
Modeling, Specification, and Simulation
 of QLOCK in CafeOBJ

FUTATSUGI, Kokichi
二木 厚吉

JAIST

 2

Topics

l  What are Mutual Exclusion Protocol and QLOCK?

l  Modeling and Description of QLOCK

l  Formal specification of QLOCK in CafeOBJ

l  Simulation of QLOCK with built-in search Predicate

 3

Modeling, Specifying, and Verifying (MSV)
in CafeOBJ

1.  By understanding a problem to be modeled/
specified, determine several sorts of objects
(entities, data, agents, states) and operations
(functions, actions, events) over them for
describing the problem

2.  Define the meanings/functions of the
operations by declaring equations over
expressions/terms composed of the operations

3.  Write proof scores for properties to be verified

 4

MSV with proof scores in CafeOBJ

Understand problem
and construct model

Write system spec SPsys and
Write property spec SPprop

Construct proof score of
SPprop w.r.t. SPsys

 5

Mutual Exclusion Protocol

Assume that many agents (or processes) are
competing for a common equipment, but at
any moment of time only one agent can use
the equipment. That is, the agents are
mutually excluded in using the equipment. A
protocol (mechanism or algorithm) which can
achieve the mutual exclusion is called “mutual
exclusion protocol”.

QLOCK (Mutual Exclusion Protocol by Locking with Queue)	

 6

Each of unbounded number of agents who participates in the
protocol behaves as follows:
- If the agent wants to use the common equipment and its name

is not in the queue yet, put its name at the bottom of the
queue.

- If the agent wants to use the common equipment and its name
is already in the queue, check if its name is on the top of the
queue. If its name is on the top of the queue, start to use the
common equipment. If its name is not on the top of the queue,
wait until its name is on the top of the queue.

- If the agent finishes to use the common equipment, remove its
name from the top of the queue.

The protocol starts from the state with the empty queue.	

 7

QLOCK: basic assumptions/characteristics

l  There is only one queue and all agents/processes
share the queue.

l  Any basic action on the queue is inseparable (or
atomic). That is, when any action is executed on the
queue, no other action can be executed until the
current action is finished.

l  There may be unbounded number of agents.
l  In the initial state the queue is empty.

The property to be shown is that at most one agent
is using the common equipment at any time.

 8

QLOCK (locking with queue):
a mutual exclusion protocol

Remainder Section

Critical Section

Is i at the top
of the queue?

cs

Put its name i into the
bottom of the queue

Remove its name
from the top of
the queue

ws

rs

true

false

Each agent i behaves:
 : atomic action

Waiting Section

Animation of QLOCK (1)

9

1

3

2

rs ws

cs

want

try exit

1

3

2

2

rs ws

cs

want

try exit

want2

1
3

3

2

2

rs ws

cs

want

try exit

want3

1
3

3

2

2

rs ws

cs

want

try exit

try2

1

1

3

3

2

2

rs ws

cs

want

try exit

want1

1

1

3

3

2

rs ws

cs

want

try exit

exit2

Animation of QLOCK (2)

10

1

1

3

3

2

rs ws

cs

want

try exit

try3

1

1

3
2

rs ws

cs

want

try exit

exit3

1

1

3
2

rs ws

cs

want

try exit

try1

1

3
2

rs ws

cs

want

try exit

exit1

State Configuration for QLOCK

11

1

1

3

3

2

rs ws

cs

want

try exit

[(③ | ①) r ② ④ w ① c ③]	

[State]
op [_r_w_c_] : Aq As As As -> State {constr}

〜
	

４

 (Aq: AgentQueue As: AgentSet)	

 12

QLOCK Transitions in CafeOBJ

-- wt: want transition
mod! WT {pr(STATE)
tr[wt]:
 [AQ:Aq r (A1:Aid AS1:As) w AS2:As c AS3:As]
 => [(AQ | A1) r AS1 w (A1 AS2) c AS3] . }
-- ty: try transition
mod! TY {pr(STATE)
tr[ty]:
 [(A:Aid | AQ:Aq) r AS1:As w (A AS2:As) c AS3:As]
 => [(A | AQ) r AS1 w AS2 c (A AS3)] .}
-- exc: exit transition by conditional transition rule
mod! EXC {pr(STATE)
ctr[exc]:
 [(A:Aid | AQ:Aq) r AS1:As w AS2:As c (A3:Aid AS3:As)]
 => [AQ r (A3 AS1) w AS2 c AS3]
 if (A = A3) . }

 13

QLOCK System Specification in CafeOBJ

seq.cafe
set.cafe
qlock-sys.cafe	

Built-in Search Predicate of CafeOBJ

pred _=(_,_)=>*_ : Any NzNat* NzNat* Any

CafeOBJ System has the following built-in predicate:
 - Any is any sort (that is, the predicate is available for any sort)
 - NzNat* is a built-in sort containing non-zero natural number

and the special symbol “*” which stands for infinity

(t1 =(m,n)=>* t2) returns true if t1 can be translated (or
rewritten), via more than 0 times transitions with trans rules, to
some term which matches to t2 and all matched terms are
printed out. Otherwise, it returns false . Possible transitions
are searched in breadth first fashion. n is upper bound of the
depth of the search, and m is upper bound of the number of terms
which match to t2. If either of the depth of the search or the
number of the matched terms reaches to the upper bound, the
search stops.

 14

t1 =(m,n)=>* t2

…

…

…

…

…

…

t1

…

n : the depth of
 the search tree

m : the number of
 the searched terms

which match to t2
…

 …

 15
lectureNote10-1112i613

Search All Reachable States	

 16

--> search all reachable states with one agent
red [empQ r b1 w empS c empS] =(*,*)=>*
 S:State .

--> search all reachable states with two agents
red [empQ r (b1 b2) w empS c empS] =(*,*)=>*
 S:State .

--> search all reachable states with three agents
red [empQ r (b1 b2 b3) w empS c empS] =(*,*)=>*
 S:State .
	

Search Predicate with suchThat

pred1(t2) is a predicate about t2 and can
refer to the variables which appear in t2.
pred1(t2) enhances the condition used to
determine the term which matches to t2.

t1 =(m,n)=>* t2 suchThat pred1(t2)

 17

t1 =(m,n)=>* t2 suchThat pred1(t2)

…

…

…

…

…

…

t1

…

n : the depth of
 the search tree

m : the number of
 the searched terms

which match to t2 and
satisfy pred(t2)

…
 …

 18

Check All Reachable States with 3 Agents for
Mutual Exclusion Property	

 19

--> check whether mutual exclusion property holds for
--> all reachable states with 3 agents
red not([empQ r (b1 b2 b3) w empS c empS]
 =(*,*)=>*
 [AQ:Aq r ASr:As w ASw:As c ASc:As]
 suchThat (not(mx ASc))) .

If it returns ‘true’ then the mutual exclusion
property is verified for QLOCK with 3 agents.

