Formal verification of Dynamic
Software Updating in CafeOBJ

A case study on RailCab System

Zhang Min

Lecture Note 13
Formal Method (i613-1312)

Review |

e Methodology
[Understand the problem I
and construct model

(Write specification of the]
L model and property J

(Verify properties with
respect to specification

2014/1/30 Lecture Note 13

Review |l

e OTS-based system specification and verification
— State is formalized as a set of observers
— State transitions are declared by equations
— Verification of invariant properties by CITP

* Trans-based system specification and verification
— State is formalized as a multiset of observed values
— State transitions are defined by CafeOBJ transitions
— Verification by searching or model checking

2014/1/30 Lecture Note 13

Today’s lecture

1. A crossing mechanism used in RailCab System

2. How to apply the modeling and verification method to
the crossing mechanism

a. Modeling by OTS
b. Verifying the crossing property in CITP

3. Formal verification of dynamic software updating by
model checking

2014/1/30 Lecture Note 13

Dynamic software updating

e Atechnique for updating a software when it is
running without incurring downtime.

(update a running system without stopping it)

e |tis useful to Systems that provide non-stoppable
services

* Web servers
* bank system
e traffic system

2014/1/30 Lecture Note 13

The RailCab System

e Conceptual transportation system
 Aresearch project since 1997
* University of Paderborn in Germany

* Features:
— Driverless
— Work on demand
— Intelligent
— Contact-free

2014/1/30 Lecture Note 13 6

Crossing mechanism of RailCab

Basic mechanism

eceive a response
e.g. pass

endOfTS lastBrake lastEmergencyBrake
) : : : " noReturn ot controller

i| @

2014/1/30 Lecture Note 13 7

Crossing mechanism of RailCab (old)

Cross when gate is still open (not safe)

eceive a response
e.g. pass
endOfTS lastBrake lastEmergencyBrake

.

) | | | ' noReturn ’/' controller

2014/1/30 Lecture Note 13

Crossing mechanism of RailCab (new)

New mechanism (two-time communication)

Send a request
Request-gate-stall
Recelve-a+response
Received gate status

endOfTS lastBrake JastEmergencyBrake)
L | - | noRetum controller
I
: o
. Yo
| .
! |
I
MOce. /|
Ng &

2014/1/30 Lecture Note 13 9

Verifying the crossing property in CITP

We want to verify that:
whenever the RailCab is at the noReturn location, gate
must be closed for the new crossing mechanism.

2014/1/30 Lecture Note 13 10

Modeling the new system

The new RailCab system

recResp(reject)
Approaching ,
Crossing &
Q sendReq sendQue C-\ recResp(grant)
start —| S0 r| S11 S}/ >
move2lebq mowvellebgy
eBrake

recResp(grant)

Q recResp(reject
85)¢

eBrake

2014/1/30

etGateIn fo(fals

7

Lecture Note 13

getGateIn fo(true)

513

movellebgy

\
7 .e

sendPass

12

A~

CTOos8s8

getGateln fo(true) move2nr
S8 7 9

&)

Modeling the new system

The new Controller

sendResp(g)
openGate
getPass sendResp(r)
sendAppV al recAppM sg

2014/1/30 Lecture Note 13 12

Specifying the new system

Observers:

op
op
op
op
op
op
op
op

NouhkwNeE

8 observers

loc : Sys -> Location .

channell : Sys -> MsgSeq .
channel2 : Sys -> MsgSeq .
rStatus : Sys -> Status .
gate : Sys -> Bool .

pass : Sys -> Signal .
conLoc : Sys -> Label .
appResult : Sys -> Signal .

RailCab’s location

Two communication channels
RailCab’s status (running or braked)
Gate’s status (closed or open)
Whether RailCab can pass
Controller’s current state

Feedback of the gate status checking

2014/1/30

Constructors:

--- 18 constructors

op init -> Sys
--- behavior of RailCab
op sendReq : Sys -> Sys

op recResp : Sys Signal -> Sys
op brake . Sys -> Sys
op movelleb : Sys -> Sys
op eBrake : Sys Signal -> Sys

op moveZnr : Sys -> Sys
op Cross . Sys -> Sys
op sendPass : Sys -> Sys
op sendAppReq : Sys -> Sys

op recAppResp :
--- behavior of controller

op recReq . Sys -> Sys
op sendResp : Sys -> Sys
op closeGate : Sys -> Sys
op openGate : Sys -> Sys
op recAppReq : Sys -> Sys
op sendAppResp : Sys -> Sys
op getPass : Sys -> Sys

Lecture Note 13

[ctor] .

