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Abstract—A recent result has shown connections between
statistical learning theory and channel quantization. In this
paper, we present a practical application of this result to the
implementation of LDPC decoders. In particular, we describe a
technique for designing the message-passing decoder mappings
(or lookup tables) based on the ideas of channel quantization.
This technique is not derived from sum–product algorithm or any
other LDPC decoding algorithm. Instead, the proposed algorithm
is based on an optimal quantizer in the sense of maximization
of mutual information, which is inserted in the density evolution
algorithm to generate the lookup tables. This algorithm has low
complexity since it only employs 3–bit messages and lookup
tables, which can be easily implemented in hardware. Two
quantized versions of the min–sum decoding algorithm are used
for comparison. Simulation results for a binary–input AWGN
channel show 0.3 dB and 1.2 dB gains versus the two quantized
min–sum algorithms. On the binary symmetric channel also a
gain is seen.
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I. INTRODUCTION

The sum-product algorithm (SPA) also called belief–
propagation (BP) algorithm is an excellent decoding algorithm
for LDPC codes [1], but its efficient implementation in hard-
ware is a serious concern. As LDPC codes become more and
more widely used, reducing the power consumption of the
decoder remains a significant problem. A natural way to reduce
power consumption is to reduce the number of bits used to
represent the messages in a message-passing decoder. This
topic has been intensively studied in the past several years,
and some of the results are reviewed in the next section.

Recently, the problem of optimal quantization of commu-
nications channels has been shown to have a connection with
the problem of classification from statistical learning theory
[2]. A common classification problem deals with a Markov
chain X → Y

Q→ Z, where X is a variable of interest, Y is
an observation, Q is a function called a classifier and Z is the
classification, essentially an estimate of X [4]. A well-known
metric for classification is to minimize conditional entropy [3]:

min
Q

H(X|Z), (1)

which is equivalent to:

max
Q

I(X;Z) = H(X)−min
Q

H(X|Z), (2)

and moreover, this quantization can be performed efficiently
when X is binary [2]. In the case of channel quantization, X

is the channel input, Y is the channel output, and Z is the
quantized channel output.

The subject of this paper is the practical application of this
quantization method. In particular, we present an LDPC–LUT
decoding algorithm, with two distinctive characteristics: 1) it
is not derived from sum–product algorithm or other LDPC
decoding algorithms, and 2) it only uses lookup tables (or
decoding mappings), which are based on the maximization of
mutual information.

The idea of using lookup tables for LDPC decoding is
not new, but in this paper the technique for designing the
lookup tables is new. Mutual information is a reasonable
design criterion because the channel capacity is precisely a
maximization of mutual information.

Lookup tables are considered because they have a great
simplicity in their implementation as an array indexing opera-
tion. It is possible to use one lookup table per check/variable
node operation in the decoding process but, depending on
both the degree of the node and the message precision in
bits, the size of the lookup table can be large and consume
too many resources. To solve this problem we apply two
approaches. First, we perform a decomposition at the nodes,
which generates a set of two–input lookup tables, and second,
we use 3–bit per message, which reduces directly the size
of the lookup tables. The lookup tables are generated in the
context of density evolution [13]. Since the lookup tables are
built by the optimal quantizer presented in [2], the lookup
tables are locally optimal, in the sense of maximizing mutual
information at each decoding iteration; we cannot say anything
about global optimality over all iterations.

The remainder of the paper is organized as follows: in
Section II-A some previous work on LDPC message repre-
sentation is reviewed. In Section II-B, the quantizer which
maximizes mutual information is reviewed. In Section II-C,
notation on LDPC codes is given. In Section III, a density
evolution algorithm with quantization is described. In Section
IV, advantages of a decomposition of a lookup table are
described. In Section V, the simulation results are shown.
Finally, conclusions are stated in Section VI.

II. BACKGROUND

A. Previous Work

The efficient representation of messages in LDPC decoding
algorithm has been a topic of intensive study, due to its prac-
tical importance. Naturally, LDPC message–passing decoding



algorithms with high complexity have better performance than
low complexity algorithms. But low complexity algorithms
with a reasonable loss are desirable for reliable hardware
implementations because they have low power consumption,
reduced size and lower cost. This section describes some of
the previous work on this topic.

