2.2

The 33rd Symposium on Information Theory
and its Applications (SITA2010)

Matsushiro, Nagano, Japan, Nov. 30-Dec. 3, 2010

A Note on Using Lattices for

Error Correction and Rewriting in Flash Memories

Brian M. Kurkoski*

Abstract— This paper gives an overview of the author’s
recent results on using lattices for error-correction and rewrit-
ing in flash memories. A construction using the E8 lattice
and Reed-Solomon codes for error-correction in flash mem-
ory has a performance advantage of 1.7 to 2.0 dB. A rewrit-
ing code construction for flash memories based upon lattices
has an minimum number of writes linear in one code pa-
rameter.

1 Background

Flash memory is being used in an increasing larger
variety of applications, expanding from digital cameras
and MP3 players, to solid-state drives for not only lap-
top computers, but also in high-performance drives for
“cloud computing” data centers. As such, improving
the reliability, data density, and lifetime of the mem-
ory have become significant goals. Coding theory has
two roles to play in achieving these goals. The first
is familiar — to correct errors induced by the read-
ing and writing process. The second is more novel —
allowing rewriting while avoiding the erase operation
that shortens the life of the flash memory.

For error-correction, numerous approaches have been
considered, although BCH codes are predominant in
practice [3]. In commercial flash memory products, the
memory and error-correction functions are separated.
The flash chip makes hard decisions internally; these
hard decisions are passed to an external chip for imple-
mentation of error-correction. Single-level flash stores
just two levels (or one bit), but multi-level flash stores
q levels (or log, g bits) [4] [5].

Rewriting codes are a coding-theoretic approach to
allow rewriting to memories flash memories, where val-
ues stored in memory may only be increased. While
codes for binary media were proposed in the 1980s [6],
[7], within the past few years, a large number of rewrit-
ing codes directed at flash memory have been described
[8], [9], [10], [11], [12]. As with error-correcting codes,
most of these these floating codes or flash codes are
designed for flash memory cells that can store one of ¢
discrete levels.

However, charge is stored in a physical flash cell
during write operations. Charge, read as a voltage,
is an inherently continuous quantity. Commercial flash
memory makes hard decisions, and any coding, for error-

* kurkoski@ice.uec.ac.jp — Univ. of Electro-Communications,

Tokyo, Japan. This research was supported in part by the
Ministry of Education, Science, Sports and Culture; Grant-in-

Aid for Scientific Research (C) number 21560388.

T T T
= = =BCH-Gray, analytical, t=1,2,3,4,5
= RS-E8, analytical,t=1,2,3,4,5

O RS-EB8Sil |

Probability of Word Error
3
T

‘ :
30 31 32 33 34 35 36 37 38 39 40
SNR (V2/ o2, dB)

Figure 1: Evaluation of analytical expressions for ¢ = 8
(uncoded 3 bits/cell), and probability of word error
from simulation. The proposed construction of RS
codes with E8 lattices has 1.7 to 2 dB better perfor-
mance than BCH codes with PAM.

correction and rewriting, must operate on these dis-
crete values. It is reasonable that future flash-memory
chips may incorporate on-chip error-correction or pro-
vide soft information, to improve the error-correction
performance. In such a case, the state of the flash cell is
expressed as a voltage, which is a continuous quantity,
rather than discrete. The written values are read back,
with added noise. With this assumption, flash mem-
ory strongly resembles conventional AWGN communi-
cation systems, which transmit and receive continuous
signals. While AWGN systems have a power constraint
averaged over time, for the flash memory system, the
power constraint is that there is a maximum and min-
imum value that can be written in each cell.

Because the flash cell values are continuous quan-
tities, this paper takes the signal-space viewpoint that
has long been used for the AWGN channel. Among
other results, it is now known that lattices can achieve
the capacity of the AWGN channel [13] [14], and lat-
tices appear to be a promising practical approach for
bandwidth-constrained channels [15]. In fact, a related
technique, trellis-coded modulation, has already been
considered for error-correction in flash memories [3].

