
Overview
Transition Systems

Generate & Check Method
Generic Proof Scores for Generate & Check Method

Examples: QLOCK and ABP
Conclusion

Generic Proof Scores
for

Generate & Check Method in CafeOBJ

Kokichi FUTATSUGI
Japan Advanced Institute of Science and Technology

26 February 2015
JAIST, Nomi, Ishikawa, Japan

1 / 64

Overview
Transition Systems

Generate & Check Method
Generic Proof Scores for Generate & Check Method

Examples: QLOCK and ABP
Conclusion

You can find these slides, a paper, and CafeOBJ codes for the talk
on the following web page.

http://www.jaist.ac.jp/~kokichi/talk/150226jaistVsemi/

2 / 64

Overview
Transition Systems

Generate & Check Method
Generic Proof Scores for Generate & Check Method

Examples: QLOCK and ABP
Conclusion

Specification Verification
Verification with Proof Scores
Generate & Check Method
Generate & Check Method
Generic Proof Scores for Generate & Check Method
Modularization via parameterization

Specification Verification

! Constructing specifications and verifying them in the
upstream of system/software development are still one of the
most important challenges in system/software development
and engineering.

! It is because many critical defects are caused at the phases of
domains, requirements, and designs specifications. Proof
scores are intended to meet this challenge.

3 / 64

Overview
Transition Systems

Generate & Check Method
Generic Proof Scores for Generate & Check Method

Examples: QLOCK and ABP
Conclusion

Specification Verification
Verification with Proof Scores
Generate & Check Method
Generate & Check Method
Generic Proof Scores for Generate & Check Method
Modularization via parameterization

Verification with Proof Scores (1)

! A system and the system’s properties are specified in an
executable algebraic specification language (CafeOBJ in our
case).

! Proof scores are described also in the same executable
specification language for checking whether the system
specifications imply the property specifications.

! Specifications and proof scores are expressed in equations, and
the checks are done only by reduction (i.e. rewriting from left
to wright) with the equations.

! The logical soundness of the checks is guaranteed by the fact
that the reduction are consistent with the equational
reasoning with the equations.

4 / 64

Overview
Transition Systems

Generate & Check Method
Generic Proof Scores for Generate & Check Method

Examples: QLOCK and ABP
Conclusion

Specification Verification
Verification with Proof Scores
Generate & Check Method
Generate & Check Method
Generic Proof Scores for Generate & Check Method
Modularization via parameterization

Verification with Proof Scores (2)

! The concept of proof supported by proof scores is similar to
that of Larch Prover or Maude ITP. Larch’s specification
language is, however, not executable.

! Proof scripts written in tactic languages provided by theorem
provers such as Coq and Isabelle/HOL have similar nature as
proof scores.

! Proof scores are written, however, uniformly with
specifications in an executable algebraic specification
language, and can enjoy a transparent, simple, executable and
efficient logical foundation based on the equational and
rewriting logics.

5 / 64

Overview
Transition Systems

Generate & Check Method
Generic Proof Scores for Generate & Check Method

Examples: QLOCK and ABP
Conclusion

Specification Verification
Verification with Proof Scores
Generate & Check Method
Generate & Check Method
Generic Proof Scores for Generate & Check Method
Modularization via parameterization

Generate & Check Method (1)

! For a sort Srt and a predicate p on Srt we get
((p(X :Srt) →∗

E true) implies (∀t ∈ (TΣ)Srt)(p(t) =E true))
and (p(X :Srt) →∗

E true) is a sufficient condition to prove
(∀t)p(t).

! However, usually p is not simple enough to obtain
(p(X :Srt) →∗

E true) directly, and we need to analyze the
structure of terms in (TΣ)Srt and E for (1) generating a set
of terms {t1, · · · , tm} ⊆ TΣ(Y)Srt that covers all possible
cases of (TΣ)Srt , and (2) checking (p(ti) →∗

E true) for each
i ∈ {1, · · · ,m}.

! Induction is another technique for proving
(p(X :Srt) →∗

E true) for a constrained sort Srt.

6 / 64

Overview
Transition Systems

Generate & Check Method
Generic Proof Scores for Generate & Check Method

Examples: QLOCK and ABP
Conclusion

Specification Verification
Verification with Proof Scores
Generate & Check Method
Generate & Check Method
Generic Proof Scores for Generate & Check Method
Modularization via parameterization

Generate & Check Method (2)

! The generation & checking can be a theorem proving method
for transition systems based on
(1) generation of finite state patters that cover all possible infinite

states, and
(2) checking the validities of verification conditions for each of the

finite state patterns.

! The state space of a transition system is formalized as a
quotient set (i.e. a set of equivalence classes) of terms of a
topmost sort State, and the transitions are specified with
conditional rewrite rules over the quotient set.

7 / 64

Overview
Transition Systems

Generate & Check Method
Generic Proof Scores for Generate & Check Method

Examples: QLOCK and ABP
Conclusion

Specification Verification
Verification with Proof Scores
Generate & Check Method
Generate & Check Method
Generic Proof Scores for Generate & Check Method
Modularization via parameterization

Generate & Check Method (3)

A property to be verified is either

! an invariant (i.e. a state predicate that is valid for all
reachable states), or

! a (p leads-to q) property for two state predicates p and q
((p leads-to q) means that from any reachable state s with
(p(s) = true) the system will get to a state t with (q(t) =
true) no matter what transition sequence is taken).

8 / 64

Overview
Transition Systems

Generate & Check Method
Generic Proof Scores for Generate & Check Method

Examples: QLOCK and ABP
Conclusion

Specification Verification
Verification with Proof Scores
Generate & Check Method
Generate & Check Method
Generic Proof Scores for Generate & Check Method
Modularization via parameterization

Generic Proof Scores for the Generate & Check Method
have been developed

! The generic proof scores codify the generate & check method
as parameterized modules in the CafeOBJ language
independently of specific systems to which the method applies.

! Proof scores for a specific system can be obtained by
substituting the parameter modules of the parameterized
modules with the specification modules of the specific system.

9 / 64

Overview
Transition Systems

Generate & Check Method
Generic Proof Scores for Generate & Check Method

Examples: QLOCK and ABP
Conclusion

Specification Verification
Verification with Proof Scores
Generate & Check Method
Generate & Check Method
Generic Proof Scores for Generate & Check Method
Modularization via parameterization

Modularization via parameterization of proof scores is crucial
because

(a) it helps to identify reusable proof scores,

(b) it helps to give good structures to proof scores, and

(c) (a)&(b) make proof scores easy to understand and flexible
enough for transparent interactive deduction via rewriting and
modifications (i.e. interactive verification).

10 / 64

Overview
Transition Systems

Generate & Check Method
Generic Proof Scores for Generate & Check Method

Examples: QLOCK and ABP
Conclusion

Reachability and Invariants
Σ(X)-terms, Equational Spec, and Substitution
Transition Rules
Transition Specifications
Verification Conditions for Invariant Properties
Verification Conditions for (p leads-to q) Properties

! A transition system is defined as a three tuple (St,Tr , In).

! St is a set of states, Tr ⊆ St × St is a set of transitions on
the states, and In ⊆ St is a set of initial states.

! A sequence of states s1s2 · · · sn with (si , si+1) ∈ Tr for each
i ∈ {1, · · · , n − 1} is defined to be a transition sequence.