In [5], the normalized BP decoding algorithms with quan-
tized messages has performance close to BP, with a suitable
choice of normalization factor. In [6] a parity likelihood ratio
technique using 6 bits is presented for overcoming the BP
algorithm’s sensitivity to quantization effects.

Quantized LDPC belief-propagation decoders can be de-
signed by considering mutual information that produce a
nonuniform message quantization, which using four bits per
message is quite close to unquantized performance [7]. This
is significant since conventional uniform quantization requires
about six bits per message to achieve similar error perfor-
mance. But that technique required hand optimization.

On the other hand, the min–sum (MS) algorithm [8] has
an error performance just a few tenths of a decibel inferior to
SPA, and this is simpler for hardware implementation. Since
min–sum is less complex, in [9] the effects of clipping and
quantization on the performance of MS are studied.

In [10] a 3–bit Finite Alphabet Iterative Decoder (FAID)
was presented. FAIDs are designed using the knowledge of
potentially harmful subgraphs that could be present in a given
code. Results were presented for the binary symmetric channel
(BSC). On loopy graphs, performance better than BP was
obtained.

On the other hand, the bit–flipping algorithm [1], works
with hard information (1-bit messages) instead of soft infor-
mation (floating point messages), as the SPA and MS do. Work
on bit–flipping algorithm has also been described in [11] and
[12], although these algorithms’ error performance is still far
from that achieved by the MS algorithm.

B. Quantizer that maximizes mutual information

In this section, we briefly review the optimal quantization
algorithm that maximizes mutual information [2], since this is
applied to build the set of lookup tables and also to perform
the channel quantization.

The framework of this quantizer and its considerations
are as follows. Consider a conditional probability distribution
on Y given X (in some cases, this conditional probability
distribution represents a discrete memoryless channel (DMC)).
A quantizer Q maps B values of Y to K values of Z, which
is a new random variable (in the case of a DMC, this is the
quantized output). The alphabet size of X , Y and Z are 2
(binary), B and K respectively. Then, pj = Pr(X = j) and
Pb|j = Pr(Y = b|X = j) for j = 1, 2 and b = 1, . . . , B. The
case of interest and considered in this paper is when K < B.

Assuming Q as the set of all possible quantizers, the
optimal quantizer Q∗ that maximizes the mutual information
I(X;Z) between X and Z is:

Q∗ = argmax
Q∈Q

I(X;Z).

Therefore, Q∗ is a matrix of size K × B, where for each
distribution output b there is exactly one value k′, for which
Qk′|b = 1, and for all other values of k, Qk|b = 0 [2, Lemma
2]. For a given quantizer value k let Ak be the set of values
b for which Qk|b = 1. The quantizer is a mapping from B
values of Y to K values of Z. Under this mapping Ak is the
preimage of k. The sets Am and An are disjoint for m 6= n
and the union of all the sets is {1, 2, . . . , B}. For convenience
the algorithm is denoted as Q∗ = Quant(Pb|j ,K).

C. LDPC Codes

An LDPC code is defined by a Kc×N parity check matrix
H that has low density of 1’s (in the LDPC literature K is
used insted of Kc, but we previously used K to denote the
quantization levels in Section II-B, which is the same notation
used in [2]). When the H matrix that represents an LDPC
code has the same number of 1’s in each column and row, the
code is called a regular LDPC code, otherwise it is called an
irregular LDPC code. Throughout this work we shall consider
only binary regular LDPC codes with block length N , number
of parity bits no more than Kc, number of information bits at
least M = N −Kc, number of 1’s per column as dv (degree
of the variable node) and number of 1’s in each row as dc
(degree of the check node). Therefore, the rate of a regular
LDPC code is R ≥ 1 − dv

dc
, with equality when H is of full

rank.