99

O - - R e
P2 S | (R N S N S NS —
[0,4 [2,3 (4,2 (1,1 [3,0)
- GBI _ s o000 " BB s g00h 7 G241 VA
DN L2 SR - (A N 11 (R S PG v Tlaga
8,<,x &0 _ .()\1J PUCHS) AR ¢) N 1 .
[0,37 \ 2,2y \ (4,17 \ (1,0 \ (3,41 \ Legend
T QBOL T J0A) B0 S 04 S 23) :
@ (\JK [1,2Y @ ‘\1)\ [3,17 | :\3)\ |[0,0Y @ ZX 2,4Y a gk [4,3Y
Thoor ~ % iy ~ AWepp 1 X ey~ AA)eg - L
J\ oﬁ’?})} — J\ ofgg% — J\ ﬁgj? — J\ o[gg;\ - J\ .Eis;\ - Information u = (uy, uz)
6 (240 _ 43\ _) N (43 _ s G2 _ Hash sequence a = (ay, as)
oqr — -\ %oy) N B (1 A S ¥ A)
i .(3,3k o .(O,Zk o ‘(S,SX o 0,2 _ .(2,1)\ B Hash function:
S L A Nt 7 A N (0K R S) R N PR
B 'LQ,E)\ _.Sfl’g}\ . QJ - - ..(irl - _/_ ..(1.1.1L - _/_ a; =u; +m; mod M
d=00} B ea T fa=wal ea T 0o
N 147 A [3:3], - :[0’2]/ N [2:1Y - .[4:OY -1 where random m are:
2t I I - G G O d=00) = m=(0.0
aetd 2 ea MM ag T ea BT oy d=(10) — m-(3)
W03y EY IR 1) S W X A N (X d=(01) — m=(32)
fost ~ X A~ s u s Chor — 4 e~ 4§ d=(L1) — m—(20)
a2 U GBS g2 T B T 000 | o nee
10 o M ey B e T e BT e Y J
2%02r T N Ay TN Cmor N Cmal T %ay T
Gotar A e T e <4 e~ e
o o BT a7 oo BT ea BT
oI o B W 1o 0 ea B2 08
G0) °Hor T4 °4a @48 MNosr T4 ®pop T@EY) %4y
o .Q.}\ L s 4}\ I ol4.3L] _‘[J.ZL — .‘[3_1 h. ey
0 1 2 3 4 5 6 7 8 9 10
X

Figure 2: Tllustration of the proposed code for two dimensions, n = 2,G = [1 0;

2 Lattices for Flash Memory

This paper gives a brief overview of the author’s
recent results on using lattices for rewriting and error-
correction in flash memories. Two submitted confer-
ence papers are available on arXiv, see References [1]
and [2].

It is assumed that the values stored in flash cells cor-
respond to lattice points. From a lattice perspective,
conventional flash, using PAM-like encoding, stores data
at the points {0,...,¢ — 1}" in a rectangular lattice.
However, rectangular lattices are inefficient, and there
exist lattices that have many desirable properties such
as better packing efficiency. The E8 lattice has a num-
ber of desirable properties. Besides being the best-
known lattice in eight dimensions, it also has an effi-
cient decoding algorithm. The lattice generator matrix
is triangular, which makes it suitable for encoding. In
addition, the E8 lattice points are either integers or
half-integers; for implementations, this may be more
suitable than writing arbitrary values to memory.

2.1 Lattices for Error-Correction in Flash

For error-correction, the merit of lattices is clear.
With integer spacing, the minimum Euclidean distance
of PAM is 1. For the E8 lattices, the minimum Eu-
clidean distance is as much as v/2 ~ 1.4. However, an
outer error-correcting code is still needed to guarantee
data reliability. Because E8 decoding induces burst-

11,M =5,D=2.

like errors, Reed-Solomon (RS) codes constructed over
GF(2®) are used for error correction. Only the modulo-
2 value of the lattice points are protected by the RS
codes; the Euclidean separation of the lattice points is
also important. This system might be regarded as a
type of trellis-coded modulation.