! A state sr ∈ St is defined to be reachable if there exists a
transition sequence s1s2 · · · sn with sn = sr for n ∈ {1, 2, · · · }
such that s1 ∈ In.

! A state predicate p (i.e. a function from St to Bool) is
defined to be an invariant (or an invariant property) if (p(sr)
= true) for any reachable state sr .

11 / 64

Overview
Transition Systems

Generate & Check Method
Generic Proof Scores for Generate & Check Method

Examples: QLOCK and ABP
Conclusion

Reachability and Invariants
Σ(X)-terms, Equational Spec, and Substitution
Transition Rules
Transition Specifications
Verification Conditions for Invariant Properties
Verification Conditions for (p leads-to q) Properties

! Let Σ = (S ,≤,F) be a regular order-sorted signature with a
set of sorts S , and let X = {Xs}s∈S be an S-sorted set of
variables.

! Let TΣ(X) be S-sorted set of Σ(X)-terms, let TΣ(X)s be a
set of Σ(X)-terms of sort s, let E be a set of Σ(X)-equations,
and let (Σ,E) be an equational specification with a unique
sort State.

! Let θ ∈ TΣ(Y)X be a substitution (i.e. a map) from X to
TΣ(Y) for disjoint X and Y then θ extends to the morphism
from TΣ(X) to TΣ(Y), and t θ is the term obtained by
substituting x ∈ X in t with x θ.

12 / 64

Overview
Transition Systems

Generate & Check Method
Generic Proof Scores for Generate & Check Method

Examples: QLOCK and ABP
Conclusion

Reachability and Invariants
Σ(X)-terms, Equational Spec, and Substitution
Transition Rules
Transition Specifications
Verification Conditions for Invariant Properties
Verification Conditions for (p leads-to q) Properties

! Let tr = (∀X)(l → r if c) be a rewrite rule with
l , r ∈ TΣ(X)State and c ∈ TΣ(X)Bool, then tr is called a
transition rule and defines the one step transition relation
→tr∈ TΣ(Y)State × TΣ(Y)State for Y being disjoint from X
as follows.

! Note that =E is understood to be defined with ((Σ ∪ Y),E)
by considering y ∈ Y as a fresh constant if Y is not empty.

(s →tr s ′)
def
=

(∃θ ∈ TΣ(Y)X)((s =E l θ) and (s ′ =E r θ) and (c θ =E true))

13 / 64

Overview
Transition Systems

Generate & Check Method
Generic Proof Scores for Generate & Check Method

Examples: QLOCK and ABP
Conclusion

Reachability and Invariants
Σ(X)-terms, Equational Spec, and Substitution
Transition Rules
Transition Specifications
Verification Conditions for Invariant Properties
Verification Conditions for (p leads-to q) Properties

! Let TR = {tr1, · · · , trm} be a set of transition rules, let

→TR
def
=

⋃m
i=1→tri , and let In ⊆ (TΣ/=E)State. In is assumed

to be defined via a state predicate init that is defined with E,
i.e. (s ∈ In) iff (init(s) =E true).

! Then a transition specification (Σ,E ,TR) defines a transition
system ((TΣ/=E)State,→TR , In).

14 / 64

Overview
Transition Systems

Generate & Check Method
Generic Proof Scores for Generate & Check Method

Examples: QLOCK and ABP
Conclusion

Reachability and Invariants
Σ(X)-terms, Equational Spec, and Substitution
Transition Rules
Transition Specifications
Verification Conditions for Invariant Properties
Verification Conditions for (p leads-to q) Properties

! Given a transition system TS = (St,Tr , In), and let p1, p2,
· · · , pn (n ∈ {1, 2, · · · }) be state predicates of TS , and

inv(s)
def
= (p1(s) and p2(s) and · · · and pn(s)) for s ∈ St.

! The following three conditions are sufficient for a state
predicate pt to be an invariant.

(1) (∀s ∈ St)(inv(s) implies pt(s))
(2) (∀s ∈ St)(init(s) implies inv(s))
(3) (∀(s, s ′) ∈ Tr)(inv(s) implies inv(s ′)) "

! A predicate that satisfies the conditions (2) and (3) like inv is
called an inductive invariant. If pt itself is an inductive
invariant then taking p1 = pt and n = 1 is enough. However,
p1, p2, · · · , pn (n > 1) are almost always needed to be found
for getting an inductive invariant, and to find them is a most
difficult part of the invariant verification.

15 / 64

Overview
Transition Systems

Generate & Check Method
Generic Proof Scores for Generate & Check Method

Examples: QLOCK and ABP
Conclusion

Reachability and Invariants
Σ(X)-terms, Equational Spec, and Substitution
Transition Rules
Transition Specifications
Verification Conditions for Invariant Properties
Verification Conditions for (p leads-to q) Properties

It is worthwhile to note that there are following two contrasting
approaches for formalizing p1, p2, · · · , pn for a transition system
and its property pt .

• Make p1, p2, · · · , pn as minimal as possible to imply the target
property pt ;

◦ usually done by lemma finding in interactive theorem proving,
◦ it is difficult to find lemmas without some comprehensive

understanding of the system.

• Make p1, p2, · · · , pn as comprehensive as possible to
characterize the system;

◦ usually done by specifying elemental properties of the system
as much as possible in formal specification development,

◦ it is difficult to identify the elemental properties without
focusing on the property to be proved (i.e. pt).

16 / 64

Overview
Transition Systems

Generate & Check Method
Generic Proof Scores for Generate & Check Method

Examples: QLOCK and ABP
Conclusion

Reachability and Invariants
Σ(X)-terms, Equational Spec, and Substitution
Transition Rules
Transition Specifications
Verification Conditions for Invariant Properties
Verification Conditions for (p leads-to q) Properties

! Invariants are fundamentally important properties of transition
systems. They are asserting that something bad will not
happen (i.e. safety property). However, it is sometimes also
important to assert that something good will surely happen
(i.e. liveness property).

! Let TS = (St,Tr , In) be a transition system, and let p, q be
predicates with arity (St,Data) of TS , where Data is a data
sort needed to specify p, q. A transition system is defined to
have the (p leads-to q) property if and only if the system
will get to a state t with q(t, d) from a state s with p(s, d)
no matter what transition sequence is taken. The (p leads-to
q) property is a liveness property, and is adopted from the
UNITY logic.

17 / 64

Overview
Transition Systems

Generate & Check Method
Generic Proof Scores for Generate & Check Method

Examples: QLOCK and ABP
Conclusion

Reachability and Invariants
Σ(X)-terms, Equational Spec, and Substitution
Transition Rules
Transition Specifications
Verification Conditions for Invariant Properties
Verification Conditions for (p leads-to q) Properties

Based on an original transition system TS = (St,Tr , In), let

Ŝt
def
= St × Data,

(((s, d), (s ′, d)) ∈ T̂r)
def
= ((s, s ′) ∈ Tr),

În
def
= In × Data,

T̂S
def
= (Ŝt, T̂r , În).

Let inv1, inv2, inv3 inv4 be invariants of T̂S and
let m be a function from Ŝt to Nat (the set of natural numbers),
then the 4 conditions in the next slide are sufficient for
the (p leads-to q) property to be valid for T̂S . Here

ŝ
def
= (s, d) for any d ∈ Data,

p(ŝ)
def
= p(s, d) and q(ŝ)

def
= q(s, d).

