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Abstract—We investigate the value of MMSE scaling for
practical lattice codes. For ideal lattices, MMSE scaling has been
shown to be a key ingredient in achieving the capacity of the
AWGN channel. We demonstrate that MMSE scaling enhances
the performance, particularly at low SNR, for practical lattice
codes. For example, a dimension n “ 10000 LDLC lattice exhibits
approximately 0.6 dB gain when MMSE scaling is used for a rate
of 1 bit/dimension. Furthermore, we provide a novel derivation of
the MMSE scaling rule, showing that it emerges naturally from
principles of belief propagation decoders which account for the
transmit power constraint.

I. INTRODUCTION

In the search for structured codes for continuous channels,
researchers have shown that several constructions of lattice
codes achieve the capacity of the point-to-point AWGN chan-
nel. First, it was shown that an appropriate sequence of lattices,
intersected with a “thin” shell corresponding to the transmit
power constraint, form a capacity-achieving codebook [1].
Then, it was shown that, under a near maximum-likelihood
decoding rule, lattices intersected with a hyperspherical shap-
ing region achieve capacity [2]. In each case, the decoding
rule is rather complex and eliminates most of the advantages
promised by structured codes.

It was then shown that, under a (relatively) low-complexity
lattice decoding rule, in which codewords are mapped to the
nearest lattice point without regard for shaping, rates below
1{2 log2pSNRq are achieved; however, this falls well short of
capacity when the SNR is small [3]. Finally, it was shown that
lattice decoding can achieve the full capacity when the receiver
scales the incoming signal prior to decoding. In particular, the
receiver scales the signal by the coefficient corresponding to
optimal MMSE estimation.

Since the advent of capacity-achieving lattice codes, re-
searchers have searched for lattice codes suitable for practical
implementation [4]–[6]. At present, such codes employ simple
lattice decoding without regard for the shaping region, which
[3] predicts has poor performance at low SNR. Furthermore,
it is unclear whether the MMSE scaling proposed in [7]
improves performance in practical codes, or if it is only a
proof technique.

In this paper, we show that MMSE scaling is beneficial
for practical, finite-dimensional lattices. We focus on low-
density lattice codes or LDLCs, for which efficient power-
shaping algorithms, as well as low-complexity lattice decoders,
exist. We show experimentally that the use of MMSE scaling
improves performance for lattice codes of moderate block
length, particularly for low SNR and low rates. Indeed, scaling

offers improvements of up to 0.6dB over standard decoders.
Finally, we provide an alternate derivation of the MMSE
scaling rule from a belief propagation perspective. We show
that if we modify the iterative lattice decoder to account for the
transmit power constraint, the result is equivalent to applying
MMSE scaling at the receiver. That is, MMSE scaling emerges
naturally from the design of iterative decoders over power-
constrained channels.

II. PRELIMINARIES

A. System Model

We consider a standard additive white Gaussian noise
(AWGN) channel in which the transmitter sends a signal x P
Rn, constrained to have average transmit power }x}2 ď nPx.
the receiver obtains the transmitted signal, corrupted by noise:

y “ x` z (1)

where z is AWGN with per-element variance Pz .
Each transmit signal x is a codeword from a finite codebook

C Ă Rn. Define the rate of the codebook as

R “
log2 |C|
n

, (2)

measured in bits per channel use. The receiver uses a decoder
D : Rn Ñ C that maps received signals y to estimates x̂ of
the transmitted codeword. We leave the decoder abstract for
now; later on we consider several specific examples. Define
the average symbol error probability as

Pe “
1

|C|
ÿ

xPC
Prpx̂ ‰ x|xq, (3)

where each term in (3) is the probability of a decoding error
supposing that the codeword x is sent.

B. Lattice Codes

We focus on codebooks constructed from lattices. An n-
dimensional lattice Λ is a discrete additive subgroup of Rn.
Any lattice Λ may be expressed in terms of a (non-unique)
generator matrix G P Rnˆn by the following definition:

Λ “ tλ “ Gb : b P Znu. (4)

We introduce a few basic definitions used throughout the
paper; for further details about lattice codes we refer the reader
to [8]. The lattice quantizer QΛ maps any point in Rn to the
nearest lattice point in Λ in the Euclidean sense, with ties



broken arbitrarily:

QΛpxq “ arg min
λPΛ

}λ´ x}2. (5)

The fundamental Voronoi region of Λ is the region of Rn
closer to the origin than to any other lattice point:

V “ tx : QΛpxq “ 0u (6)

The mod operation with respect to Λ returns the quantization
error:

rxsmod Λ “ x´QΛpxq. (7)

The mod operation partitions Rn into Voronoi regions asso-
ciated with each λ P Λ, or the subsets of Rn closest to each
λ.