Because flash memory operates at high SNR region,
analytical expressions of word error performance, based
on the union bound, can be developed. Fig. 1 shows
the probability of word error using these analytical ex-
pressions for ¢ = 8 (3 bits per flash cell), and various
code rates. The code parameters are in Table 1.

At a probability of word error rate of 107!2, the
uncoded ES8 lattice has approximately 1.7 dB better
performance than uncoded PAM. For each code com-
parison, the error-correction capability of the RS and
BCH code is essentially the same. This benefit is pre-
served, and after coding, gains of 1.7 to 2.0 dB are
observed. In addition, simulation of the proposed sys-
tem shows that the analytical expressions are tight at
high SNR.

For more details, see Reference [1].

2.2 Lattice for Rewriting in Flash

Similarly for a rewriting code based on lattices, the
cell values are points of an n-dimensional lattice in-
side the cube (0,q — 1)™. To allow rewriting, there is
a one-to-many mapping between from the information

100

RS over GF(28) BCH over GF(2'3)
(ne, ke, t) cells N bits k (ne, ke, t) cells N Dbits k
(172,170,1) 1376 4112 (4109,4096,1) 1370 4096
(172,168,2) 1376 4096 (4122,4096,2) | 1374 4096
(173,167,3) 1384 4104 (4135,4096,3) | 1379 4096
(174,166,4) 1392 4112 (4148,4096,4) | 1383 4096
(174,164,5) 1392 4096 (4161,4096,5) 1387 4096

Table 1: RS and BCH codes considered in Fig. 1

to the codebook. To encode an information sequence,
the encoder searches over the candidate codewords and
selects one. To aid this encoding and search, the code-
book is partitioned into subcodebooks, most with a
one-to-one mapping. Adding a random component to
the encoding will improve the average number of writes.

The rewriting code construction is best illustrated
using a two-dimensional example, shown in Fig. 2. Since
the dimension is n = 2, this corresponds to writing data
into 2 flash cells. The lattice has a generator matrix
G =[1 0;3 1]. The code consists of all lattice points
inside the square of volume (M D)™, where M and D
are two parameters, M = 5 and D = 2 in this example.
This code can write logy, M = log, 5 bits per cell into 2
flash cells. The lattice is then partitioned into D™ =4
blocks. Each block has a one-to-one mapping between
information and lattice points, so the overall code has
a one-to-four (in general, one-to-D™) mapping.

Here an encoding example is given. Note that each
block has a unique pseudorandom mapping. The orig-
inal information is denoted u, and this is mapped to a
“hashed” sequence a. Assume that the current state of
the memory is s = (4, 3) (indicated in the figure), and
the information to be written is u = (1, 3).

Each block is indexed by a vector d € {(0,0), (0,1),
(1,0),(1,1)}. For each d, the hashed sequence is com-
puted, and the candidate vector is found:

24
22
20
18
16
14
12
10

Average number of writes

N A~ OO ®
T T
4

Code rate R

Figure 3: Average number of word writes using the ES8
lattice, with ¢ — 1 = DM and code rate R = log, M.
Code rate R is in bits/cell.

code rate R = logy, M, and D was allowed to be a non-
integer. The most striking feature is that the number
of writes depends strongly upon gq.

Also shown in Fig. 3 is the average number of writes

influence on the minimum number of writes.

if hashing is not used, that is, the hash vector m is all-
d 1, d =1 d = (1,35) ! ’ :
gg (1); 3 E 3; . :{d} _ Eo’ig : i{d} _ 55% g; zeros. At low rates, the random hash increases the
(1’0) u=(1,3) = ald] = (4’ 1) = x[d] = (4’7') average number of writes. But as the rate increases,
(1’ 1):u=(1,3) - ald = (3’ 3) = x[d] = (87 7 this advantage diminishes. Note that the hash has no
]

These x[d] are indicated in Fig. 2 by “(A)”. For the first
candidate (1,3.5), the difference x[(0,0)] —s is negative
in the first component, and so this point cannot be
written, because values are only allowed to increase.
For each of the remaining three, the point x[(0,1)] is
the most suitable, and so it is selected as the point to
be written, x (indicated in the figure).