18 / 64

Overview
Transition Systems

Generate & Check Method
Generic Proof Scores for Generate & Check Method

Examples: QLOCK and ABP
Conclusion

Reachability and Invariants
Σ(X)-terms, Equational Spec, and Substitution
Transition Rules
Transition Specifications
Verification Conditions for Invariant Properties
Verification Conditions for (p leads-to q) Properties

The four Sufficient Verification Conditions for (p leads-to q)
Properties

(1) (∀(ŝ, ŝ ′) ∈ T̂r)

((inv1(ŝ) and p(ŝ) and (not q(ŝ))) implies (p(ŝ ′) or q(ŝ ′)))

(2) (∀(ŝ, s ′) ∈ T̂r)

((inv2(ŝ) and p(ŝ) and (not q(ŝ))) implies (m(ŝ) > m(ŝ ′)))

(3) (∀ŝ ∈ Ŝt)
((inv3(ŝ) and p(ŝ) and (not q(ŝ))) implies

(∃ŝ ′ ∈ Ŝt)((ŝ, ŝ ′) ∈ T̂r))

(4) (∀ŝ ∈ Ŝt)
((inv4(ŝ) and (p(ŝ) or q(ŝ)) and (m(ŝ) = 0)) implies q(ŝ))

19 / 64

Overview
Transition Systems

Generate & Check Method
Generic Proof Scores for Generate & Check Method

Examples: QLOCK and ABP
Conclusion

Generate & Check for ∀st ∈ St
Generate & Check for ∀tr ∈ Tr
Generate&Check for Verification of Invariant Properties
Generat&Check for Verification of (p leads-to q) Properties

[Subsume] A term t ′ ∈ TΣ(Y) is defined to be an instance of a
term t ∈ TΣ(X) iff there exits a substitution θ ∈ TΣ(Y)X such
that t ′ = t θ. A finite set of terms C ⊆ TΣ(X) is defined to
subsume a (may be infinite) set of ground terms (i.e. terms
without variables) G ⊆ TΣ iff for any t ′ ∈ G there exits t ∈ C such
that t ′ is an instance of t.
[Generate&Check-S] Let (TΣ/=E)State,→TR , In) be a
transition system defined by a transition specification (Σ,E ,TR).
Then, for a state predicate pst , doing the following Generate and
Check are sufficient for verifying

(∀t ∈ (TΣ)State)(pst(t) =E true).

Generate a finite set of state terms C ⊆ TΣ(X)State that
subsumes (TΣ)State.

Check (pst(s) #∗
E true) for each s ∈ C . "

20 / 64

Overview
Transition Systems

Generate & Check Method
Generic Proof Scores for Generate & Check Method

Examples: QLOCK and ABP
Conclusion

Generate & Check for ∀st ∈ St
Generate & Check for ∀tr ∈ Tr
Generate&Check for Verification of Invariant Properties
Generat&Check for Verification of (p leads-to q) Properties

Let q be a predicate with arity “State State” for stating some
relation of the current state and the next state, like (inv(s)
implies inv(s ′)). Let the function valid-q be defined using the
CafeOBJ ’s built-in search predicate
pred _=(*,1)=>+_if_suchThat_{_} : State State Bool Bool Info .

as follows.

-- for checking conditions of ctrans rules
pred _then _ : Bool Bool .
eq (true then B:Bool) = B . eq (false then B:Bool) = true .
-- predicate to be checked for a State
pred valid-q : State State Bool .
eq valid-q(S:State,SS:State,CC:Bool) =

not(S =(*,1)=>+ SS if CC suchThat
not((CC then q(S,SS)) == true) {(ifm S SS CC q(S,SS))}) .

21 / 64

Overview
Transition Systems

Generate & Check Method
Generic Proof Scores for Generate & Check Method

Examples: QLOCK and ABP
Conclusion

Generate & Check for ∀st ∈ St
Generate & Check for ∀tr ∈ Tr
Generate&Check for Verification of Invariant Properties
Generat&Check for Verification of (p leads-to q) Properties

For a state term s ∈ TΣ(Y)State, the reduction of the Boolean
term: valid-q(s,SS:State,CC:Bool) with #∗

E ∪→TR behaves as
follows based on the definition of the behavior of the built-in
search predicate.

1. Search for evey pair (trj , θ) of a transition rule
trj = (∀X)(lj → rj if cj) in Tr and a substitution

θ ∈ TΣ(Y)X such that s = lj θ.

2. For each found (trj , θ), let (SS = rj θ) and (CC = cj θ) and
print out (ifm s SS CC q(s,SS)) and trj if (not((CC then

q(s,SS)) == true) #∗
E true).

3. Returns false if any print out exits, and returns true
otherwise.

22 / 64

Overview
Transition Systems

Generate & Check Method
Generic Proof Scores for Generate & Check Method

Examples: QLOCK and ABP
Conclusion

Generate & Check for ∀st ∈ St
Generate & Check for ∀tr ∈ Tr
Generate&Check for Verification of Invariant Properties
Generat&Check for Verification of (p leads-to q) Properties

[Cover] Let C ⊆ TΣ(Y) and C ′ ⊆ TΣ(X) be finite sets. C is
defined to cover C ′ iff for any ground instance t ′g ∈ TΣ of any
t ′ ∈ C ′, there exits t ∈ C such that t ′g is an instance of t and t is
an instance of t ′.
[Generate&Check-T1] Let ((TΣ/=E)State,→TR , In) be a
transition system, and let C ′ ⊆ TΣ(X) be the set of all the
left-hand sides of the transition rules in TR . Then doing the
following Generate and Check are sufficient for verifying

(∀(s, s ′) ∈ ((TΣ × TΣ)∩ →TR))(qtr(s, s
′) =E true)

for a predicate “pred qtr : State State”.

Generate a finite set of state terms C ⊆ TΣ(Y)State that
covers C ′.

Check (valid-qtr(t,SS:State,CC:Bool) #∗
E ∪ →TR true)

for each t ∈ C . "
23 / 64

Overview
Transition Systems

Generate & Check Method
Generic Proof Scores for Generate & Check Method

Examples: QLOCK and ABP
Conclusion

Generate & Check for ∀st ∈ St
Generate & Check for ∀tr ∈ Tr
Generate&Check for Verification of Invariant Properties
Generat&Check for Verification of (p leads-to q) Properties

…
……

…

instances

t’

…

S:State

concrete states

…

Covering

t

t’g

24 / 64

Overview
Transition Systems

Generate & Check Method
Generic Proof Scores for Generate & Check Method

Examples: QLOCK and ABP
Conclusion

Generate & Check for ∀st ∈ St
Generate & Check for ∀tr ∈ Tr
Generate&Check for Verification of Invariant Properties
Generat&Check for Verification of (p leads-to q) Properties

[Generate&Check-T2] Let TR = {tr1, · · · , trm} be a set of
transition rules, and let tri = (∀X)(li → ri if ci) for
i ∈ {1, · · · ,m}. Then doing the following Generate and Check
for all of i ∈ {1, · · · ,m} is sufficient for verifying

(∀(s, s ′) ∈ ((TΣ × TΣ)∩ →TR))(qtr(s, s
′) =E true)

for a predicate “pred qtr : State State”.

