
An Overview of Models and Proof Rules
for CafeOBJ Proof Scores

FUTATSUGI, Kokichi
 二木 厚吉

JAIST

LectureNote04pre, DTU1006

Topics	

  Specification/Descriptions, Models, and Realities

  Constructor-based Order Sorted Algebra

  Satisfaction of a Property by a Specification
  SPEC |= prop

  Proof rules for SPEC |= prop and SPEC |- prop

 2

LectureNote04pre, DTU1006

Specifications, Models, Realities
Specifications/Descriptions (Texts)

Realities/Real-World

Models (Conceptual, Diagram, Formal/Mathematical)

Theories/Mathematics/Logics

Engineering/Technology

Implements/
Realizes

 3

LectureNote04pre, DTU1006

Specification

An constructor-based equational specification SPEC
in CafeOBJ (a text in the CafeOBJ notation with only
equational axioms) is defined as a pair (Sig,E) of order-
sorted constructor-based signature Sig and a set E of
conditional equations over Sig. A signature Sig is defined
as a triple (S,F,Fc) of an partially ordered set S of sorts,
an indexed family F of sets of S-sorted functions/
operations, and a set Fc of constructors. Fc is a family of
subsets of F, i.e. Fc ⊆ F .

SPEC = ((S,F,Fc),E)	

 4

LectureNote04pre, DTU1006

Model: (S,F)-Algebra

A formal/mathematical model of a specification
SPEC = ((S,F,Fc),E) is an reachable order-sorted
algebra A which has the signature (S,F) and satisfies
all equations in E.

An order-sorted algebra which has a signature (S,F) is
called an (S,F)-algebra. An (S,F)-algebra A interprets
a sort symbol s in S as a (non empty) set Asand an
operation (function) symbol f :s1 s2 …sn->s(n+1) in F
as a function Af : As1,As2,..,Asn->As(n+1). The
interpretation respects the order-sort constrains.

 5

LectureNote04pre, DTU1006

Model: (S,F,FC)-Algebra

If a sort s ∈ S is the co-arity of some operator f ∈
FC, the sort s is called a constrained sort. A sort
which is not constrained is called a loose sort.

An (S,F)-algebra A is called (S,F,FC)-algebra if any value
v ∈ As for any constrained sort s ∈ S is expressible only
using
 (1) function Af for f ∈ FC

and
 (2) function Ag for g ∈ F whose co-arity is loose sort .

 6

(S,F,FC)-algebra can also be called FC-reachable algebra 	

LectureNote04pre, DTU1006

An example of Signature and its Algebra
-- Let (PNAT+)-sig be
-- the signature of PNAT+
-- sort
[Zero NzNat < Nat]
-- operators
op 0 : -> Nat {constr}
op s_ : Nat -> NzNat {constr}
op _+_ : Nat Nat -> Nat

S_

Nat

0
NzNat Zero

+ 	

A (PNAT+)-sig-algebra
Order-Sorted Algebra with Signature (PNAT+)-sig:

<Nat, NzNat, Zero; 0, s_, _+_>

 7

LectureNote04pre, DTU1006

Valuation, evaluation

Given a model A and a valuation v, a term t of sort s,
which may contain variables, is evaluated to a value
Av(t) in As

A valuation (or an assignment) is a sort preserving
map from the (order-sorted) set of variables of a
specification to an order-sorted algebra (a model),
and assigns values to all variables.

 8

LectureNote04pre, DTU1006

Equation

Given terms t, t’,t1,t1’,t2,t2’…tn,tn’ , a conditional
equation is a sentence of the form:
 t = t’ if (t1 = t1’) /\ (t2 = t2’) /\ …/\ (tn = tn’)
An ordinary equation is a sentence of the form:
 t = t’
that is n=0.

 9

A conditional equation in CafeOBJ notation:
 (t=t' if c)
where t,t' are any terms and c is a Boolean term is an
abbreviation of
 (t=t' if c = true)

LectureNote04pre, DTU1006

Satisfiability of equation

An ordered-sorted algebra A satisfies a conditional
equation:
 t = t’ if (t1 = t1’) /\ (t2 = t2’) /\…/\ (tn = tn’)
iff
Av(t1)=Av(t1’) and Av(t2)=Av(t2’) and…and Av(tn)=Av(tn’)
 implies Av(t)=Av(t’)
for any valuation v .

