two constructors {0 : -> Zero, s_ : Nat -> Nat}

@ no loose sorts

@ constructor terms (formed from constructors and variables of loose sorts):
0, s 0, s s 0,...

Signatures

Lists

mod! LIST

{ [Elt Empty < List]

op empty : —> Empty {constr}

op con : Elt List —> List {constr}

}

Sig(L1ST):
@ constrained sorts:
- Empty has one constructor {empty : -> Empty}
- List has two constructors
{empty : -> Empty, con : Elt List -> List}
@ loose sorts : E1t

@ constructor terms (formed from constructors and variables of loose sorts):
empty, con (X1l,empty), con(X2,con(X1l,empty)),
con (X3, con (X2, con (X1l,empty))),

Models

Order-Sorted Algebras

1. se€8 ~ As
(S, <, F)-algebras A: 2. s<¢ ~ As C Ay such that
3. o:W—=S ~ AU:W%S:AWHAS

functions “agree” on common arguments:

o.:W—S
oc:w — ¢
w=w
EE/&WHAW/

for all we have As.w—s(a) = Ay.n (@)

Models

modx NUM
{ [Zero < Nat]
op 0 : -—> Zero
op s_ : Nat —-> Nat
op _+_ : Nat Nat -> Nat
}
Sig(NuM)-algebras:
o Nzero = {0}
e Ny.. ={0,1,2,...}
@ Natural numbers N e Ny=0
e Ng:Nyae — Nyae, Ns(n)=n+1
[]

N+ : Nyar X Nyar — NNata N+(n7 m) =n+m

Models

Order-Sorted Algebras

® Zgero = {0}
o Znar ={...,—2,—-1,0,1,2,...}
@ Integers Z e Zy=0
® Zs : Zyat — Lyat, Zs(n) = n+1
L] Z+ Inatr X Zyat — ZNat7 Z+(n7 m) =n+m
@ 7o .
(Zz)Zero = i 1,
(Z2)nat = {0,1}
(Z2)o =0

° (Zz)s . (Z2)Nat N (Zz)Nat, (ZZ)s(g) i

Models

@ ground terms have unique interpretations into the models

o3
ssO+(0+s0)~< L 3
Zy 2
~5

@ terms with variables have one interpretation for each valuation of the variables

N f(x)y=2
~ 11 here f: {x, N,
f w {X y}g) f(y)*7
Xx)=5
s(sx+y) ~ “’%g 8 where g : {x,y} — Z, ZE}/%:1
Z, 2 h(x) =0
~ 1 h : ~
h where h: {x,y} — Zo, h(y) = i

Models

Term Algebra

¥ = (S, <, F) sensible. Ty is defined recursively:
o @ FsC (Ty)s

o € Fsy..sp—s
t € (Tx)s,

o . :>0'(t1,.-.,tn)E(Tz)s
th € (Tx)s,

@ s<s§ = (Tx)s C(Ty)y

Q ifocFs s sthe (Tr)s : (Tx)s, x ... x (Tx)s, — (Tx)s is defined by
(Te)o (i, tn) = o(ty, ... tn)

Models

Satisfaction Relation

Ais a (S, <, F)-algebra

QA ':(S,SVF) (VX)(/ = f) if (U1 = V1)/\. ../\(Un = Vn) iff
A, =4,

forall f: X — Awe have : = A=Al
ALn :A(/'

@ E |=(s,<,F eliffforall (S, <, F)-models Awe have A |=(s < r) E implies
ABs<h e

Models

Reachable Order-Sorted Algebras

@ Reachable (S, <, F, F°)-algebras consist of interpretations of constructor terms

Ais reachable iff for all a € Athereis [° constructor term tha, ..., Xl
e valuation f: {xq,...,xn} = A
s.t.
f def
Allxyyooxn] = At —1(x), e xin—(x0)] = @
Q@ E ':(s, ,F,Fe) ¢ iff for all (S, <, F, F°)-models A we have A ':(S’SJ:’FC) E

<.k,
implies A):(S»S,va'—c) €

@ Nis a reachable Sig(NUMBERS)-algebra: for all n € N we have N(gngy = n
@ Zis not reachable: there is no constructor term s”0 such that Zsno) = —1
@ 7, is reachable: (Zp)o = 0 and (Z3), = 1