Generate a finite set of state terms Ci ⊆ TΣ(Y)State that
covers {li}.
Check (valid-qtr(t,SS:State,CC:Bool) #∗

E ∪ →tri true)
for each t ∈ C . "

25 / 64

Overview
Transition Systems

Generate & Check Method
Generic Proof Scores for Generate & Check Method

Examples: QLOCK and ABP
Conclusion

Generate & Check for ∀st ∈ St
Generate & Check for ∀tr ∈ Tr
Generate&Check for Verification of Invariant Properties
Generat&Check for Verification of (p leads-to q) Properties

The conditions (1) and (2) for invariant properties can be verified
by using Generate&Check-S with pst-1(s) and pst-2(s) defined as
follows respectively.

(1) pst-1(s) = (inv(s) implies pt(s))
(2) pst-2(s) = (init(s) implies inv(s))

Note that, if inv
def
= (p1 and · · · and pn) and

pt = (pi1 and · · · and pim) for {i1, · · · , im} ⊆ {1, · · · , n}, then
condition (1) is directly obtained.

26 / 64

Overview
Transition Systems

Generate & Check Method
Generic Proof Scores for Generate & Check Method

Examples: QLOCK and ABP
Conclusion

Generate & Check for ∀st ∈ St
Generate & Check for ∀tr ∈ Tr
Generate&Check for Verification of Invariant Properties
Generat&Check for Verification of (p leads-to q) Properties

The condition (3) for invariant properties can be verified by using
Generate&Check-T1 or T2 with qtr-3(s, s

′) defined as follows.

(3) qtr-3(s, s
′) = (inv(s) implies inv(s ′))

27 / 64

Overview
Transition Systems

Generate & Check Method
Generic Proof Scores for Generate & Check Method

Examples: QLOCK and ABP
Conclusion

Generate & Check for ∀st ∈ St
Generate & Check for ∀tr ∈ Tr
Generate&Check for Verification of Invariant Properties
Generat&Check for Verification of (p leads-to q) Properties

The conditions (1) and (2) for the (p leads-to q) properties can be
verified by using Generate &Check-T1 or T2 in Section 23 with
qtr-1(ŝ, ŝ

′) and qtr-2(ŝ, ŝ
′) defined as follows respectively.

(1) qtr-1(ŝ, ŝ
′) = ((inv1(ŝ) and p(ŝ) and (not q(ŝ)))

implies (p(ŝ ′) or q(ŝ ′)))

(2) qtr-2(ŝ, ŝ
′) = ((inv2(ŝ) and p(ŝ) and (not q(ŝ)))

implies (m(ŝ) > m(ŝ ′)))

28 / 64

Overview
Transition Systems

Generate & Check Method
Generic Proof Scores for Generate & Check Method

Examples: QLOCK and ABP
Conclusion

Generate & Check for ∀st ∈ St
Generate & Check for ∀tr ∈ Tr
Generate&Check for Verification of Invariant Properties
Generat&Check for Verification of (p leads-to q) Properties

The conditions (3) and (4) for (p leads-to q) properties can be
verified by using Generate &Check-S in Section 20 with pst-3(ŝ)
and pst-4(ŝ) defined as follows respectively.

(3) pst-3(ŝ) = ((inv3(ŝ) and p(ŝ) and (not q(ŝ)))
implies (ŝ =(*,1)=+ SS:State))

(4) pst-4(ŝ) = ((inv4(ŝ) and (p(ŝ) or q(ŝ)) and (m(ŝ) = 0))
implies q(ŝ))

Note that (s =(*,1)=+ SS:State) is a simplified built-in search
predicate that returns true if there exits s ′ ∈ St such that
(s, s ′) ∈ Tr .

29 / 64

Overview
Transition Systems

Generate & Check Method
Generic Proof Scores for Generate & Check Method

Examples: QLOCK and ABP
Conclusion

7 Parameterized Modules for 7 Verification Conditions
Generating Patterns and Checking on Them
Three Parameterized Modules for Invariant Properties
Four Parameterized Modules for (p leads-to q) Properties

7 Parameterized Modules for 7 Verification Conditions

! The seven parameterized CafeOBJ modules codify the seven
verification conditions of the generate & check method. The
seven verification conditions are the three verification
conditions for invariant properties and the four verification
conditions for (p leads-to q) properties.

! The seven parameterized modules specifies the seven sufficient
conditions in an executable way, and only by substituting the
formal parameters of the parameterized modules with the
specification modules of a specific system, basic parts of proof
scores are obtained. As a result, proof score developers can
concentrate on case analyses and lemma discoveries that
require human insight.

30 / 64

Overview
Transition Systems

Generate & Check Method
Generic Proof Scores for Generate & Check Method

Examples: QLOCK and ABP
Conclusion

7 Parameterized Modules for 7 Verification Conditions
Generating Patterns and Checking on Them
Three Parameterized Modules for Invariant Properties
Four Parameterized Modules for (p leads-to q) Properties

op check_ : SqSqTr -> IndTr .

eq check(SST:SqSqTr) = (mmi(SST) | $) .

! The function check performs the validity checks on the
patterns defined by SST. If all the validity checks are
successful, mmi(SST) disappears and check(SST) returns
($):Ind.

31 / 64

Overview
Transition Systems

Generate & Check Method
Generic Proof Scores for Generate & Check Method

Examples: QLOCK and ABP
Conclusion

7 Parameterized Modules for 7 Verification Conditions
Generating Patterns and Checking on Them
Three Parameterized Modules for Invariant Properties
Four Parameterized Modules for (p leads-to q) Properties

-- SqSq enclosures SqSqEn and their trees SqSqTr

[SqSqEn < SqSqTr]

op [_] : SqSq -> SqSqEn .

op _||_ : SqSqTr SqSqTr -> SqSqTr {assoc strat: (1 0)}

! An element of the sort SqSqTr is (1) an SqSqEn or (2) a tree
(or a sequence) of SqSqEns (i.e. elements of the sort SqSqEn)
composed of the associative binary operator _||_with the
strategy (1 0). An SqSqEn is an SqSq enclosed with [and].

! A term composed of an associative binary operator inductively
is called a tree.

32 / 64

Overview
Transition Systems

Generate & Check Method
Generic Proof Scores for Generate & Check Method

Examples: QLOCK and ABP
Conclusion

7 Parameterized Modules for 7 Verification Conditions
Generating Patterns and Checking on Them
Three Parameterized Modules for Invariant Properties
Four Parameterized Modules for (p leads-to q) Properties

[Val < ValSq] op _,_ : ValSq ValSq -> ValSq {assoc}
[Val < VlSq] op _;_ : VlSq VlSq -> VlSq {assoc strat: (1 0)}
[ValSq VlSq < SqSq] op empSS : -> SqSq .
op _,_ : SqSq SqSq -> SqSq {assoc id: empSS}

! An SqSq is (1) a ValSq, (2) a VlSq, or (3) a sequence of
ValSqs or VlSqs composed of the associative binary operator
_,_that has empSS as an identity (id:).

! A VlSq is (1) a Val or (2) a sequence of VlSqs composed of
the associative binary operator _;_with the strategy (1 0).

! A ValSq is (1) a Val or (2) a sequence of Vals composed of
the associative binary operator _,_.

! The operator _,_ is overloaded (i.e. denotes two different
operations). A term composed of an associative binary
operator inductively is called a sequence.

