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Outline

• This talk is on coding for flash memories.
• Concentrate on codes for re-writing memories

1.Overview of flash memory: benefits and problems
2.Codes for rewriting memories

• Codes for binary q=2 memories
• Codes for non-binary q>2 memories

3.Traditional error-correction for flash
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Flash Memory

Flash is a semiconductor memory whose price has been rapidly decreasing.  History:
 1980 NOR Flash invented by Fujio Masuoka at Toshiba
 1986 NAND Flash also invented by Masuoka 
 1988 Intel introduces commercial NOR Flash (PC BIOS, etc.)
 1998 Early MP3 Player (32 MB, Korean SaeHan Information Systems)
 2000 First USB Flash drive (8MB  IBM)
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http://www.storagesearch.com/semico-art1.html
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Flash vs. Hard Disks as a Storage Medium

Compared to hard disks, flash has advantages:
 Mechanically durable
 very fast random reading and writing (~100 times hard disks)
 fast sequential reads
 small memories are feasible (2 GB for ¥900)
 lower power

Flash disadvantages:
 performance decreases

    as SSD is used
 high cost per megabyte

4

But the cost of flash SSDs 
are almost reasonable
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About Flash

• NOR Flash
 Relatively low density
 Small sizes blocks — “random” access is possible
 Used to storing computer programs

• NAND Flash
 Higher density
 Has very large blocks
 “Sequential” access
 Widely used: cameras to SSDs

• NAND Flash is arranged:
 one page consists of 512-4096 bytes
 one block consists of 32-128 pages
 one plane consists of 1024 blocks
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http://www.linux-mag.com/cache/7590/1.html
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About Flash: Charge is easily added

• In flash memories, charge is stored on a 
“floating gate”, and read as a voltage.

• Two very important things about flash:

1. Charge can easily be increased, 
but can only be decreased by 
an erasure operation.  Only 
whole blocks of ~512 KB can be erased.

2.  Each block has a limited number of erase 
cycles it can handle.  After 10,000 - 100,000 erasures, the block cannot be reliably be 
used.   Also, erasures are slow.

• Thus, erasures should be avoided.
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http://elec424.rice.edu
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• The transistor where change is stored is called a “cell”
• SLC Single-Level cells store one bit
• MLC Multi-level cells store two or more bits
• Current flash chips use SLC and MLC with 4 levels (2 bits per cell)
• 8 levels (3 bits per cell) seem to be coming.   Proposals as high as 256 levels.

About Flash: Single-Level and Multi-Level

7

Intel Technology Journal Q4’97

4

1

10

100

1000

10000

100000

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
Cell Threshold Voltage in Volts

Nu
m

be
r o

f C
el

ls

Erase

Program

Data = 1 0

Figure 6: Single bit/cell array threshold voltage
histogram

The charge storage ability of the flash memory cell is a
key to the storage of multiple bits in a single cell.  The
flash cell is an analog storage device not a digital storage
device. It stores charge (quantized at a single electron)
not bits.  By using a controlled programming technique,
it is possible to place a precise amount of charge on the
floating gate.  If charge can be accurately placed to one of
four charge states (or ranges), then the cell can be said to
store two bits.  Each of the four charge states is
associated with a two-bit data pattern.  Figure 7
illustrates the threshold voltage distributions for a 1/2Mc
block for two bit per cell storage.  After erasure or precise
programming to one of three program states, the
threshold of each of the 1/2Mc is measured and plotted as
a histogram.  Notice the precise control of the center two
states, each of which is approximately 0.3v (or 3,000)
electrons in width.
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Figure 7: Two bit/cell array threshold voltage
histogram

Higher bit per cell densities are possible by even more
precise charge placement control.  Three bits per cell
requires eight distinct charge states; four bits per cell

requires sixteen distinct charge states.  In general, the
number of states required is equal to 2N where N is the
desired number of bits.

The ability to precisely place charge on the floating gate
and at some later time sense the amount of charge that
was stored has required substantial innovations and
extensive characterization and understanding of cell
device physics, memory design, and memory test.  These
innovations are discussed in detail in the paper entitled
“Intel StrataFlash Memory Technology Development and
Implementation” also published in this issue of the Intel
Technology Journal.

