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Topics	
 

  Specification/Descriptions, Models, and Realities 

  Constructor-based Order Sorted Algebra 

  Satisfaction of a Property by a Specification 
  SPEC |= prop 

  Proof rules for SPEC |= prop and SPEC |- prop 
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Specifications, Models, Realities 
Specifications/Descriptions (Texts) 

Realities/Real-World 

Models (Conceptual, Diagram, Formal/Mathematical) 

Theories/Mathematics/Logics 

Engineering/Technology 

Implements/ 
Realizes 
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Specification   

An constructor-based equational specification SPEC 
in CafeOBJ (a text in the CafeOBJ notation with only 
equational axioms) is defined as a pair (Sig,E) of order-
sorted constructor-based signature Sig and a set E of 
conditional equations over Sig.  A signature Sig is defined 
as a triple (S,F,Fc) of an partially ordered set S of sorts, 
an indexed family F of sets of S-sorted functions/
operations, and a set Fc of constructors.  Fc is a family of 
subsets of F, i.e. Fc ⊆ F .  

SPEC = ((S,F,Fc),E)	
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Model:  (S,F)-Algebra 

A formal/mathematical model of a specification 
SPEC = ((S,F,Fc),E) is an reachable order-sorted 
algebra A which has the signature (S,F) and satisfies 
all equations in E.   

An order-sorted algebra which has a signature (S,F) is 
called an (S,F)-algebra.  An (S,F)-algebra A interprets 
a sort symbol s in S as a (non empty) set Asand an 
operation (function) symbol f :s1 s2 …sn->s(n+1) in F 
as a function Af : As1,As2,..,Asn->As(n+1). The 
interpretation respects the order-sort constrains. 
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Model:  (S,F,FC)-Algebra  

If a sort s ∈ S is the co-arity of some operator f ∈ 
FC, the sort s is called a constrained sort.  A  sort 
which is not constrained is called a loose sort.   

An (S,F)-algebra A is called (S,F,FC)-algebra if any value 
v ∈ As for any constrained sort s ∈ S is expressible only 
using  
  (1) function Af for f ∈ FC 

and 
  (2) function Ag for g ∈ F whose co-arity is loose sort . 
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(S,F,FC)-algebra can also be called FC-reachable algebra 	
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An example of Signature and its Algebra 
-- Let (PNAT+)-sig be  
-- the  signature of PNAT+ 
-- sort 
[ Zero NzNat < Nat ] 
-- operators 
op 0 :  -> Nat {constr} 
op s_ :  Nat -> NzNat {constr} 
op _+_ : Nat Nat -> Nat 

S_ 

Nat 

0
NzNat Zero 

_+_ 	


A (PNAT+)-sig-algebra 
Order-Sorted Algebra with Signature (PNAT+)-sig: 

<Nat, NzNat, Zero; 0, s_, _+_> 
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Valuation, evaluation 

Given a model A and a valuation v, a term t of sort s, 
which may contain variables, is evaluated to a value 
Av(t) in  As 

A valuation (or an assignment) is a sort preserving 
map from the (order-sorted) set of variables of a 
specification to an order-sorted algebra (a model), 
and assigns values to all variables. 

     8 



LectureNote04pre, DTU1006 

Equation 

Given terms t, t’,t1,t1’,t2,t2’…tn,tn’ , a conditional 
equation is a sentence of the form:  
         t = t’ if (t1 = t1’) /\ (t2 = t2’) /\  …/\  (tn = tn’) 
An ordinary equation is a sentence of the form: 
                                  t = t’     
that is n=0. 
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A conditional equation in CafeOBJ notation: 
                               (t=t' if c)  
where t,t' are any terms and c is a Boolean term is an 
abbreviation of  
                          (t=t' if c = true)  
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Satisfiability of equation 

An ordered-sorted algebra A satisfies a conditional 
equation:  
       t = t’ if (t1 = t1’) /\ (t2 = t2’) /\…/\ (tn = tn’)  
iff  
Av(t1)=Av(t1’) and Av(t2)=Av(t2’) and…and Av(tn)=Av(tn’)  
               implies Av(t)=Av(t’)  
for any valuation v . 

The satisfaction of an equation by a model A is denoted by  
A |= (t = t’ if (t1 = t1’) /\ (t2 = t2’) /\…/\ (tn = tn’))  
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CafeOBJ _=_ (meta-level equality) and  
               Boolean _=_ (object level equality)	
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If a specification SP includes, 
op _=_ : S S -> Bool .  
eq (X = X) = true .  
ceq X = Y if (X = Y) .  

then  
   SP |= t=t' if (t1=t1')/\ (t2=t2')/\.../\(tn=tn')  
iff  
   SP |= (t1=t1' and t2=t2' and ...and tn=tn'  
               implies t=t') = true  . 