III. DENSITY EVOLUTION WITH QUANTIZATION

The lookup tables are generated in the context of density
evolution [13]. Classical density evolution is restricted to
channels with certain symmetry properties. But here, arbitrary
and asymmetrical channels are allowed, and the optimized
decoding lookup tables, and thus the distributions, may be
asymmetrical even if the channel was symmetrical. Wang et
al. generalized density evolution to asymmetric channels [14].
They showed that while error rates are codeword–dependent,
it is sufficient to consider the evolution of densities only for
the two code bits, that is densities conditioned on X = 0 and
X = 1. The same method will be used here.

An arbitrary, binary-input DMC with input X and output
W is used for transmission. The channel transition probabili-
ties are denoted by r(0):

r(0)(x0, y0) = Pr(W = y0|X = x0). (3)

At iteration `, the check node with degree dc finds the
check–to–variable node messages L from alphabet L using
dc − 1 incoming messages V from alphabet V , for each
outgoing message L, using a mapping function Ψ

(`)
c :

Ψ(`)
c : Vdc−1 → L. (4)

This step is shown diagrammatically in Fig. 1–(a).

Similarly, at iteration `, the variable node with degree dv
finds the variable–to–check messages V using the channel
value W and incoming messages L for each outgoing message
V using a mapping function Φ

(`)
v :

Φ(`)
v :W ×Ldv−1 → V. (5)
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Fig. 1. Decomposition of the nodes. (a) Check node update operation. (b) Variable node update operation. (c) Hard decision operation. (d) Decomposition of
the check node update operation Ψ

(`)
c into the set of lookup tables ψ(`)

1 , . . . , ψ
(`)
dc−2

. (e) Decomposition of the variable node update operation Φ
(`)
v into the

set of lookup tables φ(`)1 , . . . , φ
(`)
dv−1

. (f) Decomposition of the hard decision operation Γ
(`)
c into the set of lookup tables γ(`)1 , . . . , γ

(`)
dv

.

This step is shown diagrammatically in Fig. 1–(b).

At iteration `, the variable node with degree dv calculates
the estimate x̂ ∈ {0, 1} using the channel value W and the dv
incoming messages L:

Γ
(`)
h :W ×Ldv → {0, 1}. (6)

This step is shown diagrammatically in Fig. 1–(c).

On iteration `, the probability distribution for V is
r(`)(x, y) = Pr(V = y|X = x) with y ∈ V , and the
probability distribution for L is: l(`)(x, y) = Pr(L = y|X = x)
with y ∈ L.

The following method finds the message-passing decoding
lookup tables Ψc (check node update) and Φv (variable node
update), as well as the probability distributions r and l using
quantization. In particular, for each iteration and each node
type, there are four steps: (a) given the node input distribution,
a cross product distribution is found, (b) the quantization
algorithm produces a quantizer to K levels, (c) the reduced
distribution is found, which is used in the next step of the
density evolution and (d) the decoding lookup tables are found
for each quantizer.

Two functions fc and fv are of interest when decoding
LDPC codes. At the check node:

fc(x1, . . . , xdc−1) = x1 + · · ·+ xdc−1 (mod 2) (7)

and at the variable node:

fv(x0, . . . , xdv−1) =

{
0 if x0 = x1 = · · · = 0
1 if x0 = x1 = · · · = 1

otherwise undefined

where xi are binary values. It is useful to use a single symbol
that is a concatenation of the component messages in the cross-
product distribution. In the context of the check node, let y′
denote the concatenation.

y′ = (y1, y2, . . . , ydc−1) (8)

where y′ ∈ Vdc−1. And in the context of the variable node,
let y′ denote the concatenation:

y′ = (y0, y1, y2, . . . , ydv−1) (9)

where y′ ∈ W ×Ldv−1.

Step (a) is to find the cross-product distributions l̃(`)(x, y′)
and r̃(`)(x, y′), given by:

l̃(`)(x, y′) =

(
1

2

)dc−2 ∑
x:fc(x)=x

dc−1∏
i=1

r(`−1)(xi, yi) (10)

where x = (x1, x2, . . . , xdc−1), and

r̃(`)(x, y′) =
∑

x:fv(x)=x

r(0)(x0, y0)

dv−1∏
i=1

l(`−1)(xi, yi) (11)

where x = (x0, x1, . . . , xdv−1).

