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Abstract

We are proposing a new framework of statisti-
cal language modeling which integrates lexical
association statistics with syntactic preference,
while maintaining the modularity of those differ-
ent statistics types, facilitating both training of
the model and analysis of its behavior. In this
paper, we report the result of an empirical evalu-
ation of our model, where the model is applied
to disambiguation of dependency structures of
Japanese sentences. We also discussed the room
remained for further improvement based on our
error analysis.

1 Introduction

In the statistical parsing literature, it has already
been established that statistics of lexical associ-
ation have real potential for improvement of dis-
ambiguation performance. The question is how
lexical association statistics should be incorpo-
rated into the overall statistical parsing frame-
work. In exploring this issue, we consider the
following four basic requirements:

• Integration of different types of statistics:
Lexical association statistics should be inte-
grated with other types of statistics that are
also expected to be effective in statistical pars-
ing, such as short-term POS n-gram statistics
and long-term structural preferences over parse
trees.

• Modularity of statistics types:
The total score of a parse derivation should be
decomposable into factors derived from differ-
ent types of statistics, which would facilitate
analysis of a model’s behavior in terms of each
statistics type.

• Probabilistically well-founded semantics:
The language model used in a statistical parser
should have probabilistically well-founded se-
mantics, which would also facilitate the analy-
sis of the model’s behavior.

• Trainability:
Since incorporation of lexical association statis-
tics would make the model prohibitively com-
plex, the model’s complexity should be flexibly
controllable depending on the amount of avail-
able training data.

However, it seems to be the case that no existing
framework of language modeling [2, 4, 12, 13, 14,
17, 18] satisfies these basic requirements simulta-
neously1. In this context, we newly designed a
framework of statistical language modeling tak-
ing all of the above four requirements into ac-
count [8, 9]. This paper reports on the results
of our preliminary experiment where our frame-
work was applied to structural disambiguation of
Japanese sentences.

In what follows, we first briefly review our
framework (Section 2). We next describe the set-
ting of our experiment, including a brief intro-
duction of Japanese dependency structures, the
data sets, the baseline of the performance, etc.
(Section 3). We then describe the results of the
experiment, which was designed to assess the im-
pact of the the incorporation of lexical associ-
ation statistics (Section 4). We finally discuss
the current problems revealed through our er-
ror analysis, suggesting some possible solutions
(Section 5).

2 Overview of our framework

As with the most statistical parsing frameworks,
given an input string A, we rank its parse deriva-
tions according to the joint distribution P (R,W ),
where W is a word sequence candidate for A, and
R is a parse derivation candidate for W whose
terminal symbols constitute a POS tag sequence
L (see Figure 12). We first decompose P (R,W )

1For further discussion, see [8]. This is also the
case with recent works such as [3] and [5] due to the
lack of modularity of statistical types.

2Although syntactic structure R is represented as
a dependency structure in this figure, our framework



into two submodels, the syntactic model P (R)
and the lexical model P (W |R):

P (R,W ) = P (R) · P (W |R) (1)

The syntactic model, which is lexically insen-
sitive, reflects both POS n-gram statistics and
structural preference, whereas the lexical model
reflects lexical association statistics. This divi-
sion of labor allows for distinct modularity be-
tween the syntactic-based statistics and lexically
sensitive statistics, while maintaining the proba-
bilistically well-foundedness of the overall model.
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彼 女 が パ イ を 食 べ た

彼女 が パイ を 食べ た

kanojo ga
(pie)

o tabe ta
(she)

pai
(eat)(NOM) (ACC) (PAST)

Figure 1: A parse derivation for an input string
“彼女がパイを食べた (She ate a pie)”

2.1 The syntactic model
The syntactic model P (R) can be estimated us-
ing a wide range of existing syntactic-based lan-
guage modeling frameworks, from simple PCFG
models to more context-sensitive models includ-
ing those proposed in [2, 13, 19]. Among these,
we, at present, use probabilistic GLR (PGLR)
language modeling, which is given by incorpo-
rating probabilistic distributions into the GLR
parsing framework [10, 21]. The advantages of
PGLR modeling are (a) PGLR models are mildly
context-sensitive, compared with PCFG models,
and (b) PGLR models inherently capture both
structural preferences and POS bigram statistics,
which meets our integration requirement. For
further discussion, see [10].

