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Topics 

 
♦  Basic concepts for modeling, specification, 

verification in CafeOBJ  

♦  Basics of CafeOBJ language system: module, 
signature, equation, expression/term, reduce, 
parse 

♦  Specification and verification of Peano style 
natural numbers 
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Modeling, Specifying, and Verifying in CafeOBJ 

1.  By understanding a problem to be modeled/
specified, determine several sorts of objects 
(entities, data, agents, states) and operations 
(functions, actions, events) over them for 
describing the problem 

2.  Define the meanings/functions of the 
operations by declaring equations over 
expressions/terms composed of the operations 

3.  Write proof scores for properties to be verified 
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Natural Numbers   -- Signature --	

objects:　						Nat 
operations:　0 :  returns zero without arguments 
                       s :  if given a natural number n, returns the 

next natural number (s n) of n	

-- sort 
[ Nat ] 
--constructor operators 
op 0 :  -> Nat {constr} 
op s_:  Nat -> Nat {constr} 

0  0+1  0+1+1  0+1+1+1  0+1+1+1+1 …  

0  s(0)  s(s(0))  s(s(s(0)))  s(s(s(s(0)))) … 

Nat 
0 

S_ 
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1.   0	is a natural number	
2.  If	n	is natural number then	(s	n)	is a natural 

number	
3.  An object which is to be a natural number by 1 and 2 

is only a natural number	

Natural Number            
 -- Expressions/terms composed of operators	

Nat = {0, s(0), s(s(0)), s(s(s(0))), s(s(s(s(0)))) … } 

Nat = {0, s 0, s s 0, s s s 0, s s s s 0, … }  

Describe a concept in expressions/terms! 

Peano’s definition of natural numbers （１８８９）, Giuseppe Peano (1858-1932) 
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CafeOBJ module specifying PNAT 
 -- Peano Style natural numbers 

mod! PNAT {
  [ Nat ]
  op 0 : -> Nat {constr} .
  op s_ : Nat -> Nat {constr} .

  -- op _=_ : Nat Nat -> Bool {comm} .
  -- eq (N:Nat = N) = true .
  eq (0 = s(N2:Nat)) = false .
  eq (s(N1:Nat) = s(N2:Nat)) = (N1 = N2) .
}

Constructors (indicated by {constr}) define recursively 
the set of terms which constitute a sort. 
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Natural numbers 
　　　　-- signature and expressions/terms 

-- sort 
[ Nat ] 
-- operations 
op 0 :  -> Nat {constr} 
op s_:  Nat -> Nat {constr} 

Nat 
0 

S_ 

Nat	=	{	0	}	∪	{	s	n	|	n	∈	Nat	}	
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Mathematical Induction over Natural Numbers (1) 

Goal: Prove that a property P(n) is true 
      for any natural number n ∈	{0, s 0, s s 0,…} 
Induction Scheme: 
 

 P(0)  　∀n∈N.[P(n) => P(s n)]  
 

∀n∈N.P(n) 
 
Concrete Procedure: (induction with respect to n) 

1.   Prove P(0) is true	
2.   Assume that P(n) holds,  
   and prove that P(s n) is true 

The recursive structure defined by two constructors 
of sort Nat induces the following induction scheme. 
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Mathematical Induction over Natural Numbers (2)	
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Induction Base	 Induction Step	

…	



Natural numbers with addition operation 
　　　　-- signature and expressions/terms 

-- sort 
[ Nat ] 
-- operations 
op 0 :  -> Nat {constr} 
op s_:  Nat -> Nat {constr} 
op _+_: Nat Nat -> Nat 
   -- _+_ is a defined operator 

Nat 
0 

S_ 

_+_ 
Nat	=	{	0	}	∪	{	s	n	|	n	∈	Nat	}	
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NatExp	=	{	0	}	∪	{	s	n	|	n	∈	Nat	}	
																∪	{	n1	+	n2	|	n1	∈	Nat	∧	n2	∈	Nat	}	



Natural numbers with addition 
-- equations define meaning/function 

CafeOBJ module PNAT+ defining  
Peano Natural numbers with addition 
	
mod! PNAT+ { 
  pr(PNAT) 
  op _+_ : Nat Nat -> Nat . 
  vars N1 N2 : Nat . 
  -- equations 
  eq 0 + N2 = N2 . 
  eq (s N1) + N2 = s(N1 + N2) . 
} 