Evolution of the Intel StrataFlash Memory
Technology Development
This section will outline the development of the Intel
StrataFlash memory technology from conception in 1992
to productization in 1997, highlighting the key
innovations along the way.  The 64Mbit product recently
introduced differs markedly from the 1992 view of what a
two bit/cell product might look like.  The learning that
has occurred over the past four years has enabled the
development of a two bit/cell memory device that
functionally looks almost identical to a one bit/cell
device, far exceeding the capability that was considered
possible when the development program started.  Figure
8 shows the timeline of the major Intel StrataFlash
memory technology development milestones.

Figure 8:  Intel StrataFlash development program
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it is possible to place a precise amount of charge on the
floating gate.  If charge can be accurately placed to one of
four charge states (or ranges), then the cell can be said to
store two bits.  Each of the four charge states is
associated with a two-bit data pattern.  Figure 7
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Higher bit per cell densities are possible by even more
precise charge placement control.  Three bits per cell
requires eight distinct charge states; four bits per cell

requires sixteen distinct charge states.  In general, the
number of states required is equal to 2N where N is the
desired number of bits.

The ability to precisely place charge on the floating gate
and at some later time sense the amount of charge that
was stored has required substantial innovations and
extensive characterization and understanding of cell
device physics, memory design, and memory test.  These
innovations are discussed in detail in the paper entitled
“Intel StrataFlash Memory Technology Development and
Implementation” also published in this issue of the Intel
Technology Journal.

Evolution of the Intel StrataFlash Memory
Technology Development
This section will outline the development of the Intel
StrataFlash memory technology from conception in 1992
to productization in 1997, highlighting the key
innovations along the way.  The 64Mbit product recently
introduced differs markedly from the 1992 view of what a
two bit/cell product might look like.  The learning that
has occurred over the past four years has enabled the
development of a two bit/cell memory device that
functionally looks almost identical to a one bit/cell
device, far exceeding the capability that was considered
possible when the development program started.  Figure
8 shows the timeline of the major Intel StrataFlash
memory technology development milestones.
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Current Approaches

Because erasures shorten the longevity (長寿命化) of flash memory:

 Current solution: flash translation layer (FTL) and wear leveling
 Computer science research: “log file systems,” garbage collection, etc.

8

• SLC -> MLC  Errors are possible, ECC is needed
• Write-verify cycle: programming is imprecise, and must avoid overshoot
• Read disturb
• Write disturb

“Can coding theory improve the longevity 
and performance of flash memories?”

Big Question

A Few More Problems
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Toy example:
 3 storage “cells”

 Initially (0,0,0) state
 0 → 1 is allowed
 1 → 0 is not allowed

 Store 2 bits of information.
 Can write data 2 times:

 first write can be any two bits
 second write can be any two bits

 Example:
 store 01, then
 store 00

 Code rate is 2/3

 Guaranteed minimum of two writes
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Literature Overview

• The problem of “asymmetrical writing” 
storage systems is not new!
 write-once optical media: CD-R
 PROM
 punch cards

• Prior work mostly considered binary storage systems

10

1980 1990 2000 2010

Zemor and Cohen, IT TransCohen et al., IT

Heegard, IT Trans

1. Wolf et al, Bell Labs TR
2. Fiat and Shamir, IT Trans

Rivest and Shamir, Inf. and Contr

Fu and Han Vinck, IT Trans

• This talk is about coding.  However, there are also information theoretic results.
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Outline of Rewriting Codes

• Channel models, definitions and assumptions

• Codes for binary cells:
 Rivest and Shamir bounds
 linear code (based upon linear error-correcting codes) [Cohen et al, 1986]

• Codes for q-ary cells
 JBB07 bounds
 A low rate code

11
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Channel Models for One “Cell”

• “Write Once Memory” (Rivest and Shamir, 1982)

• Directed Acyclic Graph (DAG)   Fiat and Shamir, 1984.  Other capacity results.

• q-ary “Write Asymmetric Memory”, Jiang et al 2007

12
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Definitions and Assumptions
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0
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3

q-1

n cells

. .
 . 

k bits of information

Floating code (or flash code)
• Encoding function:

{
Information: One Variable

}
×

{
Current Memory State

}
−→

{
New Memory State

}
∪ E

• Decoding function:
{
Current Memory State

}
−→

{
k Information bits

}

• Let t or T denote the minimum number of times information can be
written, before erasure.



Kurkoski: University of Electro-Communications /36

Definitions and Assumptions: Point 1, Writes
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There are two perspectives on the number of writes:

• Word Writing (Rivest-Shamir).

– k bits are written simultaneously.
– A code allows at least T word writes, before the memory is “full”.

• Bit Writing (Jiang et al).