Next, V “ VolpVq denotes the volume of the fundamental
Voronoi region. The second moment of a lattice, defined as

σ2
Λ “

1

VolpVq
.
1

n

ż

V
}x}

2
dx, (8)

specifies the average power of a random variable uniformly
distributed across V . The normalized second moment (NSM)
of Λ is given by

GpΛq “
σΛ

V
2
n

. (9)

For any lattice, 1
2πe ď GpΛq ď 1

12 , where the minimum
value corresponds to a hyperspherical Voronoi region, and the
maximum corresponds to a hypercube. Poltyrev [9] showed
that there exists a sequence of lattices such that GpΛq Ñ 1

2πe
as nÑ8.

Suppose codewords are lattice points in Λ and the receiver
uses QΛpyq as the decoder. Then, an error occurs precisely
when the noise escapes the fundamental Voronoi region, and
the symbol error probability is

Pe “ Prpz R Vq (10)

Then, we define the volume to noise ratio (VNR) as

µpΛ, Peq “
V

2
n

Pz
, (11)

where Pz is the noise variance such that the probability of error
is Pe. Poltyrev [9] showed also that there exists a sequence
of lattices such that µpΛ, Peq Ñ 2πe, which is the maximum
theoretical value.

C. Low-Density Lattice Codes

A low-density lattice Λ Ă Rn is defined by a generator
matrix G P Rnˆn such that the inverse G´1 “ H exists and
is sparse [4]. In order to construct a finite-rate codebook, we
choose a finite subset of the low-density lattice Λ, defined by
a subset of Zn to which we apply the generator matrix G.
Define the set

L “ tb P Zn : 0 ď bi ď Li ´ 1u, (12)

where each Li is a positive integer. Then we define the
codebook

C “ tGb : b P Lu Ă Λ. (13)

Observing that |L| “
śn
i“1 Li, the rate of this code is

R “

řn
i“1 log2pLiq

n
. (14)

In general, the codewords in C do not obey the power
constraint, so we must employ shaping methods in order to
create a suitable codebook. In particular, we employ shaping
methods developed in [6] for LDLCs. They require LDLCs
with a lower-triangular parity-check matrix H, which enables
fast computation and manipulation of lattice points. As in
[7], the shaping algorithms are based on nested lattices. In
hypercube shaping, the shaping lattice Λ1 is a scaled integer
lattice; in nested lattice shaping Λ1 is an integer multiple
of the coding lattice Λ. In each case, the codewords are
x “ rcsmod Λ1 for lattice points c “ C. See [6] for details.

Low-density lattice codes can be decoded with a linear-
complexity, iterative algorithm similar to those for low-density
parity check codes [4], [5], [10]. Here we briefly sketch the
algorithm from [5], which is based on a Gaussian-mixture
approximation.

The message-passing algorithm has two types of nodes.
Let Vk be the kth variable node, which is ensures that the
estimated codeword matches the kth element of the received
signal, and let Cl be the lth check node, which ensures that
the lth element of Hx is an integer. Variable and check
nodes iteratively exchange “messages”, which are density
functions of the codeword from each node’s vantage point.
These messages are computed as follows.

‚ Let yk “ xk ` zk be the kth element of y. With knowl-
edge only of yk, the density of xk is N pyk, Pzq. The
variable node Vk sends this density to every connected
check node, or every node Cl such that Hk,m ‰ 0.

‚ Each check node Cl enforces the integer constraint. Given
the incoming densities from each connected variable
node and the integer constraint, the density of xk is
the convolution of the incoming densities, scaled down
by Hk,l, and periodically extended by the integers. For
tractability, the scaled convolution is approximated by a
Gaussian density, and only a few integer replicas are
computed, resulting in a Gaussian mixture. For each
connected Vk, the approximate density is computed and
sent.

‚ Returning to the variable node Vk, the density of xk
given yk and the incoming densities is the product of
the incoming densities and the Gaussian N pyk, Pzq. The
variable node approximates the product by a Gaussian
distribution, and sends the result to each connected check
node.

