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Abstract— This paper gives an overview of the author’s
recent results on using lattices for error-correction and rewrit-
ing in flash memories. A construction using the E8 lattice
and Reed-Solomon codes for error-correction in flash mem-
ory has a performance advantage of 1.7 to 2.0 dB. A rewrit-
ing code construction for flash memories based upon lattices
has an minimum number of writes linear in one code pa-
rameter.

1 Background

Flash memory is being used in an increasing larger
variety of applications, expanding from digital cameras
and MP3 players, to solid-state drives for not only lap-
top computers, but also in high-performance drives for
“cloud computing” data centers. As such, improving
the reliability, data density, and lifetime of the mem-
ory have become significant goals. Coding theory has
two roles to play in achieving these goals. The first
is familiar — to correct errors induced by the read-
ing and writing process. The second is more novel —
allowing rewriting while avoiding the erase operation
that shortens the life of the flash memory.

For error-correction, numerous approaches have been
considered, although BCH codes are predominant in
practice [3]. In commercial flash memory products, the
memory and error-correction functions are separated.
The flash chip makes hard decisions internally; these
hard decisions are passed to an external chip for imple-
mentation of error-correction. Single-level flash stores
just two levels (or one bit), but multi-level flash stores
q levels (or log, g bits) [4] [5].

Rewriting codes are a coding-theoretic approach to
allow rewriting to memories flash memories, where val-
ues stored in memory may only be increased. While
codes for binary media were proposed in the 1980s [6],
[7], within the past few years, a large number of rewrit-
ing codes directed at flash memory have been described
[8], [9], [10], [11], [12]. As with error-correcting codes,
most of these these floating codes or flash codes are
designed for flash memory cells that can store one of ¢
discrete levels.

However, charge is stored in a physical flash cell
during write operations. Charge, read as a voltage,
is an inherently continuous quantity. Commercial flash
memory makes hard decisions, and any coding, for error-
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Figure 1: Evaluation of analytical expressions for ¢ = 8
(uncoded 3 bits/cell), and probability of word error
from simulation. The proposed construction of RS
codes with E8 lattices has 1.7 to 2 dB better perfor-
mance than BCH codes with PAM.

correction and rewriting, must operate on these dis-
crete values. It is reasonable that future flash-memory
chips may incorporate on-chip error-correction or pro-
vide soft information, to improve the error-correction
performance. In such a case, the state of the flash cell is
expressed as a voltage, which is a continuous quantity,
rather than discrete. The written values are read back,
with added noise. With this assumption, flash mem-
ory strongly resembles conventional AWGN communi-
cation systems, which transmit and receive continuous
signals. While AWGN systems have a power constraint
averaged over time, for the flash memory system, the
power constraint is that there is a maximum and min-
imum value that can be written in each cell.

Because the flash cell values are continuous quan-
tities, this paper takes the signal-space viewpoint that
has long been used for the AWGN channel. Among
other results, it is now known that lattices can achieve
the capacity of the AWGN channel [13] [14], and lat-
tices appear to be a promising practical approach for
bandwidth-constrained channels [15]. In fact, a related
technique, trellis-coded modulation, has already been
considered for error-correction in flash memories [3].
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Figure 2: Tllustration of the proposed code for two dimensions, n = 2,G = [1 0;

2 Lattices for Flash Memory

This paper gives a brief overview of the author’s
recent results on using lattices for rewriting and error-
correction in flash memories. Two submitted confer-
ence papers are available on arXiv, see References [1]
and [2].

It is assumed that the values stored in flash cells cor-
respond to lattice points. From a lattice perspective,
conventional flash, using PAM-like encoding, stores data
at the points {0,...,¢ — 1}" in a rectangular lattice.
However, rectangular lattices are inefficient, and there
exist lattices that have many desirable properties such
as better packing efficiency. The E8 lattice has a num-
ber of desirable properties. Besides being the best-
known lattice in eight dimensions, it also has an effi-
cient decoding algorithm. The lattice generator matrix
is triangular, which makes it suitable for encoding. In
addition, the E8 lattice points are either integers or
half-integers; for implementations, this may be more
suitable than writing arbitrary values to memory.

2.1 Lattices for Error-Correction in Flash

For error-correction, the merit of lattices is clear.
With integer spacing, the minimum Euclidean distance
of PAM is 1. For the E8 lattices, the minimum Eu-
clidean distance is as much as v/2 ~ 1.4. However, an
outer error-correcting code is still needed to guarantee
data reliability. Because E8 decoding induces burst-

11,M =5,D=2.

like errors, Reed-Solomon (RS) codes constructed over
GF(2®) are used for error correction. Only the modulo-
2 value of the lattice points are protected by the RS
codes; the Euclidean separation of the lattice points is
also important. This system might be regarded as a
type of trellis-coded modulation.

