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Specification Verification

▶ Constructing specifications and verifying them in the upstream
of system/software development are still one of the most
important challenges in system/software development and
engineering. It is because many critical defects are caused at
the phases of domain, requirement, and design specifications.

▶ Proof scores in CafeOBJ are intended to meet this challenge.
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Verification with Proof Scores (1)

▶ For verifying a system, a model of the system should be
formalized and described as system specifications that are
formal specifications of the behavior of the system. System
specifications are formalized in equations and transition rules.

▶ In conjunction with the system specifications, functions and
predicates that are necessary for expressing the system’s
supposed properties are formalized and described in equations
as property specifications.
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Verification with Proof Scores (2)

▶ Proof scores are developed to verify that the system’s
supposed properties are deduced from the system and
property specifications.

▶ Proof scores are described in equations, and the deduction is
done only by reduction (i.e. rewriting from left to wright)
with the equations.
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Transition Systems, Reachability, Invariants

▶ A transition system is defined as a three tuple (St,Tr , In).
St is a set of states, Tr ⊆ St × St is a set of transitions on
the states, and In ⊆ St is a set of initial states.

▶ A sequence of states s1s2 · · · sn with (si , si+1) ∈ Tr for each
i ∈ {1, · · · , n − 1} is defined to be a transition sequence.

▶ A state sr ∈ St is defined to be reachable if there exists a
transition sequence s1s2 · · · sn with sn = sr for n ∈ {1, 2, · · · }
such that s1 ∈ In.

▶ A state predicate p (i.e. a function from St to Bool) is
defined to be an invariant (or an invariant property) if (p(sr )
= true) for any reachable state sr .
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Σ = (S ,≤,F ), TΣ(X ), (Σ,E )

▶ Let Σ = (S ,≤,F ) be a regular order-sorted signature with a
set of sorts S , and let X = {Xs}s∈S be an S-sorted set of
variables.

▶ Let TΣ(X ) be S-sorted set of Σ(X )-terms, let TΣ(X )s be a
set of Σ(X )-terms of sort s, let E be a set of Σ(X )-equations,
and let (Σ,E ) be an equational specification with unique sort
State.

▶ Let θ ∈ TΣ(Y )X be a substitution (i.e. a map) from X to
TΣ(Y ) for disjoint X and Y then θ extends to the morphism
from TΣ(X ) to TΣ(Y ), and t θ is the term obtained by
substituting x ∈ X in t with x θ.

6 / 29



Verification with Proof Scores
Transition Systems

Generate & Check Method
Verification with Specification Calculus

Transition Systems, Reachability, Invariants
Transition Specification
Verification Conditions for Invariant Properties

Transition Rules

▶ Let tr = (∀X )(l → r if c) be a rewrite rule with
l , r ∈ TΣ(X )State and c ∈ TΣ(X )Bool, then tr is called a
transition rule and defines the one step transition relation
→tr∈ TΣ(Y )State × TΣ(Y )State for Y being disjoint from X
as follows.

▶ Note that =E is understood to be defined with ((Σ ∪ Y ),E )
by considering y ∈ Y as a fresh constant if Y is not empty.

(s →tr s
′)

def
=

(∃θ ∈ TΣ(Y )X )((s =E l θ) and (s ′ =E r θ) and (c θ =E true))
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Transition Specification

▶ Let TR = {tr1, · · · , trm} be a set of transition rules, let

→TR
def
=

∪m
i=1→tri , and let In ⊆ (TΣ/=E )State. In is assumed

to be defined via a state predicate init that is defined with E,
i.e. (s ∈ In) iff (init(s) =E true).

▶ Then a transition specification (Σ,E ,TR) defines a transition
system ((TΣ/=E )State,→TR , In).

▶ The state space of a transition system is formalized as a
quotient set (i.e. a set of equivalence classes) of terms of a
topmost sort State, and the transitions are specified with
conditional transition rules (rewrite rules) over the quotient
set.
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Properties to be Verified

A property to be verified is either

▶ an invariant (i.e. a state predicate that is valid for all
reachable states), or

▶ a (p leads-to q) property for two state predicates p and q
((p leads-to q) means that from any reachable state s with
(p(s) = true) the system will get to a state t with (q(t) =
true) no matter what transition sequence is taken).
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▶ Given a transition system TS = (St,Tr , In), let p1, p2, · · · , pn
(n ∈ {1, 2, · · · }) be state predicates of TS , and inv(s)

def
=

(p1(s) and p2(s) and · · · and pn(s)) for s ∈ St.

▶ The following three conditions are sufficient for a state
predicate pt to be an invariant.

(1) (∀s ∈ St)(inv(s) implies pt(s))
(2) (∀s ∈ St)(init(s) implies inv(s))
(3) (∀(s, s ′) ∈ Tr)(inv(s) implies inv(s ′)) □

▶ A predicate that satisfies the conditions (2) and (3) like inv is
called an inductive invariant. If pt itself is an inductive
invariant then taking p1 = pt and n = 1 is enough. However,
p1, p2, · · · , pn (n > 1) are almost always needed to be found
for getting an inductive invariant, and to find them is a most
difficult part of the invariant verification.
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It is worthwhile to note that there are following two contrasting
approaches for formalizing p1, p2, · · · , pn for a transition system
and its property pt .