33 / 64

Overview
Transition Systems

Generate & Check Method
Generic Proof Scores for Generate & Check Method

Examples: QLOCK and ABP
Conclusion

7 Parameterized Modules for 7 Verification Conditions
Generating Patterns and Checking on Them
Three Parameterized Modules for Invariant Properties
Four Parameterized Modules for (p leads-to q) Properties

The operator _;_ specifies possible alternatives and the following
equation expands alternatives ; into a term composed of the
operator || .

eq [(SS1:SqSq,(V:Val;VS:VlSq),SS2:SqSq)]

= [(SS1,V,SS2)] || [(SS1,VS,SS2)] .

! The equation applies recursively and any subterm with
alternatives ; is expanded into a term with || .

! It implies that for any term sqSq of the sort SqSq the term
[sqSq] is reduced to the term composed by applying the
operator || to terms of the form [valSqi] (i = 1,2,· · ·) for
valSqi of the sort ValSq.

34 / 64

Overview
Transition Systems

Generate & Check Method
Generic Proof Scores for Generate & Check Method

Examples: QLOCK and ABP
Conclusion

7 Parameterized Modules for 7 Verification Conditions
Generating Patterns and Checking on Them
Three Parameterized Modules for Invariant Properties
Four Parameterized Modules for (p leads-to q) Properties

If terms v1, v2, v3 are of the sort Val, the following reduction
happens. Note that, because empSS is declared to be an identity for
the operator “_,_ : SqSq SqSq -> SqSq”, the equation covers the
cases in which SS1 and/or SS2 in the left-hand side of the equation
are/is empSS.

[(v1;v2;v3),(v1;v2)]
=red=>
[(v1 , v1)] || [(v2 , v1)] || [(v3 , v1)] ||
[(v1 , v2)] || [(v2 , v2)] || [(v3 , v2)]

35 / 64

Overview
Transition Systems

Generate & Check Method
Generic Proof Scores for Generate & Check Method

Examples: QLOCK and ABP
Conclusion

7 Parameterized Modules for 7 Verification Conditions
Generating Patterns and Checking on Them
Three Parameterized Modules for Invariant Properties
Four Parameterized Modules for (p leads-to q) Properties

op t__ : String ValSq -> Val . op g__ : String SqSqTr -> VlSq .
eq g(S:String)(SST1:SqSqTr || SST2:SqSqTr)

= (g(S) SST1);(g(S) SST2) .
eq g(S:String)[VSQ:ValSq] = t(S)(VSQ) .

! To make the alternative expansion with ; more versatile, the
functions t and g are introduced. String is a sort from the
CafeOBJ built-in module STRING and denotes the set of
character strings like "abc", "v1", " % ".

! By using t , a user is supposed to specify term constructors
with appropriate identifiers in the first argument, and
accompanying g can be used to specify the alternative
expansion with ; and the constructors.

! The two equations for g make the expansion of a nested
expression with []s and ; s possible, and reduce “g st
sqSqTr” to “t st sqSqTr” if sqSqTr” is of the sort ValSq.

36 / 64

Overview
Transition Systems

Generate & Check Method
Generic Proof Scores for Generate & Check Method

Examples: QLOCK and ABP
Conclusion

7 Parameterized Modules for 7 Verification Conditions
Generating Patterns and Checking on Them
Three Parameterized Modules for Invariant Properties
Four Parameterized Modules for (p leads-to q) Properties

Let the following equations for t be given.

[Qu Aid Label Aobs State < Val]
eq t("lb[_]:__")(A:Aid,L:Label,AS:Aobs) = ((lb[A]: L) AS) .
eq t("_$_")(Q:Qu,AS:Aobs) = (Q $ AS) .

Then the following expansion by reduction of alternatives is
possible for a term of sort State terms if we assume q is of the sort
Qu, a1 and a2 are of the sort Aid, and as is of the sort Abos.

[(g("_$_")[(empQ;(a1 & q)),(g("lb[_]:__")
[a2,(rs;ws;cs),as])])]

=red=>
[(empQ $((lb[a2]: rs) as))]||[((a1 & q)$((lb[a2]: rs) as))]||
[(empQ $((lb[a2]: ws) as))]||[((a1 & q)$((lb[a2]: ws) as))]||
[(empQ $((lb[a2]: cs) as))]||[((a1 & q)$((lb[a2]: cs) as))]

37 / 64

Overview
Transition Systems

Generate & Check Method
Generic Proof Scores for Generate & Check Method

Examples: QLOCK and ABP
Conclusion

7 Parameterized Modules for 7 Verification Conditions
Generating Patterns and Checking on Them
Three Parameterized Modules for Invariant Properties
Four Parameterized Modules for (p leads-to q) Properties

The specifications of alternative expansions with ; , [], g are
called alternative scripts or alternative expansion scripts.
Alternative scripts are simple but powerful enough to specify a
fairly large number of necessary patterns. Note that an alternative
script is a term of the sort SqSqTr.

38 / 64

Overview
Transition Systems

Generate & Check Method
Generic Proof Scores for Generate & Check Method

Examples: QLOCK and ABP
Conclusion

7 Parameterized Modules for 7 Verification Conditions
Generating Patterns and Checking on Them
Three Parameterized Modules for Invariant Properties
Four Parameterized Modules for (p leads-to q) Properties

The sort IndTr and the function mmi are specified as follows, and
mmi translates a SqSqTr to a IndTr and mmi[sqSq] reduces to
mi(sqSq) if sqSq is of the sort ValSq.

-- indicator and indicator tree
[Ind < IndTr]
op $: -> Ind .
op _|_ : IndTr IndTr -> IndTr {assoc}
-- make make indicator
op mmi_ : SqSqTr -> IndTr .
eq mmi(SST1:SqSqTr || SST2:SqSqTr) = (mmi SST1) | (mmi SST2) .
eq mmi[VSQ:ValSq] = mi(VSQ) .

39 / 64

Overview
Transition Systems

Generate & Check Method
Generic Proof Scores for Generate & Check Method

Examples: QLOCK and ABP
Conclusion

7 Parameterized Modules for 7 Verification Conditions
Generating Patterns and Checking on Them
Three Parameterized Modules for Invariant Properties
Four Parameterized Modules for (p leads-to q) Properties

The indicator i and the making indicator function mi are
specified as follows. The functions ii (information indicator) and
the predicate v to be checked on ValSq are supposed to be
defined by a user. mi(valSq) reduces to “(i v(valSq)
ii(valSq))”, and disappears if the first argument v(valSq) reduces
to true. This implies that the predicate v is valid for all the
ValSqs specified by SST if check(SST) returns ($):Ind.

[Info] op i__ : Bool Info -> Ind .
eq (i true II:Info) | IT:IndTr = IT .
op ii_ : ValSq -> Info .
pred v_ : ValSq .
op mi_ : ValSq -> Ind .
eq mi(VSQ:ValSq) = (i v(VSQ) ii(VSQ)) .