2.2 The lexical model
The lexical model P (W |R) is the product of the
probability of each lexical derivation li → wi,
where li ∈ L (L ⊂ R) is the POS tag of wi ∈ W :

P (W |R) =
∏

i

P (wi|R, w1, . . . , wi−1) (2)

The key idea for estimating each factor
P (wi|R, w1, . . . , wi−1) (a lexical derivation prob-
ability) is in assuming that each lexical derivation

does not impose any restriction on the representation
of syntactic structures.

depends only on a certain small part of its whole
context. We first assume that syntactic struc-
ture R in P (wi|R, w1, . . . , wi−1) can always be
reduced to li (∈ R), which allows us to deal with
the lexical model separately from the syntactic
model. The question then is which subset C of
{w1, . . . , wi−1} has the strongest influence on the
derivation li → wi. We refer to a member of such
a subset C as a lexical context of the derivation
li → wi.

Let us illustrate this through the previous ex-
ample shown in Figure 1. Suppose that the
derivation order for W is head-driven, as given
below, to guarantee that, for each of the words
subordinated by a head word, the context of the
derivation of that subordinated word always in-
cludes that head word.

ta (PAST) → tabe (eat) → ga (NOM) → o
(ACC) → kanojo (she) → pai (pie)

First, for each lexical item that we don’t con-
sider any lexical association, we estimate the
probability of its derivation as follows.

P (ta|R) ≈ P (ta|Aux) (3)
P (tabe|R, ta) ≈ P (tabe|V ) (4)

Second, we estimate the probability of deriv-
ing each slot-marker, e.g. “ga (NOM)” and “o
(ACC)”, by considering not only the dependency
between the head word and each of its slot-
markers, but also the dependency between slot-
markers subordinated by the same head:

P (ga|R, tabe, ta) ≈
P (ga|P1[h(tabe, [P1, P2])]) (5)

P (o|R, ga, tabe, ta) ≈
P (o|P2[h(tabe, [P1 :ga, P2])]) (6)

where h(h, [s1, . . . , sn]) is a lexical context denot-
ing a head word h that subordinates the set of
slots s1, . . . , sn, and P (wi|li[h(h, [s1, . . . , sn])]) is
the probability of a lexical derivation li → wi,
given that wi functions as a slot-marker of lexical
head h(h, [s1, . . . , sn]).

Finally, we estimate the probability of deriv-
ing each slot-filler, e.g. “kanojo (she)” and “pai
(pie)”, in assuming that the derivation of a slot-
filler depends only on its head word and slot:

P (kanojo|R, ga, o, tabe, ta) ≈
P (kanojo|N [s(tabe, ga)]) (7)

P (pai|R, kanojo, ga, o, tabe, ta) ≈
P (pai|N [s(tabe, o)]) (8)

where s(h, s) is a lexical context denoting a slot
s of a head word h, and P (wi|li[s(h, s)]) is the



probability of a lexical derivation li → wi given
that wi functions as a filler of a slot s(h, s).

Combining equations (3), (4), (5), (6), (7) and
(8), we produce (9):

P (W |R) ≈ P (ta|Aux) · P (tabe|V ) ·
P (ga|P [h(tabe, [P,P ])]) ·
P (o|P [h(tabe, [P :ga, P ])]) ·
P (kanojo|N [s(tabe, ga)]) ·
P (pai|N [s(tabe, o)]) (9)

2.3 Handling multiple lexical contexts

Note that a lexical derivation may be associated
with more than one lexical context (multiple lex-
ical contexts). Multiple lexical contexts appear
typically in coordinate structures. For example,
in the sentence shown in Figure 2, “kanojo-wa
(she-TOP)” functions as the case of both of the
verbs “tabe (eat)” and “dekake (leave)”.

