
Formal verification of Dynamic
Software Updating in CafeOBJ

A case study on RailCab System

Zhang Min

Lecture Note 13
Formal Method (i613-1312)

Review I

• Methodology

Understand the problem
and construct model

Write specification of the
model and property

Verify properties with
respect to specification

2014/1/30 2 Lecture Note 13

Review II

• OTS-based system specification and verification
– State is formalized as a set of observers
– State transitions are declared by equations
– Verification of invariant properties by CITP

• Trans-based system specification and verification
– State is formalized as a multiset of observed values
– State transitions are defined by CafeOBJ transitions
– Verification by searching or model checking

2014/1/30 3 Lecture Note 13

Today’s lecture

1. A crossing mechanism used in RailCab System

2. How to apply the modeling and verification method to
the crossing mechanism

a. Modeling by OTS

b. Verifying the crossing property in CITP

3. Formal verification of dynamic software updating by
model checking

2014/1/30 4 Lecture Note 13

Dynamic software updating

• A technique for updating a software when it is
running without incurring downtime.
(update a running system without stopping it)

• It is useful to Systems that provide non-stoppable
services

• Web servers
• bank system
• traffic system

2014/1/30 5 Lecture Note 13

The RailCab System

• Conceptual transportation system
• A research project since 1997
• University of Paderborn in Germany
• Features:

– Driverless
– Work on demand
– Intelligent
– Contact-free

2014/1/30 6 Lecture Note 13

endOfTS lastBrake lastEmergencyBrake
noReturn

Crossing mechanism of RailCab

Send a request
Receive a response
e.g. pass

controller

Basic mechanism

2014/1/30 7 Lecture Note 13

endOfTS lastBrake lastEmergencyBrake
noReturn

Crossing mechanism of RailCab (old)

Send a request
Receive a response
e.g. pass

controller

Cross when gate is still open (not safe)

2014/1/30 8 Lecture Note 13

endOfTS lastBrake lastEmergencyBrake
noReturn

Crossing mechanism of RailCab (new)

Send a request

Receive a response

controller

New mechanism (two-time communication)

Request gate status

Received gate status

2014/1/30 9 Lecture Note 13

Verifying the crossing property in CITP

We want to verify that:
whenever the RailCab is at the noReturn location, gate
must be closed for the new crossing mechanism.

2014/1/30 10 Lecture Note 13

Modeling the new system

Approaching
Crossing

The new RailCab system

2014/1/30 11 Lecture Note 13

Modeling the new system
The new Controller

2014/1/30 12 Lecture Note 13

Specifying the new system
Observers:

2014/1/30 13 Lecture Note 13

Constructors:

1. RailCab’s location
2. Two communication channels
3. RailCab’s status (running or braked)
4. Gate’s status (closed or open)
5. Whether RailCab can pass
6. Controller’s current state
7. Feedback of the gate status checking

Specifying the new system
Definition of constructors by equations
An example of recResp, which receives the reply of from controller for the first
communication.

2014/1/30 14 Lecture Note 13

Verification of the crossing property

2014/1/30 15 Lecture Note 13

We want to verify that:
whenever the RailCab is at the noReturn location, gate must be
closed for the new crossing mechanism.

The goal to prove:

Proof:

Verification of the crossing property

2014/1/30 16 Lecture Note 13

Lemma-1:
 It says that for any state if the feedback result of the second communication is grant in it,
 gate must be closed.

Lemma-2:
 It is impossible that RailCab is at noReturn location, but the controller is at the s4.

RailCab Controller

Overview of the proof

2014/1/30 17 Lecture Note 13

Crossing Property

Lemma-1 Lemma-2

Lemma-3 Lemma-4 Lemma-5

Lemma-6 Lemma-7

Lemma-8 Lemma-9 Lemma-10 Lemma-11 Lemma-12

unfinished
finished

Lemmas

2014/1/30 18 Lecture Note 13

Dynamic update of RailCab System

1. What?
– What are the changes (differences between the old system and the new

one)
2. When?

– In which state update should be applied to make the system after being
updated safe?

– What are the criterion of the safety?
3. How?

– How changes are applied by updating

2014/1/30 19 Lecture Note 13

Suppose that we need to dynamically update the RailCab
System to the new version. We need to know:

Changes between the old and new
• A new signal trigger (approaching crossing)
• Two new messages,

– Request message of gate’s status
– Reply message of gate’s status

• Four new behaviors
– RailCab sends a request message of gate’s status
– RailCab receives a reply message of gate’s status
– Controller receives the request message
– Controller sends a reply message

• Change of condition for braking
– Not receives any of the two replies
– Any of the reply is negative (rejected, or gate is open)

• Change of condition for passing
– Both the two replies are positive (granted and gate is closed)

 2014/1/30 20 Lecture Note 13

Criterion of safe updating (RailCab)

• A safe updating should satisfy the following
three properties
1. The updatable state should be eventually reachable
2. After updating, it must be safe to cross the intersection

i.e., gate must be closed.
3. After updating, if RailCab can cross the intersection, it

must eventually cross it.

• State preservation
– State where update takes place should be

preserved as much as possible.

