A Brief Overview of CafeOBJ/ProofScore and Formal Methods

FUTATSUGI, Kokichi
二木 厚吉

JAIST
(Japan Advanced Institute of Science and Technology)
Application areas of formal methods (FM)

1. Analysis and verification of developed program codes (\textit{post-coding})

2. Analysis and verification of (models/specs of) domains, requirements, and designs before/without coding (\textit{pre-coding or without coding})

Successful application of formal methods to the area of (models/specifications of) domains, requirements, designs can bring drastic good effects for systems developments, but it is not well exploited and/or practiced yet.

\textit{specification} = description of model
The current situation of FM

● Verification with formal specifications still have a potential to improve the practices in upstream (pre-coding) of systems development processes

● Model checking has brought a big success but still has limitations
 ● It is basically “model checking” for program codes
 ● Still mainly for post-coding
 ● Infinite state to finite state transformation can be unnatural and difficult

● Established interactive theorem provers (Isabelle/HOL, Coq, PVS, etc.) are not necessary well accepted to software/systems engineers
 ● especially in upstream (pre-coding) phase
Our approach

♦ Reasonable blend of user and machine capabilities, intuition and rigor, high-level planning and tedious formal calculation
 • fully automated proofs are not necessary
good for human beings to perceive logical structures of real problems/systems
 • interactive understanding/description of real problem domains/requirements/designs is necessary

Proof Score Approach
Proof Score Approach

- Domain/requirement/design engineers are expected to construct proof scores together with formal specifications

- Proof scores are instructions such that when executed (or "played") and everything evaluates as expected, then the desired property is convinced to hold
 - Proof by construction/development
 - Proof by reduction/computation/rewriting
Development of proof scores in CafeOBJ

♦ Many simple proof scores are written in OBJ language from 1980’s; some of them are not trivial
♦ From around 1997 CafeOBJ group at JAIST use proof scores seriously for verifying specifications for various examples
 • From static to dynamic/reactive system
 • From ad hoc to more systematic proof scores
 • Introduction of OTS (Observational Transition System) was a most important step
Some achievements of CafeOBJ/OTS proof score approach

CafeOBJ/OTS approach has been applied to the following kinds of problems and found usable:

- Some classical mutual exclusion algorithms
- Some real time algorithms
 e.g. Fischer’s mutual exclusion protocol
- Railway signaling systems
- Authentication protocol
 e.g. NSLPK, Otway-Rees, STS protocols
- Practical sized e-commerce protocol of SET
 (some of proof score exceeds 60,000 lines;
 specification is about 2,000 lines,
 20-30 minutes for reduction of the proof score)
- UML semantics (class diagram + OCL-assertions)
- Formal Fault Tree Analysis
- Secure workflow models, internal control
A little bit of CafeOBJ history

- KF thought of the basic ideas of CafeOBJ after he participated OBJ project at SRI in 1983-1984, and several design and implementation attempts were done during 1985-1995.
- The CafeOBJ development project is fully supported by IPA/MITI of Japanese Government from 1996.4 to 1998.3
 - Six Japanese Companies, Five Japanese Universities, Three Foreign Research Group participate CAFÉ project.
 - A book entitled “CafeOBJ Report” was published in 1998 which defines the syntax and semantics of the CafeOBJ language.
- Sufficiently reliable and usable CafeOBJ system was available at around the beginning of 1999.
- Several groups including KF’s group at JAIST are using CafeOBJ for developing formal methods for various application areas and/or for education of FM.