• Make p1, p2, · · · , pn as minimal as possible to imply the target
property pt ;

◦ usually done by lemma finding in interactive theorem proving,
◦ it is difficult to find lemmas without some comprehensive

understanding of the system.

• Make p1, p2, · · · , pn as comprehensive as possible to
characterize the system;

◦ usually done by specifying elemental properties of the system
as much as possible in formal specification development,

◦ it is difficult to identify the elemental properties without
focusing on the property to be proved (i.e. pt).
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▶ For a sort Srt and a predicate p on Srt we get
((p(X :Srt) →∗

E true) implies (∀t ∈ (TΣ)Srt)(p(t) =E true))
and (p(X :Srt) →∗

E true) is a sufficient condition to prove
(∀t)p(t).

▶ However, usually p is not simple enough to obtain
(p(X :Srt) →∗

E true) directly, and we need to analyze the
structure of terms in (TΣ)Srt and E for (1) generating a set
of terms {t1, · · · , tm} ⊆ TΣ(Y )Srt that covers all possible
cases of (TΣ)Srt , and (2) checking (p(ti ) →∗

E true) for each
i ∈ {1, · · · ,m}.
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▶ The generation & checking can be a theorem proving method
for transition systems based on

(1) generation of finite state patters that cover all possible infinite
states, and

(2) checking the validities of verification conditions for each of the
finite state patterns.

▶ Induction is a similar kind of method for proving
(p(X :Srt) →∗

E true) by covering all the terms of a
constrained sort Srt by making use of inductive structure of
the terms of the constrained sort.
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[Subsume] A term t ′ ∈ TΣ(Y ) is defined to be an instance of a
term t ∈ TΣ(X ) iff there exits a substitution θ ∈ TΣ(Y )X such
that t ′ = t θ. A finite set of terms C ⊆ TΣ(X ) is defined to
subsume a (may be infinite) set of ground terms (i.e. terms
without variables) G ⊆ TΣ iff for any t ′ ∈ G there exits t ∈ C such
that t ′ is an instance of t.
[Generate&Check-S] Let (TΣ/=E )State,→TR , In) be a
transition system defined by a transition specification (Σ,E ,TR).
Then, for a state predicate pst , doing the following Generate and
Check are sufficient for verifying

(∀t ∈ (TΣ)State)(pst(t) =E true).

Generate a finite set of state terms C ⊆ TΣ(X )State that
subsumes (TΣ)State.

Check (pst(s) ↠∗
E true) for each s ∈ C . □
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Built-in Search Predicate (1)

Let q be a predicate with arity “State State” for stating some
relation of the current state and the next state, like (inv(s)
implies inv(s ′)). Let the function valid-q be defined using the
CafeOBJ ’s built-in search predicate
pred _=(*,1)=>+_if_suchThat_{_} : State %State %Bool Bool Info

as follows.

-- predicate to be checked for a State

pred valid-q : State .

eq valid-q(S:State) =

not(S =(*,1)=>+ SS:State if CC:Bool

suchThat not((CC implies q(S,SS)) == true)

{(ifm S SS CC q(S,SS))}) .
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Built-in Search Predicate (2)

For a state term s ∈ TΣ(Y )State, the reduction of the Boolean
term: valid-q(s) with ↠∗

E ∪→TR behaves as follows based on the
definition of the behavior of the built-in search predicate.

1. Search for evey pair (trj , θ) of a transition rule
trj = (∀X )(lj → rj if cj) in Tr and a substitution

θ ∈ TΣ(Y )X such that s = lj θ.

2. For each found (trj , θ), let (SS = rj θ) and (CC = cj θ) and
print out (ifm s SS CC q(s,SS)) and trj if (not((CC implies

q(s,SS)) == true) ↠∗
E true).

3. Returns false if any print out exits, and returns true
otherwise.
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[Cover] Let C ⊆ TΣ(Y ) and C ′ ⊆ TΣ(X ) be finite sets. C is
defined to cover C ′ iff for any ground instance t ′g ∈ TΣ of any
t ′ ∈ C ′, there exits t ∈ C such that t ′g is an instance of t and t is
an instance of t ′.
[Generate&Check-T1] Let ((TΣ/=E )State,→TR , In) be a
transition system, and let C ′ ⊆ TΣ(X ) be the set of all the
left-hand sides of the transition rules in TR. Then doing the
following Generate and Check are sufficient for verifying

(∀(s, s ′) ∈ ((TΣ × TΣ)∩ →TR))(qtr(s, s
′) =E true)

for a predicate “pred qtr : State State”.

Generate a finite set of state terms C ⊆ TΣ(Y )State that
covers C ′.

