
Basics of CafeOBJ and
Peano Style Natural Numbers

FUTATSUGI, Kokichi
二木	厚吉

JAIST

Topics

♦  Basic concepts for modeling, specification,

verification in CafeOBJ

♦  Basics of CafeOBJ language system: module,
signature, equation, expression/term, reduce,
parse

♦  Specification and verification of Peano style
natural numbers

 2

Modeling, Specifying, and Verifying in CafeOBJ

1.  By understanding a problem to be modeled/
specified, determine several sorts of objects
(entities, data, agents, states) and operations
(functions, actions, events) over them for
describing the problem

2.  Define the meanings/functions of the
operations by declaring equations over
expressions/terms composed of the operations

3.  Write proof scores for properties to be verified

 3

Natural Numbers -- Signature --	

objects:　						Nat
operations:　0 : returns zero without arguments
 s : if given a natural number n, returns the

next natural number (s n) of n	

-- sort
[Nat]
--constructor operators
op 0 : -> Nat {constr}
op s_: Nat -> Nat {constr}

0 0+1 0+1+1 0+1+1+1 0+1+1+1+1 …

0 s(0) s(s(0)) s(s(s(0))) s(s(s(s(0)))) …

Nat
0

S_

 4

1.   0	is a natural number	
2.  If	n	is natural number then	(s	n)	is a natural

number	
3.  An object which is to be a natural number by 1 and 2

is only a natural number	

Natural Number
 -- Expressions/terms composed of operators	

Nat = {0, s(0), s(s(0)), s(s(s(0))), s(s(s(s(0)))) … }

Nat = {0, s 0, s s 0, s s s 0, s s s s 0, … }

Describe a concept in expressions/terms!

Peano’s definition of natural numbers （１８８９）, Giuseppe Peano (1858-1932)

 5

CafeOBJ module specifying PNAT
 -- Peano Style natural numbers

mod! PNAT {
 [Nat]
 op 0 : -> Nat {constr} .
 op s_ : Nat -> Nat {constr} .

 -- op _=_ : Nat Nat -> Bool {comm} .
 -- eq (N:Nat = N) = true .
 eq (0 = s(N2:Nat)) = false .
 eq (s(N1:Nat) = s(N2:Nat)) = (N1 = N2) .
}

Constructors (indicated by {constr}) define recursively
the set of terms which constitute a sort.

 6

Natural numbers
　　　　-- signature and expressions/terms

-- sort
[Nat]
-- operations
op 0 : -> Nat {constr}
op s_: Nat -> Nat {constr}

Nat
0

S_

Nat	=	{	0	}	∪	{	s	n	|	n	∈	Nat	}	

 7

Mathematical Induction over Natural Numbers (1)

Goal: Prove that a property P(n) is true
 for any natural number n ∈	{0, s 0, s s 0,…}
Induction Scheme:

 P(0) 　∀n∈N.[P(n) => P(s n)]

∀n∈N.P(n)

Concrete Procedure: (induction with respect to n)

1.   Prove P(0) is true	
2.   Assume that P(n) holds,
 and prove that P(s n) is true

The recursive structure defined by two constructors
of sort Nat induces the following induction scheme.

 8

Mathematical Induction over Natural Numbers (2)	

 9

Induction Base	 Induction Step	

…	

Natural numbers with addition operation
　　　　-- signature and expressions/terms

-- sort
[Nat]
-- operations
op 0 : -> Nat {constr}
op s_: Nat -> Nat {constr}
op _+_: Nat Nat -> Nat
 -- _+_ is a defined operator

Nat
0

S_

+
Nat	=	{	0	}	∪	{	s	n	|	n	∈	Nat	}	

 10

NatExp	=	{	0	}	∪	{	s	n	|	n	∈	Nat	}	
																∪	{	n1	+	n2	|	n1	∈	Nat	∧	n2	∈	Nat	}	