@ Tsjgwuussrs) IS Not reachable: there is no constr. term s™0 s.t.
TSig(NUMBERs))S“O =0+0

Specification building operators

Basic Specifications

Sp = ((S,<,F,F°),E)

@ Sig(sp) = (S,<,F,F°)

@ Ax(sp)=E

@ Mod(sp) = {Ae Mod(S,<,F,F°) |AE E}
consists of all reachable algebras satisfying E

modx NUMBERS+
{ [Zero < Nat]

op 0 : —> Zero {constr}

op s_ : Nat -> Nat {constr}
op _+_ : Nat Nat -> Nat
vars M N : Nat .

eqg 0 + N =N .

eq s M+ N=3s(M+ N) . }

Specification building operators

@ SP4, SP, specifications s.t. Sig(sPy) = Sig(spp) = -
@ SP4 U SP, the summation of sp4 and sp»

@ Sig(sP1USPy) =%

e AX(SP1 U SPQ) = AX(SP1) U AX(SPZ)

© Mod(sPy U SPy) = Mod(sP1) N Mod(sP2)

Specification building operators

@ Sig(sp) <5 ¥
@ sP x ¢ the translation of sp by ¢
@ Sig(sPx1) =%
@ Ax(sP) = (Ax(sP)) = Ax(sP)
© Mod(sp x 1) = {M € Mod(X) | Misjg(s»)€ Mod(sP)}
e sp-models

SP x (-models consists of +
e interpretation of the new symbols in ©

Remark

If sp is formed from basic specification, SUM, and TRANS then
SP is equivalent to (Sig(sP), E), where E is a set of conditional
equations.

Specification building operators

mod* NUMBERS+*
{ protecting NUMBERS+

op _*_ : Nat Nat —-> Nat

eqg 0 x N =0
eqg s M x N= (M x N)

modx PNAT+x*
{ protecting PNAT+

op _*_ : Nat Nat -> Nat
eqg 0 x N =0
eq sM*N= (M N) +N . }

@ N,Z»,Z3,... € Mod(NUMBERS + *), where the algebras

N, Zn interprets _ * _

-> Nat inthe obvious way

@ N € Mod(PNAT + *), Zn & MOd(PNAT + *)

Specification building operators

Initiality

¥ = (S, <, F, F°) sensible.

@ x-congruence == (=5),c5 on a Z-algebra A
@ =;is an equivalence relation on As (reflexive, symmetric and transitive)

g e Fs1...sn—>s
a; =g, &

° :>‘A[,(a1,...,an)EsAg(aq,...,a;,)

an =s, a,

o ifsgs’then‘azsa’iffazsl a"

@ Quotient algebra A=

9 (A=)s = (As)=,
® (A=), : (A=)s, x (A=)s, — (A=)s is defined by

(A=)o(@1/=s,,- s an/=s,) = Ac(a1, .., an) /=

Specification building operators

@ E set of conditional X-equations: ’ t=gtViffEEt=t ‘

@ (Tx)=, isreachable if (X, E) is sufficient complete

Definition (Sufficient Completeness)

sp is sufficient complete if for all t € Tgjy(sp) there exists a constructor term
Ve TSig(SP) st.sPEt= t.

@ NUMBERS is not sufficient complete (_ + _ is underspecified)
@ NUMBERSH+ is suff. complete which implies that it has initial model.

mod* NUMBERS+ mod! PNAT+

{ [Zero < Nat] { [Zero < Nat]

op 0 : -> Zero {constr} op 0 : -> Zero {constr}

op s_: Nat -> Nat {constr} op s_: Nat -> Nat {constr}
op _ + _ : Nat Nat -> Nat op _ + _ : Nat Nat -> Nat
vars MN : Nat . vars MN : Nat .
eq0+N=N. eq0+N=N.
eqsM+N=s(M+N).} eqsM+N=s(M+N).}

Specification building operators

Exercise

Prove that NUMBERS+ is sufficient complete.

	Signatures
	Models
	Specification building operators