– Only 1 bit written at a time.
– A code allows at least t bit writes, before the memory is “full”.
– 1 word write performed by k bit writes,

T =
t

k

To make a fair comparison, choose word writes T as the metric.

• Consistent with block-oriented nature of storage devices

1. More than T or t writes may
be possible.

2. Full memories must be erased
before next write.
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Definitions and Assumptions: Point 2, Rate
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Previous papers:

R =
n

k
, R =

kT

n

Fiat-Shamir (1984):

• for arbitrary DAG: NP Hard

• for a tree (including flash memory):
polynomial time

Natural questions:

• For a given n, k, T, q, does a floating code exist?

• What is the relationship between n block length, k info bits, T writes and
q cell levels?

Recent work has ignored the code rate (very low rates).

Define code rate as:

R =
k

n
bits per cell

(R > 1 is possible, for example: q = 16⇒ R ≤ 4)

Will concentrate on this question:

• What is the relationship between T and R, for various n?

R =
k

n log2 q
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Codes for Binary Memory, q=2
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For other values of T, 
estimate are given

T “Capacity” log(T )/T
Estimate

3 0.6456 0.5283
4 0.5609 0.5
5 0.4993 0.4644
10 0.3352 0.3322
20 0.2142 0.2161
50 0.1116 0.1129
100 0.0658 0.0664
200 0.0380 0.0382

Asymptotic bounds

Rivest & Shamir use w
(
〈2k〉T

)
to mean “the length of an optimal code”.

For T = 2, the rate as k →∞ is:

“capacity” (or achievable rate) = lim
k→∞

k

w
(
〈2k〉2

) = 0.7729

Interestingly, 0.7729 is the solution to the equation H(1− p) = p.
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Binary WOM Codes
Code Rate vs. Number of Writes
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Simple Scheme to Write 1 Bit in n cells
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0 11 0 1 0

As a “sanity check”, consider a simple scheme for encoding k = 1 info bit.
Example n = 5. Stored sequence is:

(0, 0, 0, 0, 0)→ (1, 0, 0, 0, 0)→ (1, 1, 0, 0, 0)→ (1, 1, 1, 0, 0)→ (1, 1, 1, 1, 0)→ (1, 1, 1, 1, 1)

The information in each stage is the mod-2 sum of the stored sequence.
For any n ≥ 1, this simple scheme has rate:

R =
1
T

and allows for n writes:

T = n
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Binary WOM Codes
Code Rate vs. Number of Writes
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A Binary Index-Type Scheme
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info = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

index 1 2 3

info = 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0

info = 0 1 1 1 0 1 1 0 0 0 0 0 0 0 0

info = 0 0 1 1 0 1 1 1 0 0 0 0 0 0 0

info = 1 0 1 1 0 1 1 1 0 0 1 0 0 0 0

. . .

The following codes was given by Mahdavifar, et al [MSVWY] at ISIT 2009
to illustrate a more complicated code.

Has poor rate, but explains an index-type scheme.

Encoding: partition n cells into blocks of size log2 k. When an information bit
changes, record its index in the next available block.

Example: n = 12, R = 1
4 , k = 3. Results in T = 1

R log2 k word writes.
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Binary WOM Codes
Index-Type Scheme

• d
21
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A Linear Scheme

22

① ② ③

Cohen, Godlewski and Merkx, “Linear Binary Code for Write-Once Memo-
ries,” IT Trans., 1986.

Use coset coding to encode information. Pick a linear code. Encoding:

1. Information is encoded as the syndrome of a sequence

2. From the coset of that syndrome, select the coset codeword with the min-
imum weight.

3. Write that coset codeword to memory.

Decoding:

1. Compute the syndrome of the recorded sequence.

Example: Use Hamming (7,4) code to encode information with T = 3 writes:

(0, 0, 0)→ (1, 0, 1)→ (1, 1, 0)→ (0, 0, 0)



000 001 010 100 111 011 101 110

0000000 0000001 0000010 0000100 0001000 0010000 0100000 1000000

0001111 0000111 0101111 1001111

0010011 0011011 0110011 1010011
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Binary WOM Codes
Linear Hamming (7,4) Code
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Binary WOM Codes
More Linear Codes
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Summary of Binary Codes
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• Simple or “naive” coding: R = 1
T .

• Rivest and Shamir showed that R = log T
T is possible.

• Clearly, there is a tradeoff in number of writes and rate. But Rivest and
Shamir showed you can do better than naive.