It is fairly clear that with the proposed construc-
tion, the minimum number of word writes is D. How-
ever, it is not so easy to determine the average number
of word writes. Naturally, there is a tradeoff between
code rate and the average number of writes, and this
is demonstrated in Fig. 3, obtained by computer simu-
lation. Values of ¢ were fixed, with ¢ = DM + 1. The

For more details, see Reference [2].

References

[1] B. Kurkoski, “The E8 lattice and error correction
in multi-level flash memory,” submitted to Inter-
national Conference on Communications, IEEE,
2011. Available http://arxiv.org/abs/1009.5764.
B. Kurkoski, “Rewriting codes for flash mem-
ories based upon lattices, and an example us-
ing the E8 lattice,” in Proceedings IEEE Global
Telecommunications Conference, (Miami, Florida,
USA), IEEE, December 2010. To appear. Avail-
able http://arxiv.org/abs/1007.1819.

101

3]

F. Sun, S. Devarajan, K. Rose, and T. Zhang, “De-
sign of on-chip error correction systems for multi-
level nor and nand flash memories,” Circuits, De-
vices Systems, IET, vol. 1, pp. 241-249, June 2007.
H. Nobukata and et al., “A 144-mb, eight-level
NAND flash memory with optimized pulsewidth
programming,” IEEE Journal of Solid-State Clir-
cuits, vol. 35, pp. 682-690, May 2000.

M. Grossi, M. Lanzoni, and B. Ricco, “A novel al-
gorithm for high-throughput programming of mul-
tilevel flash memories,” IEFEE Transactions on
Electron Devices, vol. 50, pp. 1290-1296, May
2003.

R. L. Rivest and A. Shamir, “How to reuse a
“write-once” memory,” Information and Control,
vol. 55, pp. 1-19, December 1982.

G. D. Cohen, P. Godlewski, and F. Merkx, “Lin-
ear binary code for write-once memories,” IEEE
Transactions on Information Theory, vol. 32,
pp. 697-700, September 1986.

A. Jiang, V. Bohossian, and J. Bruck, “Float-
ing codes for joint information storage in write
asymmetric memories,” in Proceedings of IEEE
International Symposium on Information Theory,
pp- 1166-1170, June 2007.

V. Bohossian, A. Jiang, and J. Bruck, “Buffer cod-
ing for asymmetric multi-level memory,” in Pro-
ceedings of IEEE International Symposium on In-
formation Theory, pp. 1186-1190, June 2007.

[10]

[11]

[12]

[13]

[14]

[15]

102

E. Yaakobi, A. Vardy, P. H. Siegel, and J. K.
Wolf, “Multidimensional flash codes,” in Proceed-
ings 46th Annual Allerton Conference on Com-
munication, Control, and Computing, (Monticello,
IL, USA), pp. 392-399, September 2008.

H. Finucane, Z. Liu, and M. Mitzenmacher,
“Designing floating codes for expected perfor-
mance,” in Proceedings 46th Annual Allerton Con-
ference on Communication, Control, and Comput-
ing, (Monticello, 1L, USA), September 2008.

A. Jiang and J. Bruck, “Information representa-
tion and coding for flash memories,” in Commu-
nications, Computers and Signal Processing, 2009.
PacRim 2009. IEEE Pacific Rim Conference on,
pp- 920-925, August 2009.

H.-A. Loeliger, “Averaging bounds for lattices and
linear codes,” IEEE Transactions on Information
Theory, vol. 43, pp. 1767-1773, November 1997.
U. Erez and R. Zamir, “Achieving log(1 + SNR)
on the AWGN channel with lattice encoding and
decoding,” IEEE Transactions on Information
Theory, vol. 50, pp. 2293-2314, October 2004.

N. Sommer, M. Feder, and O. Shalvi, “Low-
density lattice codes,” IEEE Transactions on In-
formation Theory, vol. 54, pp. 1561-1585, April
2008.