‚ After sufficiently many iterations, the variable nodes Vk
take the product of the incoming densities, and find
the peak values x˚k of the result. Finally, the decoder
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Fig. 1. LDLC Gaussian approximation algorithm.

estimates the information vector b by choosing

b˚ “ tHx˚s, (15)

where t¨s denotes element-wise rounding to the nearest
integer.

Fig. 1 illustrates the Gaussian mixture LDLC algorithm
where it shows the operation of mth check node and kth

variable node. We refer the reader to [4], [5], [10] for details.
We emphasize that this decoder does not consider the shap-

ing region in choosing the optimum codeword, which increases
the probability of error. As we show in the next section, the use
of scaling can greatly improve error performance, particularly
at low SNR.

III. SCALING FOR LDLCS

A. Scaling Algorithm

The difficulty with lattice decoding is that it is easy for the
receiver to erroneously decode points near the boundary of the
shaping region to lattice points that are not in the codebook.
As the dimension increases, a rather large fraction of the
codewords are near the boundary, and the error performance
degrades. Scaling obviates this problem by “inflating” the
equivalent lattice so that codewords are further from the
boundary. However this advantage comes at the cost of self-
noise, as we describe in the nest subsection.

Scaling itself is a simple process.The received signal y, as
given in (1), is multiplied by α at the receiver:

y1 “ αy “ αpx` zq

“ x` z1 (16)

where the effective noise z1 “ pα´1qx`αz. Then it uses the
LDLC decoder with input probability distribution N pαy, pα´
1q2Px ` α

2Pzq.

B. Analytical Evaluation

The achievable rate for optimal nested lattice codes with
large block length is known and equal to AWGN capacity [7].
In this section we analyze the achievable rates of practical
lattice codes, both with and without MMSE scaling. Let

generator matrices G and LG correspond to the fine lattice Λ1

and coarse lattice Λ2. Let V1 and V2 be the Voronoi regions
of Λ1 and Λ2 respectively. We first obtain the second moment
of effective noise z1 as given in (16)

σ2
z1 “

1

n
Er}p1´ αqx` αz}2s

“ p1´ αq2Px ` α
2Pz (17)

Simple optimization shows that the average power of the effec-
tive noise is minimized when α equals the MMSE coefficient

α “ αm “
Px

Px ` Pz
(18)

For this α, the corresponding effective noise power is σ2
z1 “

PxPz{pPx `Pzq. If the receiver uses an unconstrained lattice
decoder on y1, the error probability is

Pe “ Prrz1 R V1s (19)

According the definition of VNR, the volume of the fine lattice
should be V1 “

“

µpΛ1, Peqσ
2
z1

‰
n
2 for a target probability of Pe.

Now we find the achievable rate

R “
1

n
log2

ˆ

V2

V1

˙

(20)

According the the definition of normalized second moment

Rs “
1

2
log2

„

Px{GpΛ2q

µpΛ1, Peqσ2
z1



“
1

2
log2

ˆ

1`
Px
Pz

˙

´
1

2
log2 rGpΛ2qµpΛ1, Peqs (21)

When block length n Ñ 8, there exists a good nested
lattice pair for quantization and AWGN coding such that
GpΛ2q Ñ 1{2πe and µpΛ1, Peq Ñ 2πe. In that scenario
1
2 log2 rGpΛ2qµpΛ1, Peqs Ñ 0; hence, lattice codes achieve
the AWGN capacity [7].

However, in practice GpΛ2q ą 1{2πe due suboptimal
shaping, and µpΛ1, Peq ą 2πe due to suboptimal coding. Let
βs and βc be the shaping and coding loss for any practical
lattice scheme in general. Then we obtain second moment of
Λ2 and VNR for LDLC

GpΛ2q “
βs

2πe
, (22)

µpΛ1, Peq “ 2πeβc (23)

Then, we find the achievable rate for practical lattices, such
as LDLCs, in terms of their shaping and coding loss. With
MMSE scaling,

Rs “
1

2
log2

„

Px{GpΛ2q

µpΛ1, Peqσ2
z1



“
1

2
log2

ˆ

1`
Px
Pz

˙

´
1

2
log2 pβsβcq (24)

If we use α “ 0, that is, if we do not employ scaling, the rate
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is

Rns “
1

2
log2

ˆ

Px
Pz

˙

´
1

2
log2 pβsβcq (25)

Example: For LDLC for block length equal to 10000 and rate
= 2.935bits/dimension the shaping and coding combine loss
is roughly 2.8dB for hypercube shaping and 2.4dB for nested
lattice shaping [6].