• For T = 2, the “toy example” n=3, k=2 code has rate 2/3.

• Optimal rate at T = 2 is 0.77. This is fairly low rate. Practical?
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Codes for Multilevel Flash: q > 2

27

0
1
2
3

q

. .
 

Trivial bound: n=2, q=8
Image: Eitan Yaakobi

By increasing q, can we get better codes?

This is recent work, since 2007.

Trivial upper bound:

t ≤ n(q − 1) (bit writes)

T ≤ (q − 1)
R

(word writes)

Tighter upper bound (approximate) Jiang, Bohos-
sian, Bruck, ISIT 2007 (JBB07):

t ≤ n(q − 1)− 1
2
(q − 1) min

(
n, k − 1

)

T ≤ (q − 1)
R

− 1
2
(q − 1) min

( 1
R

, 1
)
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Rewriting Codes for q=8: Bounds
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Codes for q>2

29

• Jiang, Bohossian and Bruck [ISIT 2007] also proposed a re-writing code for k=2 bits 
 It complicated and hard to understand.
 It is a low rate code
 It achieves:

• Yaakobi, Vardy, Siegel and Wolf [Allerton 2008] proposed “multidimensional codes” 
 Achieves the same re-writing rate.
 Easier to understand the construction

• Jiang, et al. [ISIT 2009]  “Trajectory Code” :
• Mahdavifar, et al. [ISIT 2009]

• Most constructions appear to be low rate! 

t = (n− 1)(q − 1) +
⌊q − 1

2
⌋

2k ≤ 2
√

n ⇒ R ≤ 1
k
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Rewriting Codes for q=8:  YVSW Code

30
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Number of Writes increases in q!
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DAG is directed acyclic 
graph, the memory model.

“The significant 
improvement in memory 
capability is linear with 
the DAG depth.  For a 
fixed number of states a 
‘deep and narrow’ DAG 
cell is always preferable 
to a ‘shallow and wide’ 
DAG cell.”

-Fiat and Shamir, 1984

Tight bound, really?
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Summary of q>2 Codes and Open Problems

• In traditional coding theory, dmin increases for increasing block length
 But for rewriting codes, does T increase for increasing block length? (no?)
 However, seems like T does increase for increasing levels q

• High rate coding:
 system designers use high rate codes, but there are few/no high rate codes
 perhaps I’m too excited about high rate codes 
 Tighter bounds at high rate?

• Average vs. Minimum number of writes
 t and T was defined as the minimum number of writes
 Average number of writes is always greater
 Does average number of writes have better properties (improves with block length)?

• I did not mention other rewriting codes developed by Jiang, et al:
 Buffer coding
 Rank modulation

32
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Error-Correction for Flash Memories

• Flash memories, particularly NAND flash are noisy.

33
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The charge storage ability of the flash memory cell is a
key to the storage of multiple bits in a single cell.  The
flash cell is an analog storage device not a digital storage
device. It stores charge (quantized at a single electron)
not bits.  By using a controlled programming technique,
it is possible to place a precise amount of charge on the
floating gate.  If charge can be accurately placed to one of
four charge states (or ranges), then the cell can be said to
store two bits.  Each of the four charge states is
associated with a two-bit data pattern.  Figure 7
illustrates the threshold voltage distributions for a 1/2Mc
block for two bit per cell storage.  After erasure or precise
programming to one of three program states, the
threshold of each of the 1/2Mc is measured and plotted as
a histogram.  Notice the precise control of the center two
states, each of which is approximately 0.3v (or 3,000)
electrons in width.
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Figure 7: Two bit/cell array threshold voltage
histogram

Higher bit per cell densities are possible by even more
precise charge placement control.  Three bits per cell
requires eight distinct charge states; four bits per cell

requires sixteen distinct charge states.  In general, the
number of states required is equal to 2N where N is the
desired number of bits.

The ability to precisely place charge on the floating gate
and at some later time sense the amount of charge that
was stored has required substantial innovations and
extensive characterization and understanding of cell
device physics, memory design, and memory test.  These
innovations are discussed in detail in the paper entitled
“Intel StrataFlash Memory Technology Development and
Implementation” also published in this issue of the Intel
Technology Journal.

Evolution of the Intel StrataFlash Memory
Technology Development
This section will outline the development of the Intel
StrataFlash memory technology from conception in 1992
to productization in 1997, highlighting the key
innovations along the way.  The 64Mbit product recently
introduced differs markedly from the 1992 view of what a
two bit/cell product might look like.  The learning that
has occurred over the past four years has enabled the
development of a two bit/cell memory device that
functionally looks almost identical to a one bit/cell
device, far exceeding the capability that was considered
possible when the development program started.  Figure
8 shows the timeline of the major Intel StrataFlash
memory technology development milestones.