N1 P1

BP1

P2N2

BP2

kanojo wa
(breakfast)

o tabe te
(she)

choushoku
(eat)(TOP) (ACC) (COORD)

gakkou e dekake ta
(school) (for) (leave) (PAST)

Aux2V2P3N3Aux1V1

BP3 BP4 BP5

(c)

(a)
(b)

Coordination

Figure 2: An example sentence containing a coor-
dinate structure: “She ate breakfast and left for
school”

Let us first consider the lexical deriva-
tion probability for the slot-filler “kanojo
(she)”. According to the assumption men-
tioned in Section 2.2, the lexical contexts
of this slot-filler should be s(tabe, wa) and
s(dekake, wa). Thus, the probability of deriving
it is P (kanojo|N1[s(tabe, wa), s(dekake, wa)]).
More generally, if a slot-filler wi is associated with
two lexical contexts c1 and c2, then the probabil-
ity of deriving wi can be estimated as follows:

P (wi|li[c1, c2])

=
P (li[c1, c2]|wi) · P (wi)

P (li[c1, c2])
(10)

≈ P (li[c1]|wi) · P (li[c2]|li, wi) · P (wi)
P (li[c1]) · P (li[c2]|li]) (11)

= P (wi|li) · P (wi|li[c1])
P (wi|li) · P (wi|li[c2])

P (wi|li) (12)

= P (wi|li) · D(wi|li[c1]) · D(wi|li[c2]) (13)

In (13), we assume that the two lexical contexts
c1 and c2 are mutually independent given li (and

wi):

P (li[c2]|li[c1]) ≈ P (li[c2]|li) (14)
P (li[c2]|li[c1], wi) ≈ P (li[c2]|li, wi) (15)

D(wi|li[c]) is what we call a lexical dependency
parameter, which is given by:

D(wi|li[c]) =
P (wi|li[c])
P (wi|li) (16)

D(wi|li[c]) measures the degree of the depen-
dency between the lexical derivation li → wi and
its lexical context c. It is close to one if wi and c
are highly independent. It becomes greater than
one if wi and c are positively correlated, whereas
it becomes less than one and close to zero if wi

and c are negatively correlated. Thus, if we set a
lexical dependency parameter to one, that means
we create a model that neglects the dependency
associated with that parameter. For example, the
probability of deriving “kanojo (she)” in Figure 2
is calculated as follows.

P (kanojo|N1[s(tabe, wa), s(dekake, wa)])
≈ P (kanojo|N1) · D(kanojo|N1[s(tabe, wa)])

·D(kanojo|N1[s(dekake, wa)]) (17)

Let us then move to the estimation of the prob-
ability of deriving the slot-markers “wa (TOP)”,
“o (ACC)”, and “e (for)”, where “wa” is associ-
ated with both “tabe (eat)” and “dekake (leave)”,
while “o” is associated only with “tabe”, and “ni”
is associated only with “dekake”. To be mode
general, let slot-marker w0 is associated with two
lexical contexts c1 and c2, and slot-markers w1

and w2 are, respectively, associated with c1 and
c2. Assuming that w1 and w2 are mutually de-
pendent, being both dependent on w0, and c1 and
c2 are mutually independent, the joint probabil-
ity of the derivations of w0, w1 and w2 can be
estimated as (20) in Figure 3, similar to (13). For
example, the probability of deriving “wa (TOP)”,
“o (ACC)”, and “e (for)” in Figure 2 is calculated
as (21) in Figure 3.

Summarizing equations (2), (13) and (16), the
lexical model P (W |R) can be estimated by the
product of the context-free distribution of the
lexical derivations Pcf (W |L) and the degree of
the dependency between the lexical derivations
D(W |R):

P (W |R) ≈ Pcf (W |L) · D(W |R) (22)

Pcf (W |L) =
m∏

i=1

P (wi|li) (23)

D(W |R) =
m∏

i=1

∏

c∈Cwi

D(wi|li[c]) (24)

where Cwi is the set of the lexical contexts of wi.