[ctor] .
[ctor] .
[ctor] .
[ctor] .
[ctor] .
[ctor] .
[ctor] .
[ctor] .

[ctor] .

Sys Signal -> Sys [ctor]

[ctor] .
[ctor] .
[ctor] .
[ctor] .
[ctor] .
[ctor] .
[ctor] .

13

Specifying the new system

Definition of constructors by equations

An example of recResp, which receives the reply of from controller for the first
communication.

--- recResp

--- when there 1s a response message at the head of channel2

ceq channelZ(recResp(S,6G)) = Q if (Q respMsg(G)) := channel2(S) [metadata "CA-"] .

ceq channelZ(recResp(S,G)) = channel2(S) if (Q passed) := channel2(S) [metadata "CA-" 7 .
ceq channel2(recResp(S,(G)) = channel2(S) if (Q regMsg) := channel2(S) [metadata "CA-"] .
ceq channelZ2(recResp(S,G)) = channel2(S) if (Q chkMsg) := channel2(S) [metadata "CA-" 7.

ceq channelZ(recResp(S,G)) = channel2(S) if (Q gateMsg(G)) := channel2(S) [metadata "CA-" 7.

ceq pass(recResp(S,(G))
ceq pass(recResp(S,(G))
ceq pass(recResp(S,(G))
ceq pass(recResp(S,G))
ceq pass(recResp(S,(G))

G if (Q respMsg(G)) := channel2(S) [metadata "CA-"] .
pass(S) if (Q passed) := channel2(S) [metadata "CA-"].
pass(S) if (Q regMsg) := channel2(S) [metadata "CA-" 7.
pass(S) if (Q chkMsg) := channel2(S) [metadata "CA-" 7.
pass(S) if (Q gateMsg(G)) := channel2(S) [metadata "CA-"].

eq rStatus(recResp(S,(G)) = rStatus(S) .

eq loc(recResp(S,G)) = loc(S) .

eq gate(recResp(S,G)) = gate(S) .

eq conlLoc(recResp(S,G)) = conLoc(S) .

eq channell(recResp(S,(G)) = channell(S) .
eq appResult(recResp(S,G)) = appResult(S) .

2014/1/30 Lecture Note 13 14

Verification of the crossing property

We want to verify that:
whenever the RailCab is at the noReturn location, gate must be
closed for the new crossing mechanism.

The goal to prove:

(goal RAILCAB-NEW |- ceq gate(S:Sys) = true if loc(S:Sys) = noReturn ;)

Proof:
(set ind on S:Sys .)
(apply SI .) --- 18 subgoals generated
Cauto .)
(apply CA CA IP RD .) --- apply 14 times

--- use lemma 1 to prove the case 1-1-7-1
(init ceq gate(S:Sys) = true if appResult(S:Sys) = grant . by S:Sys <- x#1 ; .)

--- use lemma 2 to prove the case 1-1-8-1
(init ceq true = false if conlLoc(S:Sys) = s4 /\ loc(S5:5ys) = noReturn . by S:Sys <- x#1 ; .)

--- the end of prove

2014/1/30 Lecture Note 13 15

Verification of the crossing property

Lemma-1:
It says that for any state if the feedback result of the second communication is grant in it,
gate must be closed.

(goal RAILCAB-NEW |- ceq gate(S:Sys) = true if appResult(S5:Sys) = grant ;)

Lemma-2:
It is impossible that RailCab is at noReturn location, but the controller is at the s4.

(goal RAILCAB-NEW |- ceq true = false if conLoc(S:Sys) = s4 /\ loc(S:Sys) = noReturn ;)

G>

O

RailCab Controller
O

5 getGateInfo(true)@
» 1-0/ 13
sendPass openGatc v

:bog move2lebg @
getPass [sendResp(r)

cross sendAppV al |I I| recAppM sg
\

getGatelIn fo(true) move2nr I\‘,_ ‘J;
ST S8 > 4 ,'\'
| 8=)

2014/1/30 Lecture Note 13 16

Overview of the proof
(] finished

unfinished

Crossing Property

/_/\

[Lemma-1] [Lemma-2]

o

[Lemma-3] [Lemma-4] [Lemma-5]

S~ T

[Lemma-6] [Lemma-7]