The satisfaction of an equation by a model A is denoted by
A |= (t = t’ if (t1 = t1’) /\ (t2 = t2’) /\…/\ (tn = tn’))

 10

CafeOBJ _=_ (meta-level equality) and
 Boolean _=_ (object level equality)	

LectureNote04pre, DTU1006
 11

If a specification SP includes,
op _=_ : S S -> Bool .
eq (X = X) = true .
ceq X = Y if (X = Y) .

then
 SP |= t=t' if (t1=t1')/\ (t2=t2')/\.../\(tn=tn')
iff
 SP |= (t1=t1' and t2=t2' and ...and tn=tn'
 implies t=t') = true .

1.  Object-level equality can substitutes for meta-
level equality

2.  Every sentence (conditional equation) can be
written as Boolean term. 	

LectureNote04pre, DTU1006

For a specification SPEC = ((S,F,Fc), E), a
SPEC-algebra is a (S,F,FC)-algebra which
satisfies all equations in E .

SPEC-algebra	

 12

LectureNote04pre, DTU1006

Satisfiability of property by specification:
SPEC |= prop

A specification SPEC = ((S,F,Fc),E) is defined to satisfy a
property p (a term of sort Bool) iff A |= (p = true) holes
for any SPEC-algebra A.

The satisfaction of a predicate prop by a specification
SPEC = ((S,F,Fc),E) is denoted by:

SPEC |= p or E |= p

A most important purpose of developing a specification
SPEC = ((S,F,Fc),E) in CafeOBJ is to check whether

SPEC |= prop
holds for a predicate prop which describes some
important property of the system which SPEC specifies.

 13

Proof rules for
 SPEC |= prop (semantic entailment)	

LectureNote04pre, DTU1006
 14

For doing formal verification, it is common to think of
syntactic (proof theoretic) entailment:
 SPEC |- prop
which corresponds to semantic entailment:
 SPEC |= prop .

We have a sound and quasi complete set of proof rules
for |- which satisfies:
 SPEC |- prop iff SPEC |= prop
for unstructured specifications and constitutes a
theoretical foundation for verifications with proof scores.	

Proof Rules (1) -- entailment system
 (S, P, or Ei denotes a set of equations)	

LectureNote04pre, DTU1006
 15

S |- P

 S U E1 |- P U E2

S U E1 |- P U E2 , S U E2 |- P U E3
--

S U E1 |- P U E3

S U E1 |- P U E2 , S U E1 |- P U E3
--

S U E1 |- P U (E2 U E3)

S |-Σ P

 φ(S) |-Σ’ φ(P)

(for any signature morphism
　　 φ: Σ -> Σ’)	

Translation:	

Monotonicity:	

Transitivity:	

Unions:	

(for any E2⊆E1)	

Proof Rules (2) -- equational reasoning
 (t or ti denotes term and f denotes operator)	

LectureNote04pre, DTU1006
 16

S |- P

 S |- P U {t=t}

S |- P
--

S U {t1=t2} |- P U {t2=t1}

S |- P
--

S U {t1=t2, t2=t3} |- P U {t1=t3}

S |- P

 S U {t1=t1’,t2=t2’,…,tn=tn’} |- P U {f(t1,t2,…,tn)=f(t1’,t2’,…,tn’}

Congruence: 	

Reflexivity:	

Transitivity:	

Symmetry:	

Proof Rules (3)
(H denotes a set of equations, p denotes predicate,
 X, Y, or Z denotes set of variables, x denotes variable)	

LectureNote04pre, DTU1006
 17

S |- P U {(/\H=>p)}

 S U H |- P U {p}

S |- P
--

S U {(∀x)p} |- P U {(∀Y)p(x<-t)}

S |-Σ P U {(∀Z)p}

S |-Σ(Z) P U {p}

Implication:	

Generalization: 	

Substitutivity: 	

S U H |- P U {p}

S |- P U {(/\H=>p)}
and	

S |-Σ(Z) P U {p}

S |-Σ P U {(∀Z)p}

and	

Proof Rules (4)
(H denotes a set of equations, p denotes predicate,
 X, Y, or Z denotes set of variables, x denotes variable)	

LectureNote04pre, DTU1006
 18

 { (S |- P U {(∀Y)p(x<-t)}) | t is constructor Y-tem, Y are loose vars. }
--

S |- P U {(∀x)p}

Case Analysis:	

C-Abstraction: 	

 { (S U {f(t1,…,tn)=t} |-Σ(Y) P U {p}) | t is const. Y-tem, Y are loose vars. }

S |-Σ P U {p}