P (w0, w1, w2|l0[h(h1, [l0, l1]),h(h2, [l0, l2])], l1[h(h1, [l0, l1])], l2[h(h2, [l0, l2])])

≈ P (w0|l0[h(h1, [l0, l1]),h(h2, [l0, l2])]) · P (w1|l1[h(h1, [l0 :w0, l1])]) · P (w2|l2[h(h2, [l0 :w0, l2])]) (18)

≈ P (w0|l0) · P (w0|l0[h(h1, [l0, l1])])
P (w0|l0) · P (w0|l0[h(h2, [l0, l2])])

P (w0|l0) ·
P (w1|l1[h(h1, [l0 :w0, l1])]) · P (w2|l2[h(h2, [l0 :w0, l2])]) (19)

= P (w0|l0) · D(w0|l0[h(h1, [l0, l1])]) · D(w0|l0[h(h2, [l0, l2])])·
P (w1|l1) · D(w1|l1[h(h1, [l0 :w0, l1])]) · P (w2|l2) · D(w2|l2[h(h2, [l0 :w0, l2])]) (20)

P (wa, o, e|P1[h(tabe, [P1, P2]),h(dekake, [P1, P3])], P2[h(tabe, [P1, P2])], P3[h(dekake, [P1, P3])])

≈ P (wa|P1) · D(wa|P1[h(tabe, [P1, P2])]) · D(wa|P1[h(dekake, [P1, P3])])·
P (o|P2) · D(o|P2[h(tabe, [P1 : wa, P2])]) · P (e|P3) · D(e|P3[h(dekake, [P1 : wa, P3])]) (21)

Figure 3: The joint probability of the derivations of slot-markers

2.4 Summary of our model
From equations (1) and (22), the overall distribu-
tion P (R,W ) can be decomposed as follows:

P (R,W ) ≈ P (R) · Pcf (W |L) · D(W |R) (25)

where the first term P (R) reflects part-of-speech
bigram statistics and structural preference, the
second term Pcf (W |L) reflects the occurrence of
each word, and the third term D(W |R) reflects
lexical association. Thus, equation (25) suggests
that our model integrates these types of statis-
tics, while maintaining modularity of lexical as-
sociation.

Figure 4 shows the factors of the P(R,W) for
the sentence in Figure 1. In this figure:

1. P (R) reflects the syntactic preference.

2. Pcf (W |L), which consists of P (kanojo|N),
P (ga|P ) etc., reflects the occurrence of each
word.

3. D(W |R), which consists of D(o|N [h(tabe, [ ])]),
D(pai|N [s(tabe, ACC)]) etc., reflects the lexi-
cal association statistics.

In this way, our modeling maintains the modu-
larity of different statistics types.

The modularity of the lexical model facilitates
parameter estimation. Although the syntactic
model ideally requires fully bracketed training
corpora, training it is expected to be manage-
able since the model’s parameter space tends to
be only a small part of the overall parameter
space. The lexical association statistics, on the
other hand, may have a much larger parameter
space, and thus may require much larger amounts
of training data, as compared to the syntactic

model. However, since our lexical model can be
trained independently of syntactic preference, one
can train it using partially parsed tagged corpora,
which can be produced at a lower cost (i.e. auto-
matically), as well as fully bracketed corpora. In
fact, we used both a full-bracketed corpus and a
partially parsed corpus in our experiment.

3 A preliminary experiment

Let us first briefly describe some fundamental
features of Japanese syntax. A Japanese sen-
tence can be analyzed as a sequence of so-called
bunsetu phrases (BPs, hereafter) as illustrated in
Figure 1. A BP is a chunk of words consisting of a
content word (noun, verb, adjective, etc.) accom-
panied by some function word(s) (postposition,
auxiliary, etc.). For example, the BP “kanojo-ga”
(BP1) in Figure 1 consists of the noun “kanojo
(she)” followed by the postposition “ga (NOM)”,
which functions as a slot-marker. The BP “tabe-
ta” (BP3), on the other hand, consists of the
verb “tabe (eat)” followed by the auxiliary “ta
(PAST)”.

Given a sequence of BPs, one can recognize de-
pendency relations between them as illustrated in
Figure 1. In Japanese, if BPi precedes BPj , and
BPi and BPj are in a dependency relation, then
BPi is always the modifier of BPj , and we say
“BPi modifies BPj .” For example, in Figure 1,
both BP1 and BP2 modify BP3.