Step (b). The matrix-form quantizers Q(`)
c and Q

(`)
v are

produced at each iteration `, given by:

Q(`)
c = Quant(l̃(`),K) and (12)

Q(`)
v = Quant(r̃(`),K), (13)

where Quant(·, ·) is the quantization algorithm described in
Section II-B. Step (c) is to find the reduced distributions as:

l(`) = Q(`)
c l̃(`) and (14)

r(`) = Q(`)
v r̃(`). (15)

Step (d) is to find the decoding maps, which are given by:

Ψ(`)
c (y′) = y if Q(`)

c (y, y′) = 1 and (16)

Φ(`)
v (y′) = y if Q(`)

v (y, y′) = 1. (17)
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Fig. 2. Bit–error rate (—-) and word–error rate (– –) achieved by the proposed
3–bit LDPC–LUT (2), 3–bit MS–VQ (∗) and 3–bit MS–CQ (◦).

Note that the quantization algorithm may also be used to
design the lookup table Γ

(`)
h , which perform the hard decision

on x. For each iteration, repeat the variable node steps (a)–(c),
using all dv inputs and quantize to K = 2 levels to make hard
decision.

The decoding process is the same as the conventional
although Ψc, Γh and Φv are decomposed in a set of smaller
lookup tables (see decomposition showed in Fig. 1, item d) to
f) )for reducing complexity, according to [15].

IV. LOOKUP TABLES FOR LOW COMPLEXITY DECODING

Lookup tables are desirable for hardware implementation
since they can be implemented in a small amount of memory as
an array indexing operation. Furthermore, the time processing
required to read a memory can be significantly less than
to compute conventional operations such as multiplication,
addition. Since the main goal of this work is to propose a
message–passing decoding algorithm with good characteristics
and features for implementation, it is assumed that Ψ

(`)
c , Φ

(`)
v

and Γ
(`)
h are implemented as lookup tables.

Consider one lookup table for each function Ψ
(`)
c , Φ

(`)
v and

Γ
(`)
h , which receives d incoming messages. Note that the size

of the lookup table is subjected to the degree of the node.
Consider dv ≥ 3 and dc ≥ 4 for different LDPC codes
of interest [16]. The number of memory addresses for the
lookup tables Ψ

(`)
c , Φ

(`)
v and Γ

(`)
h is |V|dc−1, |L|dv and |L|dv+1

respectively. Note that the number of memory addresses is
exponential in the degree of the node. Since the decoding
process is iterative, the memory space needed to save the
lookup tables Ψ

(`)
c , Φ

(`)
v and Γ

(`)
h can become unpractical, even

for a serial LDPC decoding implementation.

For this reason we perform a decomposition of each large
lookup table Ψ

(`)
c , Φ

(`)
v and Γ

(`)
h into a set of smaller two–

input lookup tables, this allows a reduction in the memory
requirements for the implementation (the number of memory

addresses using this decomposition is linear in the degree of
the node). The decomposition also facilitates the identification
of patterns in the tables as iterations progress, which can be
useful for resource management in hardware.

V. SIMULATION RESULTS

For all simulation results, the maximum number of itera-
tions was fixed at 25. The alphabets used for the lookup tables
in the 3–bit LDPC–LUT decoding algorithm are V = L =
{1, 2, . . . , 8} either using the binary–input AWGN channel
or binary symmetric channel, this means that, any decoding
message is represented by 3–bit.

A. Simulation results for binary–input AWGN channel

Because we are proposing a low complexity LDPC decod-
ing algorithm, the min–sum decoding algorithm was consid-
ered for comparison.

First, two types of quantization are described.

• In constant quantization (CQ), the boundaries
a∗1, . . . , a

∗
K−1 are optimized using σ∗, the noise

threshold value found for a given rate given by
the density evolution algorithm in Section III. These
boundaries are then used, independently of the signal–
to–noise ratio, in the simulation.

• In variable quantization (VQ), the boundaries
a∗1, . . . , a

∗
K−1 are optimized for each signal–to–noise

ratio in the simulation.