Figure 8:  Intel StrataFlash development program
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The charge storage ability of the flash memory cell is a
key to the storage of multiple bits in a single cell.  The
flash cell is an analog storage device not a digital storage
device. It stores charge (quantized at a single electron)
not bits.  By using a controlled programming technique,
it is possible to place a precise amount of charge on the
floating gate.  If charge can be accurately placed to one of
four charge states (or ranges), then the cell can be said to
store two bits.  Each of the four charge states is
associated with a two-bit data pattern.  Figure 7
illustrates the threshold voltage distributions for a 1/2Mc
block for two bit per cell storage.  After erasure or precise
programming to one of three program states, the
threshold of each of the 1/2Mc is measured and plotted as
a histogram.  Notice the precise control of the center two
states, each of which is approximately 0.3v (or 3,000)
electrons in width.
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Higher bit per cell densities are possible by even more
precise charge placement control.  Three bits per cell
requires eight distinct charge states; four bits per cell

requires sixteen distinct charge states.  In general, the
number of states required is equal to 2N where N is the
desired number of bits.

The ability to precisely place charge on the floating gate
and at some later time sense the amount of charge that
was stored has required substantial innovations and
extensive characterization and understanding of cell
device physics, memory design, and memory test.  These
innovations are discussed in detail in the paper entitled
“Intel StrataFlash Memory Technology Development and
Implementation” also published in this issue of the Intel
Technology Journal.
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This section will outline the development of the Intel
StrataFlash memory technology from conception in 1992
to productization in 1997, highlighting the key
innovations along the way.  The 64Mbit product recently
introduced differs markedly from the 1992 view of what a
two bit/cell product might look like.  The learning that
has occurred over the past four years has enabled the
development of a two bit/cell memory device that
functionally looks almost identical to a one bit/cell
device, far exceeding the capability that was considered
possible when the development program started.  Figure
8 shows the timeline of the major Intel StrataFlash
memory technology development milestones.

Figure 8:  Intel StrataFlash development program
 

The Multi-Level-Cell (M.L.C.) Concept

92 93 94 95 96 97 98

MLC
Technology
Announced

2b/c 32M
ISSCC Paper

2b/c Miniature
Card Demo

2b/c Product
Introduced

MLC R&D
Started

SLC MLC (2 bits)

Atwood, et al.

certain number, say s, of information bits) to construct a
t-error-correcting (n2 s, k2 s, t) BCH code with less infor-
mation bits and code length but the same redundancy. Given
the raw BER praw, an (n, k, t) binary BCH code can achieve
a codeword error rate of

Pe ¼
Xn

i¼tþ1

n
i

! "
piraw(1# praw)

n#i (5)

Binary BCH encoding can be realised efficiently using
linear shift registers, whereas binary BCH decoding is
much more complex. Various BCH decoding algorithms
have been proposed [21]. In Section 4.3, we will elaborate
on the binary BCH decoding algorithm and decoder archi-
tecture used in this work.

4.2 BCH codes for multilevel NAND flash

We first investigate the potential storage capacity improve-
ment by increasing l from 4 to 6, 8 and 12, respectively.
Assuming the same programming scheme (i.e. the same
step-up voltage Vpp and hence same cell programming
time) as the 2 bits/cell memory, we have the cell threshold
voltage distributions for l ¼ 6, 8 and 12 as illustrated in
Fig. 8 and described as follows: the l2 2 inner distributions
have the same standard deviation s; the standard deviations
of the two outer distributions are 4s and 2s, respectively.
The locations of the means of the l2 2 inner distributions
are determined to minimise the raw BER. It should be
pointed out that, as the value of l increases, some factors
such as floating-gate interference [22] and source line
noise [23] might degrade the threshold voltage distribution
(or increase the standard deviation). As currently no data are
available in the open literature to model such possible devi-
ation degradation and we expect that such degradation

should not be significant, we assume that the standard devi-
ation is independent of l in this work.
We set Vmax, the voltage difference between the means of

the two outer distributions, as 6.5 V [24] and s as 1. For l of
6, 8 and 12, we store 5 bits per two cells, 3 bits per cell and 7
bits per two cells, respectively. Accordingly, the raw BER
are about 8 $ 10212 (l ¼ 4), 5 $ 1027 (l ¼ 6), 5 $ 1025