40 / 64

Overview
Transition Systems

Generate & Check Method
Generic Proof Scores for Generate & Check Method

Examples: QLOCK and ABP
Conclusion

7 Parameterized Modules for 7 Verification Conditions
Generating Patterns and Checking on Them
Three Parameterized Modules for Invariant Properties
Four Parameterized Modules for (p leads-to q) Properties

For defining conjunctions of predicates flexibly, the following
parameterized module PREDcj is prepared.

mod! PREDcj (X :: TRIV) {
[Pname < PnameSeq]
op _ _ : PnameSeq PnameSeq -> PnameSeq {constr assoc}
op cj : PnameSeq Elt -> Bool .
eq cj((PN:Pname PNS:PnameSeq),E:Elt)

= cj(PN,E) and cj(PNS,E) . }

By using the cj (conjunction) operator of PREDcj, a conjunction of
predicates can be expressed just as a sequence of the names of the
predicates. This helps prompt modifications of component
predicates of inv in the checks of the verification conditions
(1),(2),(3) for invariants the verification conditions (1),(2),(3),(4)
for (p leads-to q) properties.

41 / 64

Overview
Transition Systems

Generate & Check Method
Generic Proof Scores for Generate & Check Method

Examples: QLOCK and ABP
Conclusion

7 Parameterized Modules for 7 Verification Conditions
Generating Patterns and Checking on Them
Three Parameterized Modules for Invariant Properties
Four Parameterized Modules for (p leads-to q) Properties

The following two parameterized modules INV-1v and INV-2v

codify the verification conditions (1) and (2) for invariants
directory. The PnameSeqs p-iinv, p^t, and p-init are supposed to
be reified after the parameter modules are substituted with actual
specification modules.

mod* STEpcj {[Ste] [Pname < PnameSeq]
pred cj : PnameSeq Ste .}

mod! INV-1v (ST :: STEpcj) {ex(GENcases)
ops p-iinv p^t : -> PnmSeq .
[Ste < Val] eq v(S:Ste) =

cj(p-iinv,S:Ste) implies cj(p^t,S) . }
mod! INV-2v (ST :: STEpcj) {ex(GENcases)
ops p-init p-iinv : -> PnmSeq .
[Ste < Val] eq v(S:Ste) =

cj(p-init,S) implies cj(p-iinv,S) . }

42 / 64

Overview
Transition Systems

Generate & Check Method
Generic Proof Scores for Generate & Check Method

Examples: QLOCK and ABP
Conclusion

7 Parameterized Modules for 7 Verification Conditions
Generating Patterns and Checking on Them
Three Parameterized Modules for Invariant Properties
Four Parameterized Modules for (p leads-to q) Properties

The following parameterized module VALIDq directly specifies
valid-q. inc(RWL) declares the importation of the built-in module
RWL that is necessary for using the built-in search predicate.

mod* STE {[Ste]}
mod! VALIDq (X :: STE) {inc(RWL)
pred q : Ste Ste .
[Infom] op (ifm _ _ _ _) :

Ste Ste Bool Bool -> Infom {constr}
pred _then _ : Bool Bool .
eq (true then B:Bool) = B . eq (false then B:Bool) = true .
pred valid-q : Ste Ste Bool .
eq valid-q(S:Ste,SS:Ste,CC:Bool) =

not(S =(*,1)=>+ SS if CC suchThat
not((CC then q(S, SS)) == true)

{(ifm S SS CC q(S,SS))}) . }

43 / 64

Overview
Transition Systems

Generate & Check Method
Generic Proof Scores for Generate & Check Method

Examples: QLOCK and ABP
Conclusion

7 Parameterized Modules for 7 Verification Conditions
Generating Patterns and Checking on Them
Three Parameterized Modules for Invariant Properties
Four Parameterized Modules for (p leads-to q) Properties

! The following module G&C-Tv defines
v(S:Ste,SS:Ste,CC:Bool) as valid-q(S, SS,CC). Note that
S:Ste,SS:Ste,CC:Bool in the left-hand side is of the sort
ValSq but S,SS,CC in the right-hand side is of the sort
Ste,Ste,Bool that is the sort list (or arity) of the standard
form (i.e. without) operator valid-q.

! The PnameSeq p-iinv is supposed to be reified after the
instantiation of the parameter module “ST :: STEpcj”.

mod! G&C-Tv (S :: STE) {ex(VALIDq(S) + GENcases)
[Ste Bool < Val] eq v(S:Ste,SS:Ste,CC:Bool)

= valid-q(S,SS,CC) . }
mod! INV-3q (ST :: STEpcj) {ex(G&C-Tv(ST))
op p-iinv : -> PnmSeq .
eq q(S:Ste,SS:Ste)

= (cj(p-iinv,S) implies cj(p-iinv,SS)) . }

44 / 64

Overview
Transition Systems

Generate & Check Method
Generic Proof Scores for Generate & Check Method

Examples: QLOCK and ABP
Conclusion

7 Parameterized Modules for 7 Verification Conditions
Generating Patterns and Checking on Them
Three Parameterized Modules for Invariant Properties
Four Parameterized Modules for (p leads-to q) Properties

! For specifying the four verification conditions for (p leads-to
q) properties, the states are needed to extend with data. The
parameterized module EX-STATE in the next slide specifies the
state extension.

! The theory module ST-DT requires functions p, q, m for (p
leads-to q) properties, and cj for defining predicates via their
names.

! The transitions over ExState are specified based on the
transitions over State by declaring two equations with the
built-in search predicates _=(*,1)=>+_if_suchThat_{_} and
=(*,1)=>+.

! The equation for t__ is for composing a term of the sort
ExState with the constructor _%_ in the alternative expansion
script.

45 / 64

Overview
Transition Systems

Generate & Check Method
Generic Proof Scores for Generate & Check Method

Examples: QLOCK and ABP
Conclusion

7 Parameterized Modules for 7 Verification Conditions
Generating Patterns and Checking on Them
Three Parameterized Modules for Invariant Properties
Four Parameterized Modules for (p leads-to q) Properties

mod* ST-DT {ex(PNAT)
[Ste Data] ops p q : Ste Data -> Bool .

op m : Ste Data -> Nat.PNAT .
[Pnm < PnmSeq] op cj : PnmSeq Ste -> Bool . }
mod! EX-STATE (SD :: ST-DT) {inc(RWL) ex(GENcases)
[ExState Infom] op _%_ : Ste Data -> ExState {constr}
eq ((S:Ste % D:Data) =(*,1)=>+ (SS:Ste % D)

if CC:Bool suchThat B:Bool {I:Infom})
= (S =(*,1)=>+ SS if CC suchThat B {I}) .

eq ((S:Ste % D:Data) =(*,1)=>+ (SS:Ste % D))
= (S =(*,1)=>+ SS) .

ops p q : ExState -> Bool . op m : ExState -> Nat.PNAT .
eq p(S:Ste % D:Data) = p(S,D) .
eq q(S:Ste % D:Data) = q(S,D) .
eq m(S:Ste % D:Data) = m(S,D) .

[Ste Data ExState < Val]
eq t("_%_")(S:Ste,D:Data) = (S % D) . }

46 / 64

Overview
Transition Systems

Generate & Check Method
Generic Proof Scores for Generate & Check Method

Examples: QLOCK and ABP
Conclusion

7 Parameterized Modules for 7 Verification Conditions
Generating Patterns and Checking on Them
Three Parameterized Modules for Invariant Properties
Four Parameterized Modules for (p leads-to q) Properties

The following parameterized module PCJ-EX-STATE makes the cj

available on ExState and relate that to the cj on Ste.

mod! PCJ-EX-STATE (SD :: ST-DT) {
ex((PREDcj((EX-STATE(SD)){sort Elt -> ExState}))

*{sort Pname -> ExPname, sort PnameSeq -> ExPnameSeq})
[Pnm < ExPname] [PnmSeq < ExPnameSeq]
eq cj(PN:Pnm,(S:Ste % D:Data)) = cj(PN,S) . }

47 / 64

Overview
Transition Systems

Generate & Check Method
Generic Proof Scores for Generate & Check Method

Examples: QLOCK and ABP
Conclusion

7 Parameterized Modules for 7 Verification Conditions
Generating Patterns and Checking on Them
Three Parameterized Modules for Invariant Properties
Four Parameterized Modules for (p leads-to q) Properties

! The four parameterized modules for the four verification
conditions for (p leads-to q) properties are specified in the
following two slids. These are direct translation from the four
verification conditions.

