
The 33rd Symposium on Information Theory

and its Applications (SITA2010)

Matsushiro, Nagano, Japan, Nov. 30–Dec. 3, 2010

A Note on Using Lattices for

Error Correction and Rewriting in Flash Memories

Brian M. Kurkoski∗

Abstract— This paper gives an overview of the author’s
recent results on using lattices for error-correction and rewrit-
ing in flash memories. A construction using the E8 lattice
and Reed-Solomon codes for error-correction in flash mem-
ory has a performance advantage of 1.7 to 2.0 dB. A rewrit-
ing code construction for flash memories based upon lattices
has an minimum number of writes linear in one code pa-
rameter.

1 Background
Flash memory is being used in an increasing larger

variety of applications, expanding from digital cameras
and MP3 players, to solid-state drives for not only lap-
top computers, but also in high-performance drives for
“cloud computing” data centers. As such, improving
the reliability, data density, and lifetime of the mem-
ory have become significant goals. Coding theory has
two roles to play in achieving these goals. The first
is familiar — to correct errors induced by the read-
ing and writing process. The second is more novel —
allowing rewriting while avoiding the erase operation
that shortens the life of the flash memory.

For error-correction, numerous approaches have been
considered, although BCH codes are predominant in
practice [3]. In commercial flash memory products, the
memory and error-correction functions are separated.
The flash chip makes hard decisions internally; these
hard decisions are passed to an external chip for imple-
mentation of error-correction. Single-level flash stores
just two levels (or one bit), but multi-level flash stores
q levels (or log2 q bits) [4] [5].

Rewriting codes are a coding-theoretic approach to
allow rewriting to memories flash memories, where val-
ues stored in memory may only be increased. While
codes for binary media were proposed in the 1980s [6],
[7], within the past few years, a large number of rewrit-
ing codes directed at flash memory have been described
[8], [9], [10], [11], [12]. As with error-correcting codes,
most of these these floating codes or flash codes are
designed for flash memory cells that can store one of q
discrete levels.

However, charge is stored in a physical flash cell
during write operations. Charge, read as a voltage,
is an inherently continuous quantity. Commercial flash
memory makes hard decisions, and any coding, for error-

∗ kurkoski@ice.uec.ac.jp — Univ. of Electro-Communications,

Tokyo, Japan. This research was supported in part by the

Ministry of Education, Science, Sports and Culture; Grant-in-

Aid for Scientific Research (C) number 21560388.

30 31 32 33 34 35 36 37 38 39 40
10−12

10−10

10−8

10−6

10−4

10−2

100

SNR (V2 / σ2, dB)

Pr
ob

ab
ilit

y 
of

 W
or

d 
Er

ro
r

 

 
Uncoded lattice
Uncoded PAM

 t=1 t=2 t=3
 t=4
 t=5

BCH−Gray, analytical, t=1,2,3,4,5
RS−E8, analytical,t=1,2,3,4,5
RS−E8 Simulation

Figure 1: Evaluation of analytical expressions for q = 8
(uncoded 3 bits/cell), and probability of word error
from simulation. The proposed construction of RS
codes with E8 lattices has 1.7 to 2 dB better perfor-
mance than BCH codes with PAM.

correction and rewriting, must operate on these dis-
crete values. It is reasonable that future flash-memory
chips may incorporate on-chip error-correction or pro-
vide soft information, to improve the error-correction
performance. In such a case, the state of the flash cell is
expressed as a voltage, which is a continuous quantity,
rather than discrete. The written values are read back,
with added noise. With this assumption, flash mem-
ory strongly resembles conventional AWGN communi-
cation systems, which transmit and receive continuous
signals. While AWGN systems have a power constraint
averaged over time, for the flash memory system, the
power constraint is that there is a maximum and min-
imum value that can be written in each cell.

Because the flash cell values are continuous quan-
tities, this paper takes the signal-space viewpoint that
has long been used for the AWGN channel. Among
other results, it is now known that lattices can achieve
the capacity of the AWGN channel [13] [14], and lat-
tices appear to be a promising practical approach for
bandwidth-constrained channels [15]. In fact, a related
technique, trellis-coded modulation, has already been
considered for error-correction in flash memories [3].