Natural numbers with addition
-- equations define meaning/function

CafeOBJ module PNAT+ defining
Peano Natural numbers with addition
	
mod! PNAT+ {
 pr(PNAT)
 op _+_ : Nat Nat -> Nat .
 vars N1 N2 : Nat .
 -- equations
 eq 0 + N2 = N2 .
 eq (s N1) + N2 = s(N1 + N2) .
}

Computation/inference
with the equations
	
 (s s 0) + (s 0)
= s((s 0) + (s 0))
= s s(0 + (s 0))
= s s s 0

CafeOBJ> select PNAT+
PNAT+> red s s 0 + s 0 .
PNAT+> -- reduce in PNAT+ :
((s (s 0)) + (s 0)):Nat
(s (s (s 0))):Nat
(0.000 sec for parse,
3 rewrites(0.000 sec),
5 matches)	

 11

Defined operator (_+_) is
erased by the two equations.	

Sufficient Completeness 	

Natural numbers with addition
　	-- expressions/terms composed by operators

NatExp = {
0, s 0, s s 0, s s s 0, ... ,
0 + 0, 0 + (s 0), 0 + (s s 0), 0 + (s s s 0), ...,
(s 0) + 0, (s 0) + (s 0), (s 0) + (s s 0),
 (s 0) + (s s s 0), ...,
(s s 0) + 0, (s s 0) + (s 0), (s s 0) + (s s 0),
 (s s 0) + (s s s 0), ...,
... ...
0 + (0 + 0), 0 + (0 + (s 0)), ...
...
(0 + 0) + 0, (0 + (s 0)) + 0, ...
...
. }

 12

Because _+_ is a defined operator, any _+_ operator is
supposed to be eliminated. That is, NatExp ==> Nat .	

Reduction of CafeOBJ is
honest to equational reasoning

♦  The basic mechanism of CafeOBJ verification is
equational reasoning. Equational reasoning is to
deduce an equation (a candidate of a theorem)
from a given set of equations (axioms of a
specification).

♦  The CafeOBJ system supports an automatic
equational reasoning based on term rewriting.

♦  “reduce” or “red” command of CafeOBJ helps to
do equational reasoning by term rewriting.

 13

What can be done with
red (reduction) command?

Let us fix a context M (a module M in CafeOBJ), and let
(t1 =*M> t2) denote that t1 is reduced to t2 in the
context. That is, (red in M : t1 .) returns t2 .
Let (t1 =M t2) denote that t1 is equal to t2 in the
context M. That is (t1 = t2) can be inferred by
equational reasoning in M. It is important to notice:

 (t1 =*M> t2) implies (t1 =M t2)

but

 (t1 =M t2) does not implies (t1 =*M> t2)

 14

Proof score for right zero property:
 (N:Nat + 0 = N)
-- proof by induction with respect to N:Nat
-- induction base case:
-- opening module PNAT+ to make use of all its contents
open PNAT+
red 0 + 0 = 0 .
close
-- induction step case:
open PNAT+
-- declare that the constant n stands for any Nat value
op n : -> Nat .
-- induction hypothesis:
eq n + 0 = n .
-- induction step proof for (s n):
red s n + 0 = s n .
close

 15

Declaring constants and equations then reduce

While a module is opened, declaring constants and equations
represents assumptions for equational reasoning done by red.

%PNAT+> op n : -> Nat .
...
%PNAT+> **> induction hypothesis:
%PNAT+> eq n + 0 = n .
%PNAT+> **> induction step proof for (s n):
**> induction step proof for (s n):
%PNAT+> red s n + 0 = s n .
*
-- reduce in %PNAT+ : (((s n) + 0) = (s n)):Bool
(true):Bool

This is a proof of
∀N:Nat.[(N + 0) = N implies ((s N) + 0) = (s N)].