For the preliminary evaluation of our model,
we restricted our focus only on the model’s per-
formance for structural disambiguation excluding
morphological disambiguation. Thus, the task of
the parser was restricted to determination of the
dependency structure of an input sentence, which
is given together with the specification of word



P(kanojo|N) P(NOM|P) P(pai|N) P(ACC|P) P(tabe|V)
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kanojo ga
(pie)

o tabe ta
(she)

pai
(eat)(NOM) (ACC) (PAST)

D(NOM|P[h(eat,[ACC])])

P(R)

D(kanojo|N[s(tabe,NOM)])

D(pai|N[s(tabe,ACC)])

Pcf(W|L)

D(W|R)

P(W|R)

P(PAST
|Aux)

D(ACC|P[h(tabe,[])])

Figure 4: The summary of our model

segments, their POS tags, and the boundaries be-
tween BPs.

In developing the grammar used by our PGLR
parser, we first established a categorization of
BPs based on the POS of their constituents: post-
positional BPs, verbal BPs, nominal predicative
BPs, etc. We then developed a modification con-
straint matrix that describes which BP category
can modify which BP category, based on exam-
ples collected from the Kyoto University text cor-
pus [11]. We finally transformed this matrix into
a CFG; for instance, the constraint that a BP
of category Ci can modify a BP of category Cj

can be transformed into context-free rules such
as 〈C̄j → Ci Cj〉, 〈C̄j → C̄i Cj〉, etc., where X̄
denotes a nonterminal symbol.

For the text data, we used roughly 10,000 sen-
tences from the Kyoto University text corpus
for training the syntactic model, and the whole
EDR corpus [6] and the RWC POS-tagged cor-
pus [16] for training the lexical model. For test-
ing, we used 500 sentences collected from the
Kyoto University text corpus with the average
sentence length being 8.7 BPs. The data sets
used for training and testing are mutually ex-
clusive. The grammar used by our probabilis-
tic GLR parser was a CFG automatically ac-
quired from the training sentences, consisting of
967 context-free rules containing 50 nonterminal
symbols and 43 terminal symbols (i.e. BP cate-
gories).

The baseline of the disambiguation perfor-
mance was assessed by way of a naive strategy
which selects the nearest possible modifiee (simi-
larly to the right association principle in English)
under the non-crossing constraint. The perfor-
mance of this naive strategy was 62.4% in BP-
based accuracy, where BP-based accuracy is the
ratio of the number of the BPs whose modifiee

is correctly identified to the total number of BPs
(excluding the two rightmost BPs for each sen-
tence). On the other hand, the syntactic model
P (R) achieved 72.1% in BP-based accuracy, 9.7
points above the baseline.

4 The contribution of the lexical
model

In our experiment, we considered the following
three lexical dependency parameters in the lexical
model.

First, we considered the dependencies between
slot-markers and their lexical head by using the
lexical dependency parameter (26).

D(p|P [h(h, [s1, . . . , sn])]) (26)

(26) can be computed from P (pn|Pn[h(h, [])]),
the distribution of n postpositions (slot-markers)
given that all of them are subordinated by
a single lexical head h. We trained this
distribution using 150,000 instances of pn-
{verb,adjective,nominal predicate} collocation
collected from the EDR full-bracketed corpus.
For parameter estimation, we used the maximum
entropy estimation technique [1, 15]. For further
details of this estimation process, see [20].

Next, we considered dependencies between
slot-fillers and their head verb coupled with the
corresponding slot-markers by using the lexical
dependency parameter (27).

D(n|N [s(v, p)]) (27)

(27) was trained using 6.7 million instances of
noun-postposition-verb collocation collected from
both the EDR and RWC corpora. For parameter
estimation, we used 115 non-hierarchical seman-
tic noun classes derived from the NTT semantic



dictionary [7] to reduce the parameter space:

D(n|N [s(v, p)])≈
∑

cn
P (cn|N [s(v, p)]) · P (n|cn)

P (n|N)
(28)

P (cn|N [s(v, p)]) was estimated using a simple
back-off smoothing technique: for any given lexi-
cal verb v and postposition p, if the frequency of
s(v, p) is less than a certain threshold λ (in our
experiment, λ = 100), then P (cn|N [s(v, p)]) was
approximated to be P (cn|N [s(cv, p)]) where cv is
a class of v whose frequency is more than λ.