 99

5.2



0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

 (0,0)
 [0,0]

 (0,1)
 [0,1]

 (0,2)
 [0,2]

 (0,3)
 [0,3]

 (0,4)
 [0,4]

 (1,0)
 [1,0]

 (1,1)
 [1,1]

 (1,2)
 [1,2]

 (1,3)
 [1,3]

 (1,4)
 [1,4]

 (2,0)
 [2,0]

 (2,1)
 [2,1]

 (2,2)
 [2,2]

 (2,3)
 [2,3]

 (2,4)
 [2,4]

 (3,0)
 [3,0]

 (3,1)
 [3,1]

 (3,2)
 [3,2]

 (3,3)
 [3,3]

 (3,4)
 [3,4]

 (4,0)
 [4,0]

 (4,1)
 [4,1]

 (4,2)
 [4,2]

 (4,3)
 [4,3]

 (4,4)
 [4,4]

 (0,0)
 [3,2]

 (0,1)
 [3,3]

 (0,2)
 [3,4]

 (0,3)
 [3,0]

 (0,4)
 [3,1]

 (1,0)
 [4,2]

 (1,1)
 [4,3]

 (1,2)
 [4,4]

 (1,3)
 [4,0]

 (1,4)
 [4,1]

 (2,0)
 [0,2]

 (2,1)
 [0,3]

 (2,2)
 [0,4]

 (2,3)
 [0,0]

 (2,4)
 [0,1]

 (3,0)
 [1,2]

 (3,1)
 [1,3]

 (3,2)
 [1,4]

 (3,3)
 [1,0]

 (3,4)
 [1,1]

 (4,0)
 [2,2]

 (4,1)
 [2,3]

 (4,2)
 [2,4]

 (4,3)
 [2,0]

 (4,4)
 [2,1]

 (0,0)
 [4,3]

 (0,1)
 [4,4]

 (0,2)
 [4,0]

 (0,3)
 [4,1]

 (0,4)
 [4,2]

 (1,0)
 [0,3]

 (1,1)
 [0,4]

 (1,2)
 [0,0]

 (1,3)
 [0,1]

 (1,4)
 [0,2]

 (2,0)
 [1,3]

 (2,1)
 [1,4]

 (2,2)
 [1,0]

 (2,3)
 [1,1]

 (2,4)
 [1,2]

 (3,0)
 [2,3]

 (3,1)
 [2,4]

 (3,2)
 [2,0]

 (3,3)
 [2,1]

 (3,4)
 [2,2]

 (4,0)
 [3,3]

 (4,1)
 [3,4]

 (4,2)
 [3,0]

 (4,3)
 [3,1]

 (4,4)
 [3,2]

 (0,0)
 [2,0]

 (0,1)
 [2,1]

 (0,2)
 [2,2]

 (0,3)
 [2,3]

 (0,4)
 [2,4]

 (1,0)
 [3,0]

 (1,1)
 [3,1]

 (1,2)
 [3,2]

 (1,3)
 [3,3]

 (1,4)
 [3,4]

 (2,0)
 [4,0]

 (2,1)
 [4,1]

 (2,2)
 [4,2]

 (2,3)
 [4,3]

 (2,4)
 [4,4]

 (3,0)
 [0,0]

 (3,1)
 [0,1]

 (3,2)
 [0,2]

 (3,3)
 [0,3]

 (3,4)
 [0,4]

 (4,0)
 [1,0]

 (4,1)
 [1,1]

 (4,2)
 [1,2]

 (4,3)
 [1,3]

 (4,4)
 [1,4]

x
1

x
2

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

 (u
1
,u

2
)

 [a
1
,a

2
]

 (u
1
,u

2
)

 [a
1
,a

2
]

 (u
1
,u

2
)

 [a
1
,a

2
]

 (u
1
,u

2
)

 [a
1
,a

2
]

x
1

x
2

Legend

d = (0, 0) d = (1, 0)

d = (1, 1)d = (0, 1)

s

(A)

(A)

(A)

(A)
x

Information u = (u1, u2)

Hash sequence a = (a1, a2)

Hash function:

ai = ui +mi mod M

where random m are:

d = (0, 0) =⇒ m = (0, 0)

d = (1, 0) =⇒ m = (4, 3)

d = (0, 1) =⇒ m = (3, 2)

d = (1, 1) =⇒ m = (2, 0)

Figure 2: Illustration of the proposed code for two dimensions, n = 2, G = [1 0; 1
2 1],M = 5, D = 2.

2 Lattices for Flash Memory
This paper gives a brief overview of the author’s

recent results on using lattices for rewriting and error-
correction in flash memories. Two submitted confer-
ence papers are available on arXiv, see References [1]
and [2].

It is assumed that the values stored in flash cells cor-
respond to lattice points. From a lattice perspective,
conventional flash, using PAM-like encoding, stores data
at the points {0, . . . , q − 1}n in a rectangular lattice.
However, rectangular lattices are inefficient, and there
exist lattices that have many desirable properties such
as better packing efficiency. The E8 lattice has a num-
ber of desirable properties. Besides being the best-
known lattice in eight dimensions, it also has an effi-
cient decoding algorithm. The lattice generator matrix
is triangular, which makes it suitable for encoding. In
addition, the E8 lattice points are either integers or
half-integers; for implementations, this may be more
suitable than writing arbitrary values to memory.