— —

Lemma-8 Lemma-9 Lemma-10 Lemma-11 Lemma-12

2014/1/30 Lecture Note 13 17

Lemmas

--- lemma-3
(goal RAILCAB-NEW |- ceq gate(S:S5ys) = true if
channel2(S:Sys) = (Q:MsgSeq gateMsg(grant)) [label lemma-3 nonexec] ;)

--- lemma-4
(goal RAILCAB-NEW |- ceq true = false if
conLoc(S:Sys) = s4 /\ appResult(S:Sys) = grant ;)

--- lemma-5
(goal RAILCAB-NEW |- ceq channell(S5:Sys) = empty
if loc(S:Sys) = noReturn [label lemma-5] ;)

--- lemma-6
(goal RAILCAB-NEW |- ceq channel2(5:Sys) = empty if conLoc(S:Sys)

s4 ;)

--- lemma-7
(goal RAILCAB-NEW |- ceq channell(S:Sys) = empty
if conLoc(S:Sys) = s1 /\ appResult(S:Sys)

grant [label lemma-7] ;)

--- lemma-8
(goal RAILCAB-NEW |- ceq (loc(S:Sys) ~ opposite) = false
if conLoc(S:Sys) = s4 [label lemma-8] .)

2014/1/30 Lecture Note 13

18

Dynamic update of RailCab System

Suppose that we need to dynamically update the RailCab
System to the new version. We need to know:

1. What?
— What are the changes (differences between the old system and the new

one)

2. When?

— In which state update should be applied to make the system after being
updated safe?

— What are the criterion of the safety?

3. How?
— How changes are applied by updating

2014/1/30 Lecture Note 13 19

Changes between the old and new

A new signal trigger (approaching crossing)
* Two new messages,
— Request message of gate’s status
— Reply message of gate’s status
 Four new behaviors
— RailCab sends a request message of gate’s status
— RailCab receives a reply message of gate’s status
— Controller receives the request message
— Controller sends a reply message
 Change of condition for braking
— Not receives any of the two replies
— Any of the reply is negative (rejected, or gate is open)
 Change of condition for passing
— Both the two replies are positive (granted and gate is closed)

2014/1/30 Lecture Note 13 20

Criterion of safe updating (RailCab)

e A safe updating should satisfy the following
three properties

1. The updatable state should be eventually reachable

2. After updating, it must be safe to cross the intersection
i.e., gate must be closed.

3. After updating, if RailCab can cross the intersection, it
must eventually cross it.

e State preservation

— State where update takes place should be
preserved as much as possible.

2014/1/30 Lecture Note 13 21

Modeling and verifying the update

 Old and new systems are modeled as two state
transition systems

 Updating is considered as a transition from an old
state to a new one.

e By verification:
— To verify whether an old state is a safe updating point.
— To find a safe updating point

2014/1/30 Lecture Note 13 22

Modeling the old RailCab System

State transition system (RailCab)

lastBrake
endofTS

sendReg
start —| 30 >

recResp(reject)

\ brake

leBrake

2014/1/30 Lecture Note 13 23

Modeling the old RailCab System

State transition system (Controller)

g means grant

& S
open(Gate A\ *&@

getPass sendResp(r)

r means reject the request

2014/1/30 Lecture Note 13

24

Trans-based specification in CafeOBJ

Property to be verified:

Formalization of states

[01dState]

op __ : 0ldState OldState -> 0ldState {comm assoc} .
op loc-o0:_ : Location -> 0ldState {constr} .

op channell-o:_ : QMsg -> 0ldState {constr} .

op channel2-o:_ : QMsg -> 0ldState {constr} .

op rStatus-o:_ : Status -> 0ldState {constr} .

op conloc-0:_ : Label -> 0ldState {constr} .

op gate-o:_ : Bool -> OldState {constr} .

op pass-0:_ : Signal -> 0ldState {constr} .

Formalization of behavior

trans [sendReq] : (loc-o: endOfTS) (channell-o: NW) =>
(loc-o: lastBrake) (channell-o: (regMsg & NW)) .

trans [recResp] :
(channel2-o: (NW & respMsg(S))) (pass-o: S') =>
(channel2-o: NW) (pass-o: S) .
2014/1/30 Lecture Note 13 25

Verification by searching in CafeOBJ

* Property to verify:

— When RailCab is at the noReturn, gate must be closed.