2014/1/30 21 Lecture Note 13

Modeling and verifying the update
• Old and new systems are modeled as two state

transition systems
• Updating is considered as a transition from an old

state to a new one.
• By verification:

– To verify whether an old state is a safe updating point.
– To find a safe updating point

2014/1/30 22 Lecture Note 13

Modeling the old RailCab System

endofTS
lastBrake

leBrake

leBrake noReturn

oppoCross

endofTS

State transition system (RailCab)

2014/1/30 23 Lecture Note 13

Modeling the old RailCab System

g means grant

r means reject the request

State transition system (Controller)

2014/1/30 24 Lecture Note 13

Trans-based specification in CafeOBJ
Property to be verified:

Formalization of states

Formalization of behavior

2014/1/30 25 Lecture Note 13

Verification by searching in CafeOBJ
• Property to verify:

– When RailCab is at the noReturn, gate must be closed.

There is never a state where RailCab is at the noReturn location
but the gate is open, such that the state is reachable from initial
state.

• Initial state:

• Searching:

CafeOBJ returns a state that matches the pattern
2014/1/30 26 Lecture Note 13

Modeling the new system

Approaching
Crossing

The new RailCab system

2014/1/30 27 Lecture Note 13

Modeling the new system
The new Controller

2014/1/30 28 Lecture Note 13

Specifying the new system in CafeOBJ
Property to be verified:
 • Formalization of states

• Formalization of behavior (new)

2014/1/30 29 Lecture Note 13

Formalizing Dynamic updating (I)
• Declare a super sort ONState

• Specify updating by transition from old state to new state
Example (an offline-like updating)

An arbitrary old
state

The new initial
state

2014/1/30 30 Lecture Note 13

Formalizing Dynamic updating (II)
• A real dynamic updating

1. When RailCab is not at the noReturn location
2. appResult is initialized according to gate’s status
3. The old state is preserved

2014/1/30 31 Lecture Note 13

Verifying the correctness of updating
• We should verify the following three properties:

1. Whether the updatable state is always eventually reached
or RailCab is braked

2. After being updated, whether the RailCab can always
safely cross the intersection.

3. After being updating, when the RailCab can cross the
 Intersection, whether it will eventually cross it.

We use Maude to verify these properties, because 1, and 3 are
liveness properties which the current version of CafeOBJ does
not support to verify.

2014/1/30 32 Lecture Note 13

Formalizing Dynamic updating (II)
We should verify the three properties:

• Property 1:

• Property 2:

A counterexample is found
2014/1/30 33 Lecture Note 13

Counterexample
The updating point:

2014/1/30 34 Lecture Note 13

update

New controller

Transitions leading to counterexample:
1. openGate
2. getReq
3. sendResp(g)
4. recResp(g) by Railcab
 Pass-n: grant

A correct updating
The updating point:

2014/1/30 35 Lecture Note 13

Sufficient conditions for safe updating:
1. All the messages sent by Railcab must be processed by the controller.
2. Controller is at s1.
3. RailCab is not at noReturn location

We can verify that the three properties are satisfied by the update!

Summary
In this lecture,

1. How to model the crossing mechanism of RailCab system and

verify its crossing property in CITP
2. How to model dynamic software updating

a. Formalize both old and new systems as two independent
state transition systems

b. Formalize dynamic updating as transitions from old state
to new states

3. How to formalize the correctness of a dynamic update
4. How to find correct updating points

2014/1/30 36 Lecture Note 13

Materials used in this case study

2014/1/30 37 Lecture Note 13

File name Content
railcab-trans-old.cafe CafeOBJ specification of the old RailCab’s crossing mechanism

railcab-trans-new.cafe CafeOBJ specification of the old RailCab’s crossing mechanism

railcab-trans-update.cafe Three modules specifying the updates in the lecture

railcab-trans-old.maude Maude specification of the old RailCab’s crossing mechanism

railcab-trans-new.maude Maude specification of the new RailCab’s crossing mechanism

railcab-trans-update-1.maude The second update and its verification

railcab-trans-update-2.maude The third update and its verification

railcab-citp-new.maude The OTS-based specification used for theorem proving in CITP

inv.maude The proof of Crossing Property in CITP

lemma-*.maude Lemmas and their proofs

Reference:
 Steve Eker, et. al, The Maude LTL model checker, ENTCS, Vol. 71, pp. 162-187, Elsevier, 2003.

	Formal verification of Dynamic Software Updating in CafeOBJ
	Review I
	Review II
	Today’s lecture
	Dynamic software updating
	The RailCab System
	Crossing mechanism of RailCab
	Crossing mechanism of RailCab (old)
	Crossing mechanism of RailCab (new)
	Verifying the crossing property in CITP
	Modeling the new system
	Modeling the new system
	Specifying the new system
	Specifying the new system
	Verification of the crossing property
	Verification of the crossing property
	Overview of the proof
	Lemmas
	Dynamic update of RailCab System
	Changes between the old and new
	Criterion of safe updating (RailCab)
	Modeling and verifying the update
	Modeling the old RailCab System
	Modeling the old RailCab System
	Trans-based specification in CafeOBJ
	Verification by searching in CafeOBJ
	Modeling the new system
	Modeling the new system
	Specifying the new system in CafeOBJ
	Formalizing Dynamic updating (I)
	Formalizing Dynamic updating (II)
	Verifying the correctness of updating
	Formalizing Dynamic updating (II)
	Counterexample
	A correct updating
	Summary
	Materials used in this case study