! The parameterized modules PQ-1q and PQ-2q are using
Generate&Check-T1 or Generate&Check-T2, and the
parameterized module G&C-Tv is necessary for reifying the
predicate q.

! The parameterized modules PQ-3v, PQ-4v are using
Generate&Check-S, and only the module GENcases is
necessary for reifying the predicate v .

48 / 64

Overview
Transition Systems

Generate & Check Method
Generic Proof Scores for Generate & Check Method

Examples: QLOCK and ABP
Conclusion

7 Parameterized Modules for 7 Verification Conditions
Generating Patterns and Checking on Them
Three Parameterized Modules for Invariant Properties
Four Parameterized Modules for (p leads-to q) Properties

-- theory module with p,q,m,cj on states
mod* STPQpcj {ex(PNAT)
[Ste] ops p q : Ste -> Bool . op m : Ste -> Nat.PNAT .
[Pnm < PnmSeq] op cj : PnmSeq Ste -> Bool . }

mod! PQ-1q (SQ :: STPQpcj) {ex(G&C-Tv(SQ))
op pq-1-inv : -> PnmSeq .
eq q(S:Ste,SS:Ste) =

(cj(pq-1-inv,S) and p(S) and not(q(S)))
implies (p(SS) or q(SS)) . }

mod! PQ-2q (SQ :: STPQpcj) {ex(G&C-Tv(SQ))
op pq-2-inv : -> PnmSeq .
eq q(S:Ste,SS:Ste) =

(cj(pq-2-inv,S) and p(S) and not(q(S)))
implies (m(S) > m(SS)) . }

49 / 64

Overview
Transition Systems

Generate & Check Method
Generic Proof Scores for Generate & Check Method

Examples: QLOCK and ABP
Conclusion

7 Parameterized Modules for 7 Verification Conditions
Generating Patterns and Checking on Them
Three Parameterized Modules for Invariant Properties
Four Parameterized Modules for (p leads-to q) Properties

mod! PQ-3v (SQ :: STPQpcj) {inc(RWL) ex(GENcases)
op pq-3-inv : -> PnmSeq . [Ste < Val]
eq v(S:Ste,SS:Ste) =

(cj(pq-3-inv,S) and p(S) and not(q(S)))
implies (S =(*,1)=>+ SS) . }

mod! PQ-4v (SQ :: STPQpcj) {pr(GENcases)
op pq-4-inv : -> PnmSeq . [Ste < Val]
eq v(S:Ste) =

(cj(pq-4-inv,S) and (p(S) or q(S)) and (m(S) = 0))
implies q(S) . }

50 / 64

Overview
Transition Systems

Generate & Check Method
Generic Proof Scores for Generate & Check Method

Examples: QLOCK and ABP
Conclusion

QLOCK: Mutual Exclusion via Locking with Queue
ABP: Alternating Bit Protocol

!k j i

i

k

j

is i?

is j?
put

get

get

!

put

Qu

Label

Aid

State

want

try

lb

qu

exit

init

trtr

wantt tt

Global view of QLOCK as an Observational Transition System
51 / 64

Overview
Transition Systems

Generate & Check Method
Generic Proof Scores for Generate & Check Method

Examples: QLOCK and ABP
Conclusion

QLOCK: Mutual Exclusion via Locking with Queue
ABP: Alternating Bit Protocol

-- wt: want transition
mod! WT {pr(STATE)
trans[wt]: (Q:Qu $ ((lb[A:Aid]: rs) AS:Aobs))

=> ((Q & A) $ ((lb[A]: ws) AS)) . }
-- ty: try transition
mod! TY {pr(STATE)
trans[ty]: ((A:Aid & Q:Qu) $ ((lb[A]: ws) AS:Aobs))

=> ((A & Q) $ ((lb[A]: cs) AS)) . }
-- ex: exit transition
mod! EX {pr(STATE)
ctrans[ex]: ((A1:Aid & Q:Qu) $ ((lb[A2:Aid]: cs) AS:Aobs))

=> (Q $ ((lb[A2]: rs) AS))
if (A1 = A2) . }

-- system specification of QLOCK
mod! QLOCKsys{pr(WT + TY + EX)}

52 / 64

Overview
Transition Systems

Generate & Check Method
Generic Proof Scores for Generate & Check Method

Examples: QLOCK and ABP
Conclusion

QLOCK: Mutual Exclusion via Locking with Queue
ABP: Alternating Bit Protocol

sBit: Bs:Bit

sNn: Ns:Nn

rBit: Br:Bit

rNns: NS:NnSeq
ReceiverSender

Receiver-Sender Channel

Sender-Receiver Channel

srCh: SRC:SrCh

rsCh: RSC:RsCh

Alternating Bit Protocol

53 / 64

Overview
Transition Systems

Generate & Check Method
Generic Proof Scores for Generate & Check Method

Examples: QLOCK and ABP
Conclusion

QLOCK: Mutual Exclusion via Locking with Queue
ABP: Alternating Bit Protocol

- State patterns/configurations are represented as

follows.

[(sBit: Bs:Bit)(sNn: Ns:Nn) (srCh: SRC:SrCh)

(rBit: Br:Bit)(rNns: NS:NnSeq)(rsCh: RSC:RsCh)]

- In the following CafeOBJ specifications,

data (i.e. Bnp and Bit) are getting through

SrCh (sender-reciever channel) and

RsCh (reciever-sender channel) from left to right.

54 / 64

Overview
Transition Systems

Generate & Check Method
Generic Proof Scores for Generate & Check Method

Examples: QLOCK and ABP
Conclusion

QLOCK: Mutual Exclusion via Locking with Queue
ABP: Alternating Bit Protocol

-- Sender is putting a bit-number pair into SrCh

mod! SS {pr(CONFIG) trans[ss]:

[(sBit: B:Bit)(sNn: N:Nn)(srCh: SRC:SrCh) S:Config]

=> [(sBit: B)(sNn: N)(srCh: (bn(B,N) SRC)) S] . }

-- Sender is receiving a bit (an ack) from RsCh

mod! SR {pr(CONFIG) trans[sr]:

[(sBit: Bs:Bit)(sNn: N:Nn) S:Config

(rsCh: (RSC:RsCh B:Bit))]

=> if (Bs = B)

then [(sBit: Bs)(sNn: N) S (rsCh: RSC)]

else [(sBit: not(Bs))(sNn: (s N)) S

(rsCh: RSC)] fi . }

55 / 64

Overview
Transition Systems

Generate & Check Method
Generic Proof Scores for Generate & Check Method

Examples: QLOCK and ABP
Conclusion

QLOCK: Mutual Exclusion via Locking with Queue
ABP: Alternating Bit Protocol

-- data drops at any point of srCh

mod! SRdr {pr(CONFIG) trans[srdr]:

[S1:Config (srCh: (SRC1:SrCh BNP:Bnp SRC2:SrCh))

S2:Config]

=> [S1 (srCh: (SRC1 SRC2)) S2] . }

-- data duplicates at any point of srCh

mod! SRdu {pr(CONFIG) trans[srdu]:

[S1:Config (srCh: (SRC1:SrCh BNP:Bnp SRC2:SrCh))

S2:Config]

=> [S1 (srCh: (SRC1 BNP BNP SRC2)) S2] . }

56 / 64

Overview
Transition Systems

Generate & Check Method
Generic Proof Scores for Generate & Check Method

Examples: QLOCK and ABP
Conclusion

QLOCK: Mutual Exclusion via Locking with Queue
ABP: Alternating Bit Protocol

-- Receiver is receiving a bit-number pair from srCh

mod! RR {pr(CONFIG) trans[rr]:

[S1:Config (srCh: (SRC:SrCh bn(B:Bit,N:Nn)))

(rBit: Br:Bit)(rNns: NS:NnSeq) S2:Config]

=> if (B = Br)

then [S1 (srCh: SRC)(rBit: not(Br))(rNns: (N NS))

S2]

else [S1 (srCh: SRC)(rBit: Br)(rNns: NS) S2] fi . }

-- Receiver is sending a number to RsCh

mod! RS {pr(CONFIG) trans[rs]:

[S:Config (rBit: B:Bit)(rsCh: RSC:RsCh)]

=> [S (rBit: B)(rsCh: (B RSC))] . }

57 / 64

Overview
Transition Systems

Generate & Check Method
Generic Proof Scores for Generate & Check Method

Examples: QLOCK and ABP
Conclusion

QLOCK: Mutual Exclusion via Locking with Queue
ABP: Alternating Bit Protocol

-- data drops at any point of rsCh

mod! RSdr {pr(CONFIG) trans[rsdr]:

[S1:Config (rsCh: (RSC1:RsCh B:Bit RSC2:RsCh))

S2:Config]

=> [S1 (rsCh: (RSC1 RSC2)) S2] . }

-- data duplicates at any point of rsCh

mod! RSdu {pr(CONFIG) trans[rsdu]:

[S1:Config (rsCh: (RSC1:RsCh B:Bit RSC2:RsCh))

S2:Config]

=> [S1 (rsCh: (RSC1 B B RSC2)) S2] . }

58 / 64

Overview
Transition Systems

Generate & Check Method
Generic Proof Scores for Generate & Check Method

Examples: QLOCK and ABP
Conclusion

QLOCK: Mutual Exclusion via Locking with Queue
ABP: Alternating Bit Protocol

- <SR1>, <RS1>, <SR2>, or <RS2> represents some SrCh

or RsCh that satisfies the following equations.

eq 0g(dn(B,N), <SR1>) = true .

eq 0g(B, <RS1>) = true .

eq 0g(dn(~B,(s N)), <SR2>) = true .

eq 0g(~B, <RS2>) = true .

- (mk(N) = (N NS)) and (~B = not(B)).

59 / 64

Overview
Transition Systems

Generate & Check Method
Generic Proof Scores for Generate & Check Method

Examples: QLOCK and ABP
Conclusion

QLOCK: Mutual Exclusion via Locking with Queue
ABP: Alternating Bit Protocol

[(sBit: B) (sNn: N) (srCh: <SR1>)

{SS,SRdr,SRdu,RS,RSdr,RSdu,SR}

(rBit: B) (rNns: NS) (rsCh: <RS1>)]

{RR}=>

[(sBit: B) (sNn: N) (srCh: <SR1>)

{SS,SRdr,SRdu,RR,RSdr,RSdu,SR}

(rBit: ~B)(rNns: (N NS))(rsCh: <RS1>)]

{RS}=> <={RSdr}

[(sBit: B) (sNn: N) (srCh: <SR1>)

{SS,SRdr,SRdu,RR,RSdr,RSdu,SR}

(rBit: ~B)(rNns: (N NS))(rsCh: <RS2><RS1>)]

60 / 64

Overview
Transition Systems

Generate & Check Method
Generic Proof Scores for Generate & Check Method

Examples: QLOCK and ABP
Conclusion

QLOCK: Mutual Exclusion via Locking with Queue
ABP: Alternating Bit Protocol

[(sBit: B) (sNn: N) (srCh: <SR1>)

{SS,SRdr,SRdu,RR,RSdr,RSdu,SR}

(rBit: ~B)(rNns: (N NS))(rsCh: <RS2><RS1>)]

{SR,RSdr}=>

[(sBit: B) (sNn: N) (srCh: <SR1>)

{SS,SRdr,SRdu,RR,RS,RSdr,RSdu}

(rBit: ~B)(rNns: (N NS))(rsCh: <RS2>)]

{SR}=>

[(sBit: ~B)(sNn: (s N)) (srCh: <SR1>)

{SRdr,SRdu,RR,RS,RSdr,RSdu,SR}

(rBit: ~B)(rNns: (N NS))(rsCh: <RS2>)]

61 / 64

Overview
Transition Systems

Generate & Check Method
Generic Proof Scores for Generate & Check Method

Examples: QLOCK and ABP
Conclusion

QLOCK: Mutual Exclusion via Locking with Queue
ABP: Alternating Bit Protocol

[(sBit: ~B)(sNn: (s N)) (srCh: <SR1>)

{SRdr,SRdu,RR,RS,RSdr,RSdu,SR}

(rBit: ~B)(rNns: (N NS))(rsCh: <RS2>)]

{SS}=> <={SRdr}

[(sBit: ~B)(sNn: (s N)) (srCh: <SR2><SR1>)

{SS,SRdr,SRdu,RR,RS,RSdr,RSdu}

(rBit: ~B)(rNns: (N NS))(rsCh: <RS2>)]

{RR,SRdr}=>

[(sBit: ~B)(sNn: (s N)) (srCh: <SR2>)

{SS,SRdr,SRdu,RS,RSdr,RSdu,SR}

(rBit: ~B)(rNns: (N NS))(rsCh: <RS2>)]

62 / 64

Overview
Transition Systems

Generate & Check Method
Generic Proof Scores for Generate & Check Method

Examples: QLOCK and ABP
Conclusion

Searches on time versus space
Future Issue

!"

$%&'#

!

!

!

(((

!

!

!

(((

!

!

!

(((
)

)

)

)

)

)

Searches on Time versus Space
63 / 64

Overview
Transition Systems

Generate & Check Method
Generic Proof Scores for Generate & Check Method

Examples: QLOCK and ABP
Conclusion

Searches on time versus space
Future Issue

! There are recent attempts to extend the model checking with
Maude for verifying infinite state transition systems. They are
based on narrowing with unification, whereas the generate &
check method is based on cover sets with ordinary matching
and reduction.

! Once a state configuration is properly designed, large number
of patterns (i.e. elements of a cover set) that cover all
possible cases are generated and checked easily, and it is an
important future issue to construct proof scores for important
problems/systems of significant sizes and do experiments for
developing practical methods to obtain effective cover sets.

! Module expressions of CafeOBJ is powerful, and are expected
to be effective for constructing large specifications/
proof-scores with systematic structures.

64 / 64