There is never a state where RailCab is at the noReturn location
but the gate is open, such that the state is reachable from initial
state.

e |nitial state:

eq init-o = (loc-o: endOfTS) (rStatus-o: running) (pass-o: unknown)
(channell-o: empty) (channel2-o: empty) (conLoc-0: sl)
(gate-o: false)

Searching:

open RAILCAB-OLD .
red init-o =(*,*)=>+ (gate-o: false) (loc-o: noReturn) S:01dState .
close

CafeOBlJ returns a state that matches the pattern

2014/1/30 Lecture Note 13 26

Modeling the new system

The new RailCab system

recResp(reject)
Approaching ,
Crossing &
Q sendReq sendQue C-\ recResp(grant)
start —| S0 r| S11 S}/ >
move2lebq mowvellebgy
eBrake

recResp(grant)

Q recResp(reject
85)¢

eBrake

2014/1/30

etGateIn fo(fals

7

Lecture Note 13

getGateIn fo(true)

513

movellebgy

\
7 .e

sendPass

12

A~

CTOos8s8

getGateln fo(true) move2nr
S8 7 9

&)

Modeling the new system

The new Controller

sendResp(g)
openGate
getPass sendResp(r)
sendAppV al recAppM sg

2014/1/30 Lecture Note 13 28

Specifying the new system in CafeOB)J

Property to be verified:
* Formalization of states

[NewState]

op _,_ : NewState NewState -> NewState {comm assoc} .
op loc-n:_ : Location -> NewState {constr} .
op channell-n:_ : QMsg -> NewState {constr} .
op channel2-n:_ : QMsg -> NewState {constr} .
op rStatus-n:_ : Status -> NewState {constr} .
op conLoc-N:_ : Label -> NewState {constr} .
op gate-n:_ : Bool -> NewState {constr} .

op pass-n:_ : Signal -> NewState {constr} .

-- newly added

op appResult:_ : Signal -> NewState {constr} .

e Formalization of behavior (new)

trans [recAppMsg] :
(conLoc-N: sl1), (channell-n: (NW & chkMsg)) =>
(conLoc-N: s5), (channell-n: NW) .

trans [sendAppVal] : (conLoc-N: s5), (channel2-n: NW), (gate-n: B) =>

2014/1/3

gconLoc—N: s1), (channelZ—n:L&%ﬂgﬁm%qu) & NW)), (gate-n: B) .

29

Formalizing Dynamic updating ()

e Declare a super sort ONState

mod! RAILCAB-UPDATE-1 {
inc(RAILCAB-NEW)
inc(RAILCAB-OLD)

[01dState NewState < ONState]

e Specify updating by transition from old state to new state

Example (an offline-like updating)

trans [update-1] :
(loc-o0: LOC:Location) (rStatus-o: T:Status)

(pass-o0: S:Signal) (channell-o: CH1:QMsg) An arbitrary old

(channel2-o: CH2:QMsg) (conLoc-0: L:Label) state

(gate-o0: B:Bool) =>

(loc-n: endOfTS), (rStatus-n: running),

(pass-n: unknown), (channell-n: empty),

(channel2-n: empty), (conLoc-N: s1),

(gate-n: false), (appResult: unknown) .

state

The r‘ew initial

2014/1/30 Lecture Note 13 30

Formalizing Dynamic updating (Il)

 Areal dynamic updating

ctrans [update-2] :

(loc-o0: LOC:Location) (rStatus-o: T:Status)
(pass-o0: S:Signal) (channell-o: CH1:QMsg)
(channel2-o: CH2:QMsg) (conLoc-0: L:Label)
(gate-o: B:Bool) =>
(loc-n: LOC), (rStatus-n: T),

(pass-n: S), (conLoc-N: L),

(channell-n: CH1:QMsg),

(channel2-n: CH2:QMsg),

(gate-n: B), (appResult: (if B then grant else unknown fi))
if not (LOC = noReturn) .

1. When RailCab is not at the noReturn location
appResult is initialized according to gate’s status
3. The old state is preserved

N

2014/1/30 Lecture Note 13 31

Verifying the correctness of updating

 We should verify the following three properties:

1. Whether the updatable state is always eventually reached
or RailCab is braked

2. After being updated, whether the RailCab can always
safely cross the intersection.

3. After being updating, when the RailCab can cross the
Intersection, whether it will eventually cross it.

We use Maude to verify these properties, because 1, and 3 are
liveness properties which the current version of CafeOBJ does

not support to verify.

2014/1/30 Lecture Note 13 32

Formalizing Dynamic updating (Il)

We should verify the three properties:

--- define the condition of updatable state

op updatable : -> Prop .

ceq (loc-o: L) (rStatus-o: running) 0S5:0ldState [= updatable = true
if not (L = noReturn)

* Property 1:

--- formula of the properties
- 1. Updatability, <> updatable or <> braked

red modelCheck(init-o, (<> updatable) \/ (<> braked)) .
* Property 2:

--- a. [](@PnoReturn -> closedGate)
red modelCheck(init-o, [] (@noReturn -> closedGate)) .