 16

Proof score for associativity of (_ + _)
 (N1:Nat + N2:Nat) + N3:Nat = N1 +(N2 + N3)

**> induction base case:
open PNAT+
red 0 + (`n2:Nat + `n3:Nat) = (0 + `n2) + `n3 .
Close
**> induction step case:
open PNAT+
**> declare that the constant n1 stands for any Nat value
op n1 : -> Nat .
**> induction hypothesis:
eq (n1 + N2:Nat) + N3:Nat = n1 + (N2 + N3) .
**> induction step proof for (s n1):
red ((s n1) + `n2:Nat) + `n3:Nat = (s n1) + (`n2 + `n3) .
close

 17

Comments

A line beginning with “--” (or “**”) is ignored, and
A line beginning with “-->” (or “**>”) is echoed back.

CafeOBJ> -- this is a comment
CafeOBJ>

CafeOBJ> ** this is a comment
CafeOBJ>

CafeOBJ> --> this is a comment
--> this is a comment
CafeOBJ>

CafeOBJ> **> this is a comment
**> this is a comment
CafeOBJ>

It is very important to write as much appropriate
comments as possible for explaining specifications
and proof scores (verifications/proofs).

 18

CafeOBJ	specification is composed of modules.
There are three kinds of modules. 	

Three kinds of modules

mod! <module_name> {
 <modlue_element> *
}

[Naming convention] module name starts with two successive
upper case characters 	
(example：TEST, NAT, PNAT+，ACCOUNT-SYS,…)

mod* <module_name> {
 <modlue_element> *
}

mod!	declares that the module denotes tight denotation	
mod*	declares that the module denotes loose denotation
mod		does not declare any semantic denotation	

mod <module_name> {
 <modlue_element>*
}

 19

A module is composed of
signature and axioms/equations

 axioms/equations

 signature

mod! PNAT {
 [Nat]
 op 0 : -> Nat {constr} .
 op s_ : Nat -> Nat {constr} .
 op _=_ : Nat Nat -> Bool {comm} .

 eq (N:Nat = N) = true .
 eq (0 = s(N2:Nat)) = false .
 eq (s(N1:Nat) = s(N2:Nat))
 = (N1 = N2) .
}

 20

rank

Signature:
sort name, operator name, arity, co-arity, rank

A signature is a pair of a set of sorts and a set of operations.

 Signature

mod* PNAT {
 [Nat]
 op 0 : -> Nat {constr}

 op s : Nat -> Nat {constr}
 op _=_ : Nat Nat -> Bool {comm}
 ... }

sorts

operators

op _=_ : Nat Nat -> Bool

arity co-arity

[Convention] The first and second letter of a sort name is written in a
upper case and lower case letter respectively. (E.g. Nat, Set)	

[Convention] The first letter of an operation name is written in a
lowerl case letter or a non-alphabet letter. (E.g. 0, s, +)	

 21

Order sorted signature and sorted terms
-- Natural numbers with predecessor function

-- signature
-- sorts
[NzNat < Nat]
-- operators
op 0 : -> Nat {constr}
op s_: Nat -> NzNat {constr}
op p_: NzNat -> Nat
eq p s N:Nat = N .

Sorted terms
NzNat = {s n | n ∈ Nat}
Nat = {0} ∪ NzNat ∪ {p n | n ∈ NzNat}

s_

Nat

0
NzNat

p_ (p 0) is handled as an error!	

 22

Recursive definition of terms
 - term is also called expression or tree

For a given signature, t is a term of a sort S if and
only if t is
•  a variable X:S,
•  a constant c declared by “op c : -> S”, or
•  a term f(t1,…,tn) for “op f : S1…Sn -> S”

and a term ti of a sort Si (i =1,…,n).
•  a term of a sort S’ which is a sub-sort of S

(Example: Since NzNat < Nat, a term (s 0)of
sort NzNat is also a term of sort Nat)

 23

Several forms of function application:
standard, prefix, infix, postfix, distfix

op f : Nat Nat -> Nat .
 f(2,3) standard
op f__ : Nat Nat -> Nat .
 (f 2 3) prefix
op _+_ : Nat Nat -> Nat .
 (2 + 3) infix
op _! : Nat -> Nat .
 (5 !) postfix
op if_then_else_fi : Bool Nat Nat -> Nat .
 (if 2 < 3 then 4 else 5 fi) distfix

“(“ and “)” are meta-charactors for grouping expressions
in CafeOBJ and can not be used for any other purpose.