Finally, we considered the occurrence of post-
positions by using the lexical dependency param-
eter (29).

D(p|P [head type]) (29)

In Japanese, the distribution of the lexical deriva-
tion of postpositions, P (p|P ), is quite differ-
ent depending on whether they function as slot-
markers of verbs, adjectives and nominal predi-
cates such as “ga (NOM)” and “o (ACC)” in Fig-
ure 1, or they function as slot-markers of nouns
such as “no (of)” in the following sentence.

hana no syashin3

(flower) (of) (picture)

For such a reason, we introduced the lexical de-
pendency parameter (29), where head type de-
notes whether the postposition P functions as a
slot-marker of a predicate or a noun. We esti-
mated this dependency parameter using about
950,000 postpositions collected from the EDR
corpus.

Table 1 summarizes the results of the experi-
ment. The lexical model achieved 76.5% in BP-
based accuracy, and the model using both the
syntactic and lexical model achieved 82.8% in
BP-based accuracy. According to these results,
the contribution of lexical statistics for disam-
biguation is as great as that of syntactic statistics
in our framework.

The bottom three lines in Table 1 denotes the
setting where the only lexical dependency param-
eter (26), (27) and (29) are considered in the lexi-
cal model. Among these, the contribution of (29)
was greatest.

5 Error analysis

In the test set, there were 574 BPs whose mod-
ifiee was not correctly identified by the system.
Among these errors, we particularly explored 290
errors that were associated with postpositional
BPs functioning as a case of either a verb, adjec-
tive, or nominal predicate, since, for lexical asso-
ciation statistics in the lexical model, we took the

3This sentence means “a picture of a flower.”

Table 1: The contribution of the lexical model

accuracy
base line 62.4 %
syntactic model only 72.1 %
lexical model only 76.5 %
syntactic + lexical model 82.8 %

syntactic model + (26) 73.4 %
syntactic model + (27) 78.3 %
syntactic model + (29) 81.3 %

dependencies between slots (i.e. slot-markers and
slot-fillers) and their heads into account. In this
exploration, we identified three major error types:
(a) errors associated with a coordinate clause, (b)
errors associated with relative clauses, (c) errors
associated with the lack of the consideration of
dependency between slot-fillers.

5.1 Coordinate structures
One of the typical error types is associated with
coordinate structures. The sentence in Figure 2
has at least three alternative interpretations in
terms of which BP is modified by the left-
most BP “kanojo-wa (she-TOP)”: (a) “tabe-ta
(eat-PAST)”, (b) “dekake-ta (leave-PAST)”, (c)
both “tabe-ta (eat-PAST)” and “dekake-ta (leave-
PAST)”. Among these alternatives, the most rea-
sonable interpretation is obviously (c), where
the two predicative BPs constitute a coordinate
structure.

In our experiment, however, neither the train-
ing data nor the test data indicates such coordi-
nate structures. Thus, in the above sentence, for
example, the system was required to choose one of
two alternatives (a) and (b), where (b) is the pre-
ferred candidate according to the structural pol-
icy underlying our corpora. However, this choice
is not really meaningful. Furthermore, the system
systematically prefers (a), the wrong choice, since
(i) the syntactic model tends to prefer shorter-
distance modification relations (similarly to the
right association principle in English), and (ii)
the lexical model is expected to support both can-
didates because both D(kanojo|N [s(tabe, wa)])
in (a) and D(kanojo|N [s(dekake, wa)]) in (b)
should be high. This problem makes the per-
formance of our model lower than what it should
be.

Obviously, the first step to resolving this prob-
lem is to enhance our corpora and grammar to
enable the parser to generate the third interpre-
tation, i.e. to explicitly generate a coordinate
structure such as (c) if needed. Once such a set-
ting is established, we then need to consider the



lexical contexts of each of the constituents modi-
fying a coordinate structure, such as “kanojo-wa
(she-TOP)” in the above sentence. In interpreta-
tion (c), since “kanojo-wa (she-TOP)” modifies
both predicative BPs, it is reasonable to asso-
ciate it with two lexical contexts, s(tabe, wa) and
s(dekake, wa). As mentioned in Section 2, our
framework allows us to deal with such multiple
lexical contexts, namely:

D(kanojo|N [s(tabe, wa), s(dekake, wa)])
≈ D(kanojo|N [s(tabe, wa)]) ·

D(kanojo|N [s(dekake, wa)]) (30)

The correct interpretation (c) would assigned
higher probability than (a) or (b), since the two
lexical dependency parameters in (30), D(kanojo|
N [s(tabe, wa)]) and D(kanojo|N [s(dekake, wa)])
are both expected to be sufficiently large.