A counterexample is found

2014/1/30 Lecture Note 13 33

Counterexample
The updating point:

{loc-o: leBrake
channell-o: reqgMsg
channel2-o0: empty
rStatus-o: running
conlLoc-0:s4
gate-o: true

pass-o: unknown}

openGate \Y tRe
getPass I,e“'h \ sendResp(r)
scrut4pp1fal: :ch:tppﬂ{sg

“n)
\
!
| e
\ ’qa /
N4

New controller

2014/1/30

update

{loc-n: leBrake,

channell-n: reqMsg,
channel2-n: empty,
rStatus-n: running,
conloc-n: s4,

gate-n: true,

pass-n: unknown,
appResult: grant}

Transitions leading to counterexample:

1.

2.
3.
4

Lecture Note 13

openGate

getReq

sendResp(g)
recResp(g) by Railcab
Pass-n: grant

34

A correct updating

The updating point:

ctrans [update-3] :

(loc-o0: LOC:Location) (rStatus-o: T:Status)
(pass-o0: S:Signal) (channell-o: empty)
(channel2-o: CHZ2:QMsg) (conLoc-0: s1)
(gate-o: B:Bool) =>

(loc-n: LOC), (rStatus-n: T),

(pass-n: S), (conLoc-N: sl),

(channell-n: empty),

(channel2-n: CHZ2:QMsg),

(gate-n: B), (appResult: (if B then grant else unknown fi))
1f not (LOC = noReturn) .

We can verify that the three properties are satisfied by the update!

Sufficient conditions for safe updating:
1. Allthe messages sent by Railcab must be processed by the controller.
2. Controlleris at s1.
3. RailCab is not at noReturn location

2014/1/30

Lecture Note 13

35

Summary

In this lecture,

1. How to model the crossing mechanism of RailCab system and
verify its crossing property in CITP

2. How to model dynamic software updating

a. Formalize both old and new systems as two independent
state transition systems

b. Formalize dynamic updating as transitions from old state
to new states

3. How to formalize the correctness of a dynamic update
How to find correct updating points

2014/1/30 Lecture Note 13 36

Materials used in this case study

" eename | comem

railcab-trans-old.cafe

railcab-trans-new.cafe
railcab-trans-update.cafe
railcab-trans-old.maude

railcab-trans-new.maude

railcab-trans-update-1.maude
railcab-trans-update-2.maude
railcab-citp-new.maude
inv.maude

lemma-*.maude

Reference:

CafeOBlJ specification of the old RailCab’s crossing mechanism

CafeOBlJ specification of the old RailCab’s crossing mechanism
Three modules specifying the updates in the lecture
Maude specification of the old RailCab’s crossing mechanism

Maude specification of the new RailCab’s crossing mechanism

The second update and its verification

The third update and its verification

The OTS-based specification used for theorem proving in CITP
The proof of Crossing Property in CITP

Lemmas and their proofs

Steve Eker, et. al, The Maude LTL model checker, ENTCS, Vol. 71, pp. 162-187, Elsevier, 2003.

2014/1/30

Lecture Note 13 37

	Formal verification of Dynamic Software Updating in CafeOBJ
	Review I
	Review II
	Today’s lecture
	Dynamic software updating
	The RailCab System
	Crossing mechanism of RailCab
	Crossing mechanism of RailCab (old)
	Crossing mechanism of RailCab (new)
	Verifying the crossing property in CITP
	Modeling the new system
	Modeling the new system
	Specifying the new system
	Specifying the new system
	Verification of the crossing property
	Verification of the crossing property
	Overview of the proof
	Lemmas
	Dynamic update of RailCab System
	Changes between the old and new
	Criterion of safe updating (RailCab)
	Modeling and verifying the update
	Modeling the old RailCab System
	Modeling the old RailCab System
	Trans-based specification in CafeOBJ
	Verification by searching in CafeOBJ
	Modeling the new system
	Modeling the new system
	Specifying the new system in CafeOBJ
	Formalizing Dynamic updating (I)
	Formalizing Dynamic updating (II)
	Verifying the correctness of updating
	Formalizing Dynamic updating (II)
	Counterexample
	A correct updating
	Summary
	Materials used in this case study