Computation/inference 
with the equations 
	
  (s s 0) + (s 0)  
= s((s 0) + (s 0))  
= s s(0 + (s 0))  
= s s s 0 

CafeOBJ> select PNAT+ 
PNAT+> red s s 0 + s 0 . 
PNAT+> -- reduce in PNAT+ : 
((s (s 0)) + (s 0)):Nat 
(s (s (s 0))):Nat 
(0.000 sec for parse,  
3 rewrites(0.000 sec),  
5 matches)	
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Defined operator (_+_) is 
erased by the two equations.	

Sufficient Completeness 	



Natural numbers with addition 
　	-- expressions/terms composed by operators 

NatExp = { 
0, s 0, s s 0, s s s 0, ... , 
0 + 0, 0 + (s 0), 0 + (s s 0), 0 + (s s s 0), ...,  
(s 0) + 0, (s 0) + (s 0), (s 0) + (s s 0),  
                           (s 0) + (s s s 0), ...,  
(s s 0) + 0, (s s 0) + (s 0), (s s 0) + (s s 0),  
                         (s s 0) + (s s s 0), ...,  
... ... 
0 + (0 + 0), 0 + (0 + (s 0)), ... 
... 
(0 + 0) + 0, (0 + (s 0)) + 0, ... 
... 
. } 
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Because _+_ is a defined operator, any _+_ operator is 
supposed to be eliminated.  That is, NatExp ==> Nat .	



Reduction of CafeOBJ is  
honest to equational reasoning  

♦  The basic mechanism of CafeOBJ verification is 
equational reasoning. Equational reasoning is to 
deduce an equation (a candidate of a theorem) 
from a given set of equations (axioms of a 
specification). 

♦  The CafeOBJ system supports an automatic 
equational reasoning based on term rewriting. 

♦  “reduce” or “red” command of CafeOBJ helps to 
do equational reasoning by term rewriting. 
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What can be done with  
red (reduction) command? 

Let us fix a context M (a module M in CafeOBJ), and let 
(t1 =*M> t2) denote that t1 is reduced to t2 in the 
context. That is, (red in M : t1 .) returns t2 .  
Let (t1 =M t2) denote that t1 is equal to t2 in the 
context M.  That is (t1 = t2) can be inferred by 
equational reasoning in M. It is important to notice: 
 
         ( t1 =*M> t2 ) implies ( t1 =M t2 ) 
 
but 
 
         ( t1 =M t2 ) does not implies ( t1 =*M> t2 ) 
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Proof score for right zero property:  
                               (N:Nat + 0 = N) 
-- proof by induction with respect to N:Nat 
-- induction base case: 
-- opening module PNAT+ to make use of all its contents 
open PNAT+ 
red 0 + 0 = 0 . 
close 
-- induction step case: 
open PNAT+ 
-- declare that the constant n stands for any Nat value 
op n : -> Nat . 
-- induction hypothesis: 
eq n + 0 = n . 
-- induction step proof for (s n): 
red s n + 0 = s n . 
close 
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Declaring constants and equations then reduce 

While a module is opened, declaring constants and  equations 
represents assumptions for equational reasoning done by red. 

%PNAT+> op n : -> Nat . 
... 
%PNAT+> **> induction hypothesis: 
%PNAT+> eq n + 0 = n . 
%PNAT+> **> induction step proof for (s n): 
**> induction step proof for (s n): 
%PNAT+> red s n + 0 = s n . 
* 
-- reduce in %PNAT+ : (((s n) + 0) = (s n)):Bool 
(true):Bool 

This is a proof of  
∀N:Nat.[(N + 0) = N  implies ((s N) + 0) = (s N) ]. 
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Proof score for associativity of (_ + _) 
     (N1:Nat + N2:Nat) + N3:Nat = N1 +(N2 + N3) 

**> induction base case: 
open PNAT+ 
red 0 + (`n2:Nat + `n3:Nat) = (0 + `n2) + `n3 . 
Close 
**> induction step case: 
open PNAT+ 
**> declare that the constant n1 stands for any Nat value 
op n1 : -> Nat . 
**> induction hypothesis: 
eq (n1 + N2:Nat) + N3:Nat = n1 + (N2 + N3) . 
**> induction step proof for (s n1): 
red ((s n1) + `n2:Nat) + `n3:Nat = (s n1) + (`n2 + `n3) . 
close 
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Comments 

A line beginning with “--” (or “**”) is ignored, and         
A line beginning with “-->” (or “**>”) is echoed back. 

