Modeling and Specification of QLOCK
in OTS/CafeOBJ

FUTATSUGI, Kokichi
—KEST

JAIST

Topics

e What is QLOCK?
e Modeling and Description of QLOCK in OTS
e Formal specification of QLOCK in OTS/CafeOBJ

e Formal specification of mutual exclusion property
of QLOCK

LectureNote3, DTU1006

Modeling, Specifying, and Verifying (MSV)
in CafeOBJ

1. By understanding a problem to be modeled/
specified, determine several sorts of objects
(entities, data, agents, states) and operations
(functions, actions, events) over them for
describing the problem

2. Define the meanings/functions of the
operations by declaring equations over
expressions/terms composed of the operations

3. Write proof scores for properties to be verified

LectureNote3, DTU1006

MSV with proof scores in CafeOBJ

Understand problem
and construct model

A

\ 4

Write system spec SPsys and
Write property spec SPprop

A 4

Construct proof score of
SPprop w.r.t. SPsys

LectureNote3, DTU1006

An example: mutual exclusion protocol

Assume that many agents (or processes) are
competing for a common equipment, but at
any moment of time only one agent can use
the equipment. That is, the agents are
mutually excluded in using the equipment. A
protocol (mechanism or algorithm) which can
achieve the mutual exclusion is called “mutual
exclusion protocol”.

LectureNote3, DTU1006

QLOCK (locking with queue):
a mutual exclusion Erotocol

Each agent i is executing: - atomic action

Put its name i into the
bottom of the queue

[

Isi at the top
of the queue?

false

»” Remainder Section “

“ Critical Section “

Remove/get the p
top of the queue cS

LectureNote3, DTU1006

Global (or macro) view of QLOCK

° Q : agents

LectureNote3, DTU1006

Some Scenario of Qlock (1)

o™ | o e | e

Some Scenario of Qlock (2)

e

X

-

try// exi t{
r
a
@

QLOCK: basic assumptions/characteristics

e There is only one queue and all agents/processes
share the queue.

e Any basic action on the queue is inseparable (or
atomic). That is, when any action is executed on the
queue, no other action can be executed until the
current action is finished.

e There may be unbounded number of agents.

e In the initial state, every agents are in the remainder
section (or at the label rm), and the queue is empty.

The property to be shown is that at most one agent
is in the critical section (or at the label cs) at any
moment.

LectureNote3, DTU1006

Modeling QLOCK (via Signature Diagram)
with OTS (Observational Transition System)

B
pae

gueue
put et @
exi {!I’
Sys

LectureNote3, DTU1006

pc
"\ Labe

Schematic signature diagram for OTS

isible Sorts
(Data)

Action
(method)

Hidden Sort
(State Space)

Observation Observation
(attribute) (attribute)

Visible Sort
(Data)

Visible Sort
(Data)

LectureNote3, DTU1006

Signature for QLOCKwithOTS

Sys is the sort for representing the state space of the
system.

Pid is the sort for the set of agent/process names.
Label is the sort for the set of labels; i.e. {rm, wt, cs}.
Queue is the sort for the queues of Pid

pc (program counter) is an observer returning a label where
each agent resides.

queue is an observer returning the current value of the
waiting queue of Pid.

want is an action for agent i of putting its name/id into the
queue.

try is an action for agent i of checking whether its name/id
is at the top of the queue.

exit is an action for agent i of removing/getting its name/id
from the top of the queue.

LectureNote3, DTU1006

CafeOBJ signature for QLOCKwithOTS

-- state space of the system
[Sys] system sort declaration

-— wvisible sorts for obserwvation

[Queue Pid Label] visible sort declaration
-— oObservations
op pc : Sys Pid -> Label observation declaration

op queue : Sys -> Queue

-- any initial state

op init : -> Sys (constr)

-—- actions

op want : Sys Pid -> Sys {constr}

op try : Sys Pid -> Sys {constr} action declaration

op exit : Sys Pid -> Sys {constr}

14

LectureNote3, DTU1006

QLOCK using operators
in the CafeOBJ module QUEUE

Each agent i is executing:

- atomic action

»” Remainder Section “

want
put (queue, i) Ny
try false
top (queue) =i
true

“ Critical Section “

=

A

get (queue)
exit

LectureNote3, DTU1006

CafeOBJ Code in the file glock.cafe (1)

mod! LABELconst
mod* LABLE
mod* PID¥*
mod* TRIV=
mod! QUEUE

LectureNote3, DTU1006

CafeOBJ Code in the file glock.cafe (2)

mod* QLOCK

LectureNote3, DTU1006

(_=*=_) is congruent for OTS

The binary relation (S1:Sys =*= S2:Sys) is defined to
be true iff S1 and S2 have the same observation values.

OTS style of defining the possible changes of the values of
obervations is characterized by the equations of the form:
o(a(s,d),d’") = ...0,(s,d;)...0,(s,d,)...0,(s,d) ...
for appropriate data values ofd,d’ ,4,,d,,...,d

nl

It can be shown that OTS style guarantees
that (_ =*=) is congruent with respect
to all actions.

LectureNote3, DTU1006

RaLock (set of reachable states) of
OTSg, ock (OTS defined by the module QLOCK)

Signature determining Rq ock = Sys

-- initial state
op init : -> Sys {constr}

-- actions
bop want : Sys Pid -> Sys {constr}
bop try : Sys Pid -> Sys {constr}
bop exit : Sys Pid -> Sys {constr}

Recursive definition of Rq ock = Sys

Ryocx = Sys = {init} U
{want (s, i) |s€ESys,i€Pid} U
{try(s,i) |s€ESys,i€Pid} U
{exit(s,1) | s€ESys,i€Pid}

LectureNote3, DTU1006

Mutual exclusion property

dsS dan invariant on RmLs !! EK = sys invariants-0.mod
mod INV1 {
inc (QLOCK)

-- declare a predicate to verify to be an invariant
pred invl : Sys Pid Pid
-- variables
var S : Sys .
vars I J : Pid .
-- define invl to be the mutual exclusion property
eq invl (S,I,J)
= (((pc(S,I) = cs) and (pc(S,J) = cs)) implies I

J)

Formulation of proof goal for mutual exclusion property
INV1 |= Vs€SysVi, jEPid.invl (s, i, j)

lectureNote4, DTU1006