1.  Object-level equality can substitutes for meta-
level equality 

2.  Every sentence (conditional equation) can be 
written as Boolean term. 	
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For a specification SPEC = ((S,F,Fc), E), a 
SPEC-algebra is a (S,F,FC)-algebra which 
satisfies all equations in E . 

SPEC-algebra	
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Satisfiability of property by specification: 
SPEC |= prop 

A specification SPEC = ((S,F,Fc),E) is defined to satisfy a 
property p (a term of sort Bool) iff  A |= (p = true) holes 
for any SPEC-algebra A. 

The satisfaction of a predicate prop by a specification 
SPEC = ((S,F,Fc),E) is denoted by: 

SPEC |= p  or  E |= p 

A most important purpose of developing a specification 
SPEC = ((S,F,Fc),E) in CafeOBJ is to check whether  

SPEC |= prop  
holds for a predicate prop which describes some 
important property of the system which SPEC specifies. 
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Proof rules for  
             SPEC |= prop (semantic entailment)	
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For doing formal verification, it is common to think of  
syntactic (proof theoretic) entailment:  
                             SPEC |- prop    
which corresponds to semantic entailment: 
                             SPEC |= prop  . 

We have a sound and quasi complete set of proof rules 
for |- which satisfies: 
           SPEC |- prop    iff    SPEC |= prop 
for unstructured specifications and constitutes a 
theoretical foundation for verifications with proof scores.	




Proof Rules (1)  -- entailment system 
     (S, P, or Ei denotes a set of equations)	
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S |- P 
-------------------------- 
 S U E1 |- P U E2 

S U E1 |- P U E2 , S U E2 |- P U E3  
-------------------------------------------------- 

S U E1 |- P U E3 

S U E1 |- P U E2 ,  S U E1 |- P U E3  
-------------------------------------------------- 

S U E1 |- P U (E2 U E3) 

S |-Σ P 
--------------------- 
 φ(S) |-Σ’ φ(P) 

(for any signature morphism 
　　    φ: Σ -> Σ’  )	


Translation:	


Monotonicity:	


Transitivity:	


Unions:	


(for any E2⊆E1)	




Proof Rules (2)  -- equational reasoning  
     (t or ti denotes term and f denotes operator)	
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S |- P 
-------------------------- 

 S |- P U {t=t} 

S |- P 
-------------------------------------------------- 

S U {t1=t2} |- P U {t2=t1} 

S |- P 
-------------------------------------------------- 

S U {t1=t2, t2=t3} |- P U {t1=t3} 

S |- P 
--------------------------------------------------------------------------------------- 
 S U {t1=t1’,t2=t2’,…,tn=tn’} |- P U {f(t1,t2,…,tn)=f(t1’,t2’,…,tn’}  

Congruence: 	


Reflexivity:	


Transitivity:	


Symmetry:	




Proof Rules (3)  
(H denotes a set of equations, p denotes predicate, 
 X, Y, or Z denotes set of variables, x denotes variable)	
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S |- P U {(/\H=>p)} 
--------------------------------- 

 S U H |- P U {p} 

S |- P 
-------------------------------------------------- 

S U {(∀x)p} |- P U {(∀Y)p(x<-t)} 

S |-Σ P U {(∀Z)p} 
-------------------------- 

S |-Σ(Z) P U {p} 

Implication:	


Generalization: 	


Substitutivity: 	


S U H |- P U {p} 
--------------------------------- 

S |- P U {(/\H=>p)}  
and	


S |-Σ(Z) P U {p} 
-------------------------- 
S |-Σ P U {(∀Z)p} 

and	




Proof Rules (4)  
(H denotes a set of equations, p denotes predicate, 
 X, Y, or Z denotes set of variables, x denotes variable)	
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 { (S |- P U {(∀Y)p(x<-t)}) | t is constructor Y-tem, Y are loose vars. } 
-------------------------------------------------------------------------------------------------- 

S |- P U {(∀x)p}  

Case Analysis:	


C-Abstraction: 	


 { (S U {f(t1,…,tn)=t} |-Σ(Y) P U {p}) | t is const. Y-tem, Y are loose vars. } 
------------------------------------------------------------------------------------------------------- 

S |-Σ P U {p}  