2.1 Lattices for Error-Correction in Flash
For error-correction, the merit of lattices is clear.

With integer spacing, the minimum Euclidean distance
of PAM is 1. For the E8 lattices, the minimum Eu-
clidean distance is as much as

√
2 ≈ 1.4. However, an

outer error-correcting code is still needed to guarantee
data reliability. Because E8 decoding induces burst-

like errors, Reed-Solomon (RS) codes constructed over
GF(28) are used for error correction. Only the modulo-
2 value of the lattice points are protected by the RS
codes; the Euclidean separation of the lattice points is
also important. This system might be regarded as a
type of trellis-coded modulation.

Because flash memory operates at high SNR region,
analytical expressions of word error performance, based
on the union bound, can be developed. Fig. 1 shows
the probability of word error using these analytical ex-
pressions for q = 8 (3 bits per flash cell), and various
code rates. The code parameters are in Table 1.

At a probability of word error rate of 10−12, the
uncoded E8 lattice has approximately 1.7 dB better
performance than uncoded PAM. For each code com-
parison, the error-correction capability of the RS and
BCH code is essentially the same. This benefit is pre-
served, and after coding, gains of 1.7 to 2.0 dB are
observed. In addition, simulation of the proposed sys-
tem shows that the analytical expressions are tight at
high SNR.

For more details, see Reference [1].

2.2 Lattice for Rewriting in Flash
Similarly for a rewriting code based on lattices, the

cell values are points of an n-dimensional lattice in-
side the cube (0, q − 1)n. To allow rewriting, there is
a one-to-many mapping between from the information

 100



RS over GF(28) BCH over GF(213)

(nc, kc, t) cells N bits k (nc, kc, t) cells N bits k
(172,170,1) 1376 4112 (4109,4096,1) 1370 4096
(172,168,2) 1376 4096 (4122,4096,2) 1374 4096
(173,167,3) 1384 4104 (4135,4096,3) 1379 4096
(174,166,4) 1392 4112 (4148,4096,4) 1383 4096
(174,164,5) 1392 4096 (4161,4096,5) 1387 4096

Table 1: RS and BCH codes considered in Fig. 1

to the codebook. To encode an information sequence,
the encoder searches over the candidate codewords and
selects one. To aid this encoding and search, the code-
book is partitioned into subcodebooks, most with a
one-to-one mapping. Adding a random component to
the encoding will improve the average number of writes.

The rewriting code construction is best illustrated
using a two-dimensional example, shown in Fig. 2. Since
the dimension is n = 2, this corresponds to writing data
into 2 flash cells. The lattice has a generator matrix
G = [1 0; 1

2 1]. The code consists of all lattice points
inside the square of volume (MD)n, where M and D
are two parameters, M = 5 and D = 2 in this example.
This code can write log2 M = log2 5 bits per cell into 2
flash cells. The lattice is then partitioned into Dn = 4
blocks. Each block has a one-to-one mapping between
information and lattice points, so the overall code has
a one-to-four (in general, one-to-Dn) mapping.

Here an encoding example is given. Note that each
block has a unique pseudorandom mapping. The orig-
inal information is denoted u, and this is mapped to a
“hashed” sequence a. Assume that the current state of
the memory is s = (4, 3) (indicated in the figure), and
the information to be written is u = (1, 3).

Each block is indexed by a vector d ∈ {(0, 0), (0, 1),
(1, 0), (1, 1)}. For each d, the hashed sequence is com-
puted, and the candidate vector is found:

d = (0, 0) : u = (1, 3) → a[d] = (1, 3) → x[d] = (1, 3.5)
d = (0, 1) : u = (1, 3) → a[d] = (0, 1) → x[d] = (5, 3.5)
d = (1, 0) : u = (1, 3) → a[d] = (4, 1) → x[d] = (4, 7)
d = (1, 1) : u = (1, 3) → a[d] = (3, 3) → x[d] = (8, 7).

These x[d] are indicated in Fig. 2 by “(A)”. For the first
candidate (1, 3.5), the difference x[(0, 0)]−s is negative
in the first component, and so this point cannot be
written, because values are only allowed to increase.
For each of the remaining three, the point x[(0, 1)] is
the most suitable, and so it is selected as the point to
be written, x (indicated in the figure).