5.2 Treatment of correference
One may have already noticed that the issue dis-
cussed above can be generalized as an issue asso-
ciated with the treatment of correference in de-
pendency structures. Namely, if a prepositional
BP is correferred to by more than one clause as
a participant, a naive treatment of this corref-
erence relation could require the parser to make
a meaningless choice: which clause subordinates
that BP. This problem in the treatment of corref-
erence is considered to cause a significant propor-
tion of errors associated with relative/adverbial
clauses or compound predicates. Such errors are
expected to be resolvable through an extension of
the model, as discussed in Section 5.1.

Let us briefly look at another example in
Figure 5, where the matrix clause and relative
clause correfer to the leftmost BP “kanojo-wa
(she-TOP)”, i.e. interpretation (c). Without any
refined treatment of this correference relation, the
parser would be required to make a meaningless
choice between (a) and (b).

BP1

N2

BP2

okat ta
(buy) (ACC)(PAST)

BP3 BP4

hon
(book)

wa
(TOP)

kanojo
(she)

P2N1 P1

kinou
(yesterday)

Adv

yon da
(read)

BP5

(PAST)

Aux2V2Aux1V1

(c)

(a) (b)

Figure 5: An example sentence containing a rela-
tive clause: “She read the book which she bought
yesterday”

5.3 Dependency between slot fillers
According to the results summarized in Table
1, the contribution of the dependency between

slot-fillers and their heads seems to be negligibly
small. We can enumerate several possible rea-
sons including that the estimation of these types
of dependency parameters was not sufficiently so-
phisticated.

In addition to these reasons, we also found that
the lack of the consideration of dependency be-
tween slot-fillers was also problematic in some
cases; there are particular patterns where depen-
dency between slot-fillers seems to be highly sig-
nificant. For example, in the clause “kanojo-wa
(she-TOP) isha-ni (doctor-DAT) nat-ta (become-
PAST)” (she became a doctor), the distribu-
tion of the filler of the “wa (TOP)” slot is
considered to be highly dependent on the filler
of the “ni (DAT)” slot, “isha (doctor)”, since
its distribution would be markedly different if
“isha (doctor)” was replaced with “mizu (wa-
ter)”. Similar patterns include, for example, “A-
wo (ACC) B-ni (DAT) suru (make)”, where A
and B are highly dependent, and “A-ga (NOM)
B-wo (ACC) suru (do)”, where noun B indicat-
ing an action strongly influences the distribution
of A.

In our framework, this type of problem can be
treated by means of controlling the choice of lexi-
cal contexts. We are now conducting another ex-
periment in which the dependencies between slot-
fillers are additionally considered in particular
patterns. Note that the refinement of our model
in this manner illustrates that the modularity of
lexical association statistics facilitates rule-based
control in choosing the locations where lexical as-
sociation is considered. This rule-based control
allows us to incorporate qualitative knowledge
such as linguistic insights and heuristics newly
obtained from experiments based on the model.

6 Conclusion

In this paper, we first presented a new frame-
work of language modeling for statistical pars-
ing, which incorporates lexical association statis-
tics while maintaining modularity. We then re-
ported on the results of our preliminary evalu-
ation of the model’s performance, showing that
both the syntactic and lexical models made a con-
siderable contribution to structural disambigua-
tion, and that the division of labor between those
two models thus seemed to be working well to
date.

Many issues remain unclear. First, we need
to conduct experiments on the combination of
the morphological and syntactic disambiguation
tasks, which our framework intrinsically is de-
signed for. Second, empirical comparison with
other lexically sensitive models is also strongly



required. One interesting issue is whether the
division of labor between the syntactic and lex-
ical models presented in this paper works well
language-independently, or conversely, whether
the existing models designed for English are
equally applicable to languages like Japanese.