CafeOBJ> -- this is a comment 
CafeOBJ>  

CafeOBJ> ** this is a comment 
CafeOBJ>  

CafeOBJ> --> this is a comment 
--> this is a comment 
CafeOBJ>  

CafeOBJ> **> this is a comment 
**> this is a comment 
CafeOBJ>  

It is very important to write as much appropriate 
comments as possible for explaining specifications 
and proof scores (verifications/proofs). 
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CafeOBJ	specification is composed of modules.  
There are three kinds of modules. 	

Three kinds of modules 

mod! <module_name> { 
  <modlue_element> * 
} 

[Naming convention] module name starts with two successive 
upper case characters 	
(example：TEST, NAT, PNAT+，ACCOUNT-SYS,…) 

mod* <module_name> { 
  <modlue_element> * 
} 

mod!	declares that the module denotes tight denotation	
mod*	declares that the module denotes loose denotation 
mod		does not declare any semantic denotation	

mod <module_name> { 
  <modlue_element>* 
} 
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A module is composed of  
signature and axioms/equations 

               axioms/equations 

              signature 

mod! PNAT { 
  [ Nat ] 
  op 0 : -> Nat {constr} . 
  op s_ : Nat -> Nat {constr} . 
  op _=_ : Nat Nat -> Bool {comm} . 
 
  eq (N:Nat = N) = true . 
  eq (0 = s(N2:Nat)) = false . 
  eq (s(N1:Nat) = s(N2:Nat))  
           = (N1 = N2) . 
} 
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rank 

Signature:  
sort name, operator name, arity, co-arity, rank 

A signature is a pair of  a set of sorts and a set of  operations. 

 Signature 

mod* PNAT {
 [Nat]
 op 0 : -> Nat {constr}

 op s : Nat -> Nat {constr}
 op _=_ : Nat Nat -> Bool {comm}
  ... }

sorts 

operators 

op _=_ : Nat Nat -> Bool 

arity              co-arity  

[Convention] The first and second letter of a sort name is written in a 
upper case and lower case letter respectively. (E.g. Nat, Set)	

[Convention] The first letter of  an operation name is written in a 
lowerl case letter or a non-alphabet letter.  (E.g. 0, s, + )	
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Order sorted signature and sorted terms 
-- Natural numbers with predecessor function 

-- signature 
-- sorts 
[ NzNat < Nat ] 
-- operators 
op 0 :  -> Nat {constr} 
op s_:  Nat -> NzNat {constr} 
op p_:  NzNat -> Nat 
eq p s N:Nat = N . 

Sorted terms 
NzNat = {s n | n ∈ Nat} 
Nat = {0} ∪ NzNat ∪ {p n | n ∈ NzNat} 

s_ 

Nat 

0
NzNat 

p_ (p 0) is handled as an error!	
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Recursive definition of terms 
  - term is also called expression or tree 

For a given signature, t is a term of a sort S if and 
only if t is   
•  a variable X:S, 
•  a constant c declared by “op c : -> S”, or  
•  a term f(t1,…,tn) for “op f : S1…Sn -> S” 

and a term ti of a sort Si  (i =1,…,n). 
•  a term of a sort S’ which is a sub-sort of S                 

(Example: Since NzNat < Nat, a term (s 0)of 
sort NzNat is also a term of sort Nat)  
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Several forms of function application: 
standard, prefix, infix, postfix, distfix 

op f : Nat Nat -> Nat .         
    f(2,3)  standard 
op f__ : Nat Nat -> Nat .      
    (f 2 3) prefix 
op _+_ : Nat Nat -> Nat .      
    (2 + 3) infix 
op  _! : Nat -> Nat . 
    (5 !)   postfix 
op if_then_else_fi : Bool Nat Nat -> Nat .  
    (if 2 < 3 then 4 else 5 fi)  distfix 