Employing CQ and VQ we compared with two 3–bit min–
sum decoding algorithms:

1) 3–bit MS–CQ, this algorithm uses CQ for both the
channel quantization and the decoding message quan-
tization.

2) 3–bit MS–VQ, this algorithm uses VQ for both
the channel quantization and the decoding message
quantization.

For the AWGN channel simulation results we considered
the code (N,Kc) = (2640, 1320) with rate 1/2 [16], and
channel quantization levels K = 4. The threshold used for
CQ is σ∗ = 0.83.

Fig. 2 shows the bit–error rate and word–error rate results
for the proposed 3–bit LDPC–LUT decoding algorithm and the
two quantized versions of the min–sum decoding algorithm. In
this plot, we can see that at 10−5 the bit–error rate achieved
by the 3–bit LDPC–LUT (2) outperforms to that achieved by
the 3–bit MS–CQ (◦) by around 1.2 dB. For the word–error
rates achieved at 10−4, we can observe a gain of 1 dB for
the 3–bit LDPC–LUT decoding algorithm (2) over the 3–bit
MS–CQ decoding algorithm (◦).

The second comparison in Fig. 2, is between the 3–bit
LDPC–LUT (2) and the 3–bit MS–VQ (∗). We can see the
benefit that the VQ represents in the decoding process by
observing the gain that exists between the 3–bit MS–VQ (∗)
and the 3–bit MS–CQ (◦).

Even though 3–bit MS–VQ shows the better error rate
performance of the two quantized versions of the min–sum
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Fig. 3. Bit–error rate (—-) and word–error rate (– –) achieved by the proposed
3–bit LDPC–LUT (2) and the 3–bit min–sum (∗) over the BSC.

decoding algorithm, this does not outperform the error rate
performance achieved by the 3–bit LDPC–LUT decoding
algorithm (2).

In Fig. 2 at 10−7 the proposed algorithm (2) has a bit–
error gain of around 0.3 dB versus the bit–error rate achieved
by the 3–bit MS–VQ (∗). In the same graph for the word–error
rate at 10−4 also a gain of around 0.3 dB achieved by the 3–
bit LDPC–LUT decoding algorithm (2) versus that achieved
by the 3–bit MS–VQ (∗) decoding algorithm is seen.

Although the error rate performance of the 3–bit LDPC–
LUT is a few tenths better than that achieved by the 3–bit
MS–VQ, it is important to emphasize that the 3–bit MS–VQ
is more complex, since it uses distinct quantization boundaries
for each SNR while the lookup tables used by the 3–bit LDPC–
LUT are the same for any SNR.

B. Simulation results for BSC

For the simulation results on the binary symmetric channel
(BSC), we use the code (N,Kc) = (1000, 250) with rate
1/4 [16]. Since we consider a BSC with error probability p,
the channel alphabet is W = {0, 1}. In this case the noise
threshold is p = 0.156 with which the lookup tables were
built. In this case, we only consider the min–sum decoding
algorithm with variable quantization (3–bit MS–VQ), since
this quantization in Section V-A was shown to be the most
effective for bit–error rate and word–error rate comparison.

In Fig. 3 the bit–error rate and word–error rate performance
achieved by both the 3–bit LDPC–LUT and the 3–bit MS–
VQ is shown. In this figure we can note a favorable gap for
the proposed 3–bit LDPC–LUT decoding algorithm (2) with
respect to the quantized 3–bit MS–VQ decoding algorithm (∗).

VI. CONCLUSIONS

We proposed a 3–bit LDPC–LUT decoding algorithm,
which is based on both 3–bit messages and lookup tables that
maximize mutual information. The 3–bit LDPC–LUT is locally

optimal in the sense of maximizing mutual information for
each iteration, although we cannot say anything about global
optimality.

The proposed algorithm has low complexity, since the
lookup tables are desirable for VLSI implementation due to the
fact that these can be implemented as a simple array operation
and can also be easily implemented in parallel.

Through simulations, we showed that the 3–bit LDPC LUT
has better decoding performance than two quantized versions
of min–sum decoding algorithm over either the binary–input
AWGN channel or BSC.
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