Acknowledgements

The authors would like to thank the staff of NTT
for making available their considerable electronic
resources.

References

[1] A. L. Berger, S. A. Della Pietra, and V. J.
Della Pietra. A maximum entropy approach
to natural language processing. Computa-
tional Linguistics, 22(1):39–71, 1996.

[2] E. Black, F. Jelinek, J. Lafferty, D. M.
Magerman, R. Mercer, and S. Roukos. To-
wards history-based grammars: Using richer
models for probabilistic parsing. In Proceed-
ings of the ACL, pages 31–37, 1993.

[3] E. Charniak. Statistical parsing with a
context-free grammar and word statistics. In
Proceedings of the AAAI, 1997.

[4] M. Collins. A new statistical parser based on
bigram lexical dependencies. In Proceedings
of the ACL, 1996.

[5] M. Collins. Three generative, lexicalised
models for statistical parsing. In Proceedings
of the ACL, 1997.

[6] EDR. The EDR electronic dictionary tech-
nical guide (second edition). Technical Re-
port TR–045, Japan Electronic Dictionary
Research Institute, 1995.

[7] S. Ikehara, M. Miyazaki, S. Shirai, A. Yokoo,
H. Nakaiwa, K. Ogura, Y. Ooyama, and
Y. Hayashi. A Japanese Lexicon. Iwanami
Shoten, 1997. (In Japanese).

[8] K. Inui, K. Shirai, H. Tanaka, and T. Toku-
naga. Integrated probabilistic language
modeling for statistical parsing. Technical
Report TR97-0005, Dept. of Computer Sci-
ence, Tokyo Institute of Technology, 1997.
ftp://ftp.cs.titech.ac.jp/lab/tanaka
/papers/97/inui97b.ps.gz.

[9] K. Inui, K. Shirai, T. Tokunaga, and
H. Tanaka. Integration of statistical tech-
niques for parsing. In summary collection of
the IJCAI’97 poster session, 1997.

[10] K. Inui, V. Sornlertlamvanich, H. Tanaka,
and T. Tokunaga. A new formalization of
probabilistic GLR parsing. In Proceedings of
the IWPT, 1997.

[11] S. Kurohashi and M. Nagao. Kyoto univer-
sity text corpus project. In Proceedings of
the 11th Annual Conference of JSAI, pages
58–61, 1997. (In Japanese).

[12] H. Li. A probabilistic disambiguation
method based on psycholinguistic principles.
In Proceedings of WVLC-4, 1996.

[13] D. M. Magerman and M. Marcus. Pearl: A
probabilistic chart parser. In Proceedings of
the EACL, pages 15–20, 1991.

[14] D. M. Magerman. Statistical decision-tree
models for parsing. In Proceedings of the
ACL, pages 276–283, 1995.

[15] A. Ratnaparkhi, J. Reyner, and S. Roukos.
A maximum entropy model for prepositional
phrase attachment. In Proceedings of the Hu-
man Language Technology Workshop, pages
250–255, 1994.

[16] Real World Computing Partnership. RWC
text database. http://www.rwcp.or.jp/
wswg.html, 1995.

[17] P. Resnik. Probabilistic tree-adjoining gram-
mar as a framework for statistical natural
language processing. In Proceedings of the
COLING, pages 418–424, 1992.

[18] Y. Schabes. Stochastic lexicalized tree-
adjoining grammars. In Proceedings of the
COLING, pages 425–432, 1992.

[19] S. Sekine and R. Grishman. A corpus-based
probabilistic grammar with only two non-
terminals. In Proceedings of the IWPT, 1995.

[20] K. Shirai, K. Inui, T. Tokunaga, and
H. Tanaka. Learning dependencies be-
tween case frames using maximum entropy
method. In Proceedings of Annual Meeting
of the Japan Association for Natural Lan-
guage Processing, 1997. (In Japanese).

[21] V. Sornlertlamvanich, K. Inui, K. Shirai,
H. Tanaka, T. Tokunaga, and T. Takezawa.
Empirical evaluation of probabilistic glr
parsing. In Proceedings of the NLPRS, 1997.