It is fairly clear that with the proposed construc-
tion, the minimum number of word writes is D. How-
ever, it is not so easy to determine the average number
of word writes. Naturally, there is a tradeoff between
code rate and the average number of writes, and this
is demonstrated in Fig. 3, obtained by computer simu-
lation. Values of q were fixed, with q = DM + 1. The

1 1.5 2 2.5 3 3.5 4 4.5 5

2

4

6

8

10

12

14

16

18

20

22

24

q=4

q=8

q=16

q=32
Av

er
ag

e 
nu

m
be

r o
f w

rit
es

Code rate R

no hash

no hash

no hash

no hash

Figure 3: Average number of word writes using the E8
lattice, with q − 1 = DM and code rate R = log2 M .
Code rate R is in bits/cell.

code rate R = log2 M , and D was allowed to be a non-
integer. The most striking feature is that the number
of writes depends strongly upon q.

Also shown in Fig. 3 is the average number of writes
if hashing is not used, that is, the hash vector m is all-
zeros. At low rates, the random hash increases the
average number of writes. But as the rate increases,
this advantage diminishes. Note that the hash has no
influence on the minimum number of writes.

For more details, see Reference [2].

References
[1] B. Kurkoski, “The E8 lattice and error correction

in multi-level flash memory,” submitted to Inter-
national Conference on Communications, IEEE,
2011. Available http://arxiv.org/abs/1009.5764.

[2] B. Kurkoski, “Rewriting codes for flash mem-
ories based upon lattices, and an example us-
ing the E8 lattice,” in Proceedings IEEE Global
Telecommunications Conference, (Miami, Florida,
USA), IEEE, December 2010. To appear. Avail-
able http://arxiv.org/abs/1007.1819.

 101



[3] F. Sun, S. Devarajan, K. Rose, and T. Zhang, “De-
sign of on-chip error correction systems for multi-
level nor and nand flash memories,” Circuits, De-
vices Systems, IET, vol. 1, pp. 241–249, June 2007.

[4] H. Nobukata and et al., “A 144-mb, eight-level
NAND flash memory with optimized pulsewidth
programming,” IEEE Journal of Solid-State Cir-
cuits, vol. 35, pp. 682–690, May 2000.

[5] M. Grossi, M. Lanzoni, and B. Ricco, “A novel al-
gorithm for high-throughput programming of mul-
tilevel flash memories,” IEEE Transactions on
Electron Devices, vol. 50, pp. 1290–1296, May
2003.

[6] R. L. Rivest and A. Shamir, “How to reuse a
“write-once” memory,” Information and Control,
vol. 55, pp. 1–19, December 1982.

[7] G. D. Cohen, P. Godlewski, and F. Merkx, “Lin-
ear binary code for write-once memories,” IEEE
Transactions on Information Theory, vol. 32,
pp. 697–700, September 1986.

[8] A. Jiang, V. Bohossian, and J. Bruck, “Float-
ing codes for joint information storage in write
asymmetric memories,” in Proceedings of IEEE
International Symposium on Information Theory,
pp. 1166–1170, June 2007.

[9] V. Bohossian, A. Jiang, and J. Bruck, “Buffer cod-
ing for asymmetric multi-level memory,” in Pro-
ceedings of IEEE International Symposium on In-
formation Theory, pp. 1186–1190, June 2007.

[10] E. Yaakobi, A. Vardy, P. H. Siegel, and J. K.
Wolf, “Multidimensional flash codes,” in Proceed-
ings 46th Annual Allerton Conference on Com-
munication, Control, and Computing, (Monticello,
IL, USA), pp. 392–399, September 2008.

[11] H. Finucane, Z. Liu, and M. Mitzenmacher,
“Designing floating codes for expected perfor-
mance,” in Proceedings 46th Annual Allerton Con-
ference on Communication, Control, and Comput-
ing, (Monticello, IL, USA), September 2008.

[12] A. Jiang and J. Bruck, “Information representa-
tion and coding for flash memories,” in Commu-
nications, Computers and Signal Processing, 2009.
PacRim 2009. IEEE Pacific Rim Conference on,
pp. 920–925, August 2009.

[13] H.-A. Loeliger, “Averaging bounds for lattices and
linear codes,” IEEE Transactions on Information
Theory, vol. 43, pp. 1767–1773, November 1997.

[14] U. Erez and R. Zamir, “Achieving 1
2 log(1 + SNR)

on the AWGN channel with lattice encoding and
decoding,” IEEE Transactions on Information
Theory, vol. 50, pp. 2293–2314, October 2004.

[15] N. Sommer, M. Feder, and O. Shalvi, “Low-
density lattice codes,” IEEE Transactions on In-
formation Theory, vol. 54, pp. 1561–1585, April
2008.

 102