Because flash memory operates at high SNR region,
analytical expressions of word error performance, based
on the union bound, can be developed. Fig. 1 shows
the probability of word error using these analytical ex-
pressions for ¢ = 8 (3 bits per flash cell), and various
code rates. The code parameters are in Table 1.

At a probability of word error rate of 107!2, the
uncoded ES8 lattice has approximately 1.7 dB better
performance than uncoded PAM. For each code com-
parison, the error-correction capability of the RS and
BCH code is essentially the same. This benefit is pre-
served, and after coding, gains of 1.7 to 2.0 dB are
observed. In addition, simulation of the proposed sys-
tem shows that the analytical expressions are tight at
high SNR.

For more details, see Reference [1].

2.2 Lattice for Rewriting in Flash

Similarly for a rewriting code based on lattices, the
cell values are points of an n-dimensional lattice in-
side the cube (0,q — 1)™. To allow rewriting, there is
a one-to-many mapping between from the information
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RS over GF(28) BCH over GF(2'3)
(ne, ke, t)  cells N bits k (ne, ke, t) cells N Dbits k
(172,170,1) 1376 4112 (4109,4096,1) 1370 4096
(172,168,2) 1376 4096  (4122,4096,2) | 1374 4096
(173,167,3) 1384 4104  (4135,4096,3) | 1379 4096
(174,166,4) 1392 4112  (4148,4096,4) | 1383 4096
(174,164,5) 1392 4096  (4161,4096,5) 1387 4096

Table 1: RS and BCH codes considered in Fig. 1

to the codebook. To encode an information sequence,
the encoder searches over the candidate codewords and
selects one. To aid this encoding and search, the code-
book is partitioned into subcodebooks, most with a
one-to-one mapping. Adding a random component to
the encoding will improve the average number of writes.

The rewriting code construction is best illustrated
using a two-dimensional example, shown in Fig. 2. Since
the dimension is n = 2, this corresponds to writing data
into 2 flash cells. The lattice has a generator matrix
G =[1 0;3 1]. The code consists of all lattice points
inside the square of volume (M D)™, where M and D
are two parameters, M = 5 and D = 2 in this example.
This code can write logy, M = log, 5 bits per cell into 2
flash cells. The lattice is then partitioned into D™ =4
blocks. Each block has a one-to-one mapping between
information and lattice points, so the overall code has
a one-to-four (in general, one-to-D™) mapping.

Here an encoding example is given. Note that each
block has a unique pseudorandom mapping. The orig-
inal information is denoted u, and this is mapped to a
“hashed” sequence a. Assume that the current state of
the memory is s = (4, 3) (indicated in the figure), and
the information to be written is u = (1, 3).

Each block is indexed by a vector d € {(0,0), (0,1),
(1,0),(1,1)}. For each d, the hashed sequence is com-
puted, and the candidate vector is found:
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Figure 3: Average number of word writes using the ES8
lattice, with ¢ — 1 = DM and code rate R = log, M.
Code rate R is in bits/cell.

code rate R = logy, M, and D was allowed to be a non-
integer. The most striking feature is that the number
of writes depends strongly upon gq.

Also shown in Fig. 3 is the average number of writes

influence on the minimum number of writes.

if hashing is not used, that is, the hash vector m is all-
d 1, d =1 d = (1,35) ! ’ :
gg (1); 3 E 3; . :{d} _ Eo’ig : i{d} _ 55% g; zeros. At low rates, the random hash increases the
(1’0) u=(1,3) = ald] = (4’ 1) = x[d] = (4’7') average number of writes. But as the rate increases,
(1’ 1):u=(1,3) - ald = (3’ 3) = x[d] = (87 7 this advantage diminishes. Note that the hash has no
]

These x[d] are indicated in Fig. 2 by “(A)”. For the first
candidate (1,3.5), the difference x[(0,0)] —s is negative
in the first component, and so this point cannot be
written, because values are only allowed to increase.
For each of the remaining three, the point x[(0,1)] is
the most suitable, and so it is selected as the point to
be written, x (indicated in the figure).

It is fairly clear that with the proposed construc-
tion, the minimum number of word writes is D. How-
ever, it is not so easy to determine the average number
of word writes. Naturally, there is a tradeoff between
code rate and the average number of writes, and this
is demonstrated in Fig. 3, obtained by computer simu-
lation. Values of ¢ were fixed, with ¢ = DM + 1. The

For more details, see Reference [2].
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