(l ¼ 8) and 2 $ 1023 (l ¼ 12), respectively. Because the
cell programming time remains the same as the 2 bits/cell
benchmark, the programming throughput may approxi-
mately increase by 25, 50, and 75%, respectively.
To protect 8192 and 16,384 user bits per codeword with a

target codeword error rate of lower than 10214,
single-error-correcting Hamming codes will be sufficient
to ensure the storage reliability for l ¼ 4. For larger
values of l, binary BCH codes are constructed by shortening
primitive binary BCH codes under GF(214) and GF(215),
respectively. Table 4 lists the BCH code parameters and
the corresponding codeword error rates. Table 4 also
shows the percentages of the user bits storage gain over
the 2 bits/cell benchmark, given the same number of
memory cells.

4.3 BCH code decoder architecture and ASIC
design

To evaluate decoder silicon implementation metrics for the
above BCH codes, we carried out application–specific inte-
grated circuit(ASIC) design using 0.13 mm CMOS standard
cell and SRAM libraries. In the following, we first briefly
describe the BCH decoder architecture and then present
the silicon implementation results. A syndrome-based
binary BCH code decoder consists of three blocks, as
shown in Fig. 9. For an (n, k, t) binary BCH code con-
structed under a Galois field with the primitive element a,
the overall decoder architecture is described as follows.

4.3.1 Syndrome computation: Given the received bit
vector r, it computes 2t syndromes as Si ¼

Pn#1
j¼0 rjaij for

i ¼ 0, 1, . . . , 2t2 1. As pointed out in [25] for binary
BCH codes, we have S2j ¼ Sj

2, so only t parallel syndrome
generators are required to explicitly calculate the
odd-indexed syndromes, followed by much simpler square
circuits. For a decoder with parallelism of p (i.e. the syn-
drome computation block receives p input bits in each

Table 3: Summary of implementation metrics

Silicon area, mm2 Latencya, ns

(11, 8) TCM 0.12 8.3

(20, 16) TCM 0.10 24.3

(38, 32) TCM 0.12 44.3

aIncludes latency of sensing circuits and TCM decoding

Fig. 8 Approximate flash memory cell threshold voltage distribution model

a l ¼ 6
b l ¼ 8
c l ¼ 12
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Model:

• level 0: ∼ N(0, 4σ2)

• level 1 to q − 2 : ∼ N(0, σ2)

• level q − 1 : ∼ N(0, 2σ2)Su
n,

 e
t a

l.

Use Gray mapping
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Error-Correction for Flash Memories

• Most MLC flash uses error correction
 Early chips: proposal to use Hamming codes to correct single bit errors

• MLC errors appear random:
 Reed-Solomon codes correct burst errors well
 Reed-Solomon codes, widely used in hard drives, DVDs, CD, etc, are not needed
 However, Reed-Solomon has more efficient decder [Chen et al., 2008]

• BCH codes can correct random errors well (R > 0.98)
 Liu, Rho and Sung (2006): BCH (4148,4096) to correct 4 bit errors with 52 parity bits
 Micheloni, et al. (2006): VLSI using BCH (32767,32692) to correct 5 errors

• LDPC Codes
 Maeda and Kaneko (2009): Use non-binary LDPC codes of field size q

 q=8, 16.  R=1/2, 5/8.  Found slight improvement in BER by using average column 
weight of 2.5
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• Rewriting codes plus ECC
 Only a few papers on this topic.   But, a serious problem (think RLL in hard drives)

• Intersymbol interference (ISI)
 Errors often appear independent , so BCH codes are used
 However, densities increase → errors become correlated, ISI occurs
 Need ISI models!

• Asymmetric Noise
 read disturb and retention problem: charge leaks from the cell → voltage decrease
 Errors are asymmetric

ECC

More Open Problems

35

Rewriting 
Code

ECCRewriting 
Code

dmin not guaranteed

no rewriting in parity



Kurkoski: University of Electro-Communications /36

Conclusion

• Flash memories are rapidly increasing in density, and should become widespread in the 
future.

• Flash memories have a limited number of write cycles.  Avoid erasures by using coding
 Binary codes are suitable for SLC, but SLC is being replaced by MLC
 There appear to be few codes of sufficiently high rate for MLC

• Flash memories also have errors like a traditional communication system
 Hamming codes, BCH codes, Reed-Solomon, LDPC codes appear to be effective
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