Check (valid-qtr(t) ↠∗
E ∪ →TR true) for each t ∈ C . □
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[Generate&Check-T2] Let TR = {tr1, · · · , trm} be a set of
transition rules, and let tri = (∀X )(li → ri if ci ) for
i ∈ {1, · · · ,m}. Then doing the following Generate and Check
for all of i ∈ {1, · · · ,m} is sufficient for verifying

(∀(s, s ′) ∈ ((TΣ × TΣ)∩ →TR))(qtr(s, s
′) =E true)

for a predicate “pred qtr : State State”.

Generate a finite set of state terms Ci ⊆ TΣ(Y )State that
covers {li}.
Check (valid-qtr(t) ↠∗

E ∪ →tri true) for each t ∈ C . □
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The conditions (1) and (2) for invariant properties can be verified
by using Generate&Check-S with pst-1(s) and pst-2(s) defined as
follows respectively.

(1) pst-1(s) = (inv(s) implies pt(s))
(2) pst-2(s) = (init(s) implies inv(s))

Note that, if inv
def
= (p1 and · · · and pn) and

pt = (pi1 and · · · and pim) for {i1, · · · , im} ⊆ {1, · · · , n}, then
condition (1) is directly obtained.
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The condition (3) for invariant properties can be verified by using
Generate&Check-T1 or T2 with qtr-3(s, s

′) defined as follows.

(3) qtr-3(s, s
′) = (inv(s) implies inv(s ′))
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Specification Calculus (SpecCalc)

Let Si be a specification and pi be a predicate in Si , then “Si ⊢ pi”
is called a goal and means that “pi is provable in Si”. A
specification is denoted by a module in CafeOBJ .

Proof Goal: {Sg ⊢ pg}

Proof Rules:
Si1 ⊢pi1 , Si2 ⊢pi2 , · · · ,Sik(i) ⊢pik(i)

Si0 ⊢pi0
(i ∈ {1, 2, · · · ,m})

Calculation Rules:

▶ “Si0 ⊢ pi0” is replaced with
“Si1 ⊢ pi1 ,Si2 ⊢ pi2 , · · · Sik(i) ⊢ pik(i)”.

▶ “Sj ⊢ pj” is erased if “pj →∗
ESj

true”.

That is, if “red in Sj : pj .” returns true.
▶ The proof is over if the proof goal becomes

empty.
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CafeOBJ code

:def <RuleName> = :csp{eq <t1l> = <t1r> .

eq

...

eq <tml> = <tmr> .}

such that ((<t1l> = <t1r>) or (<t2l> = <t2r>) or

... or (<tml> = <tmr>)) = true

Proof Rule <RuleName>

S∪{eq <t1l>=<t1r> .}⊢p,
S∪{eq <t2l>=<t2r> .}⊢p,

· · · ,
S∪{eq <tml>=<tmr> .}⊢p

S ⊢p
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Proof Score INITcheck

select INITcheck .

:goal{eq initCheck = true .}

:def csp-q = :csp{eq aq = empQ .

eq (aq =aq empQ) = false .}

:def csp-r = :csp{eq as-r = empS .

eq (as-r =as empS) = false .}

:def csp-w = :csp{eq as-w = empS .

eq (as-w =as empS) = false .}

:def csp-c = :csp{eq as-c = empS .

eq (as-c =as empS) = false .}

:apply(csp-q rd- csp-r rd- csp-w rd- csp-c rd-)
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INITcheck(X.STATE)> :show proof

root*

[csp-q] 1*

[csp-r] 1-1*

[csp-r] 1-2*

[csp-w] 1-2-1*

[csp-c] 1-2-1-1*

[csp-c] 1-2-1-2* csp-g -> root

[csp-w] 1-2-2* / \

[csp-q] 2* csp-r -> 1 2

/ \

1 2 <- csp-w

/ \

csp-c -> 1 2

/ \

1 2
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Proof Score IINVcheck-ty

select IINVcheck-ty .

:goal{eq iinvCheck-ty = true .}

:def csp-c = :csp{eq as-c = empS .

eq as-c = (a-c-1 as-c-1) .}

:def csp-qc = :csp{eq a-q-1 = a-c-1 .

eq (a-q-1 =a a-c-1) = false .}

:apply(csp-c rd- csp-qc rd-)
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IINVcheck-ty(X.STATE)> :show proof

root*

[csp-c] 1*

[csp-c] 2*

[csp-qc] 2-1*

[csp-qc] 2-2*

csp-c -> root

/ \

1 2 <- csp-gc

/ \

1 2
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Proof Score IINVcheck-exc

select IINVcheck-exc .

:goal{eq iinvCheck-exc = true .}

:def csp-qc = :csp{eq a-q-1 = a-c-1 .

eq (a-q-1 =a a-c-1) = false .}

:def csp-asc = :csp{eq as-c-1 = empS .

eq (as-c-1 =as empS) = false .}

:apply(csp-qc rd- csp-asc rd-)
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IINVcheck-exc(X.STATE)> :show proof

root*

[csp-qc] 1*

[csp-asc] 1-1*

[csp-asc] 1-2*

[csp-qc] 2*

csp-gc -> root

/ \

csp-asc -> 1 2

/ \

1 2

29 / 29