“(“ and “)” are meta-charactors for grouping expressions 
in CafeOBJ and can not be used for any other purpose. 
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Parsing  – precedence of operators 

s 0 + 0 represents (s 0) + 0, because the 
operator s_ has high precedence than the 
operator _+_	

_+_ 

s_ 0 

0 

s_ 

0 

_+_ 

0 

s 0 + 0 

(s 0) + 0 s(0 + 0) 

describe op s_ 
describe op _+_	

The preceedences of the 
operators can be checked by 
the commands 
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Equation 

♦  Properties to be verified are also expressed as 
equations.    	

An equation is a pair of terms of a same sort, and  
written as: 
            eq l = r . 
in CafeOBJ.  Where l is called  the left-hand 
side (LHS) of the equation and r is the right-
hand side (RHS). An equation can have a 
condition (COND, a Boolean term) c like: 
                         ceq l = r if c . 
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Conditions for an equation to be a rewriting rule 

For an equation to be used as a rewriting rule for 
doing reductions, the following conditions must be 
satisfied. 
(1) LHS is not a variable. 
        an example violating this condition: 
                eq N:Nat = N:Nat + 0 . 
(2) All variables in RHS are in LHS.  
         an example violating this condition: 
                eq 0 = N:Nat * 0 . 
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Two way of declaring variables 
 - use appropriate one based on the situation 

mod! PNAT+ { [Nat] … 
  eq     0      + N2:Nat = N2 . 
  eq (s N1:Nat) + N2:Nat = s(N1 + N2) . } 

Variables can be declared before equations.  This is just 
abbreviation for saving many variable declarations in the 
equations.   N2 in the first eq has nothing to do with N2 in 
the second eq . 

mod! PNAT+ { [Nat] … 
  vars N1 N2 : Nat . 
  eq     0  + N2 = N2 . 
  eq (s N1) + N2 = s(N1 + N2) . } 

Variable can be declared in an equation directly.  The 
scope of the variable ends at the end of the equation. 
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Constant v.s. variable  

Using a variable in an equation instead of a constant makes a 
drastic change of meaning of the proof score.  Be careful! 

•  The scope of a constant is to the end of a open-close 
session assuming that the declared constants are fresh. 

•  The scope of a variable is inside of the equation. 

open PNAT+ 
op n : -> Nat . 
eq n + 0 = n . 
red (s n) + 0 = s n . 
close 

open PNAT+ 
var N : Nat . 
eq N + 0 = N . 
red (s `n:Nat) + 0 = s `n . 
close 

Constant: ∀N:Nat. [(N + 0)=N ⇒ ((s N) + 0)=(s N)] 

Variable: ∀N:Nat.[(N + 0)=N ] ⇒∀N:Nat.[((s N) + 0)=(s N)] 
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Two equality predicates _=_ and _==_ 

Assume that  ( t1 =*> t1’ ) and ( t2 =*> t2’ ) in any context 
   then 
   if  ( t1’ and t2’ are the same term ) 
       then ( red t1 = t2 . ) returns true 
               and  
               ( red t1 == t2 . ) returns true 
   if  ( t1’ and t2’ are different terms )  
       then ( red t1 = t2 . ) returns ( t1’ = t2’ )  
               but   
               ( red t1 == t2 . ) returns false 

If reduction/rewriting is not complete w.r.t. a set of 
equations, _==_ may returns false even if two terms 
may have a possibility of being equal w.r.t. the set of 
equations. 
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Exercise 	

Write proof scores to verify that binary operators _+_ 
and _*_ in PNAT+* are associative and commutative.  
Write also proof scores to verify that _*_ distributes 
over _+_, that is 
     (N1 + N2) * N3 = (N1 * N3) + (N2 * N3) .   

mod! PNAT+* { pr(PNAT)  
  vars X Y Z : Nat .
  op _+_ : Nat Nat -> Nat {prec: 30}
  eq 0 + Y = Y .
  eq s(X) + Y = s(X + Y) .
  op _*_ : Nat Nat -> Nat {prec: 29}
  eq 0 * Y = 0 .
  eq s(X) * Y = Y + (X * Y) .   }
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