 24

Parsing – precedence of operators

s 0 + 0 represents (s 0) + 0, because the
operator s_ has high precedence than the
operator _+_	

+

s_ 0

0

s_

0

+

0

s 0 + 0

(s 0) + 0 s(0 + 0)

describe op s_
describe op _+_	

The preceedences of the
operators can be checked by
the commands

 25

Equation

♦  Properties to be verified are also expressed as
equations. 	

An equation is a pair of terms of a same sort, and
written as:
 eq l = r .
in CafeOBJ. Where l is called the left-hand
side (LHS) of the equation and r is the right-
hand side (RHS). An equation can have a
condition (COND, a Boolean term) c like:
 ceq l = r if c .

 26

Conditions for an equation to be a rewriting rule

For an equation to be used as a rewriting rule for
doing reductions, the following conditions must be
satisfied.
(1) LHS is not a variable.
 an example violating this condition:
 eq N:Nat = N:Nat + 0 .
(2) All variables in RHS are in LHS.
 an example violating this condition:
 eq 0 = N:Nat * 0 .

 27

Two way of declaring variables
 - use appropriate one based on the situation

mod! PNAT+ { [Nat] …
 eq 0 + N2:Nat = N2 .
 eq (s N1:Nat) + N2:Nat = s(N1 + N2) . }

Variables can be declared before equations. This is just
abbreviation for saving many variable declarations in the
equations. N2 in the first eq has nothing to do with N2 in
the second eq .

mod! PNAT+ { [Nat] …
 vars N1 N2 : Nat .
 eq 0 + N2 = N2 .
 eq (s N1) + N2 = s(N1 + N2) . }

Variable can be declared in an equation directly. The
scope of the variable ends at the end of the equation.

 28

Constant v.s. variable

Using a variable in an equation instead of a constant makes a
drastic change of meaning of the proof score. Be careful!

•  The scope of a constant is to the end of a open-close
session assuming that the declared constants are fresh.

•  The scope of a variable is inside of the equation.

open PNAT+
op n : -> Nat .
eq n + 0 = n .
red (s n) + 0 = s n .
close

open PNAT+
var N : Nat .
eq N + 0 = N .
red (s `n:Nat) + 0 = s `n .
close

Constant: ∀N:Nat. [(N + 0)=N ⇒ ((s N) + 0)=(s N)]

Variable: ∀N:Nat.[(N + 0)=N] ⇒∀N:Nat.[((s N) + 0)=(s N)]

 29

Two equality predicates _=_ and _==_

Assume that (t1 =*> t1’) and (t2 =*> t2’) in any context
 then
 if (t1’ and t2’ are the same term)
 then (red t1 = t2 .) returns true
 and
 (red t1 == t2 .) returns true
 if (t1’ and t2’ are different terms)
 then (red t1 = t2 .) returns (t1’ = t2’)
 but
 (red t1 == t2 .) returns false

If reduction/rewriting is not complete w.r.t. a set of
equations, _==_ may returns false even if two terms
may have a possibility of being equal w.r.t. the set of
equations.

 30

Exercise 	

Write proof scores to verify that binary operators _+_
and _*_ in PNAT+* are associative and commutative.
Write also proof scores to verify that _*_ distributes
over _+_, that is
 (N1 + N2) * N3 = (N1 * N3) + (N2 * N3) .

mod! PNAT+* { pr(PNAT)
 vars X Y Z : Nat .
 op _+_ : Nat Nat -> Nat {prec: 30}
 eq 0 + Y = Y .
 eq s(X) + Y = s(X + Y) .
 op _*_ : Nat Nat -> Nat {prec: 29}
 eq 0 * Y = 0 .
 eq s(X) * Y = Y + (X * Y) . }

 31