We obtain the transmit power requirement to achieve fixed
rate of R for scaling and non-scaling cases assuming noise
variance Pz “ 1 without of loss of generality.

P sx “ 22Rβsβc ´ 1 (26)

Pnsx “ 22Rβsβc (27)

In order to observe how scaling is effective for different rates,
we have plotted Pnsx {P

s
x in dB scale for different rates in

Figure 2. Three cases are plotted; 1) The perfect nested lattice
scenario where βs “ βc “ 1, 2) The hypercube shaping
scenario where βs “ 2πe{12 (1.53dB) and no coding loss
and 3) The hypercube scenario with βc “0.5dB 1.

It is observed in Figure 2 that the scaling plays a significant
impact for low rates even for the practical lattice codes with
shaping and coding losses due to the addition of 1 in the
achievable rate expression. One can observe that with the
increase of coding and shaping losses, the power gain with the
use of scaling decreases. This is due to the fact that increase of
losses, increases the power requirement to achieve the fix rate
R irrespective of scaling. Hence, with the increase of transmit
power, the effect of scaling is reduced.

C. Lattice Scaling Using Belief Propagation

Belief propagation principles can be applied to obtain the
MMSE scaling coefficient given by Erez and Zamir. While
the MMSE scaling coefficient was obtained using information

1For LDLC with block length 100000, the coding loss is 0.5dB

Vk

N p0, Pxq N pyk, Pzq

(a)

Vk

yk “ xk ` zk

αm

N
´

αmyk,
PxPz
Px`Pz

¯

(b)

Fig. 3. (a) Modification of the “belief” at the variable node to include the
transmit power constraint Px. (b) Equivalent representation, after multiplying
by Gaussians.

theoretic approaches [7], the significance here is that belief
propagation principles alone can be used to arrive at the same
result [11]. Recall that when the MMSE scaling coefficient
αm “ Px{pPx`Pzq is used, the effective noise is PxPz{pPx`
Pzq [7, eqn. (29)].

The belief propagation perspective is as follows. The belief
propagation decoder should be modified to take into account
the transmitted codebook. In the ideal case, the transmitted
signal is a mean zero, variance Px Gaussian, due to the shaping
region. Under belief-propagation principles, this contribution
of the shaping region should be multiplied at each variable
node k, since it is information about the transmitted signal
xk. Because this message is iteration-independent, multiply the
shaping region message and the channel message N pyk, Pzq
to obtain a new variable node input message, as in Fig. 3-(a).
Since both are Gaussian, the product will also be a Gaussian
(exactly):

N py1k, P 1zq “ N p0, Pxq ˆN pyk, Pzq, (28)

with mean y1k and variance P 1z . The mean and variance of the
new Gaussian can be found as:

y1k “
Px

Px ` Pn
yk, (29)

and

P 1z “
PxPz
Px ` Pz

. (30)

Observe that the new mean y1k is scaling by the MMSE coeffi-
cient, that is, we found the MMSE coefficient by using belief-
propagation arguments alone. In addition, the corresponding
new variance is the same as the effective noise found using
information theoretic arguments. This is illustrated in Fig. 3-
(b).

IV. NUMERICAL SECTION

Fig. 4 shows the symbol error rate versus average SNR
for block length n “ 100. We have fixed the rate to 0.65
bits/dimension by having zeros for last 35 integer locations and
Li “ 2,@i “ t1, . . . 65u. One can notice a better symbol error
rate (SER) performance when scaling is used. We observe
„ 1dB gain by scaling before decoding. This is encouraging
since this gain is obtained without adding any complexity to
existing LDLC decoding algorithm. Moreover, nested lattice
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shaping (with scaling) curve shows it has close to „ 2dB gain
over hypercube shaping without scaling.

Fig. 4 illustrates the SER versus average SNR for different
α. We have plotted for α “ αm`r0 `0.05 ´0.02 ´0.05 ´
0.1 ´ 0.15s. Since we have not used dither, effective noise is
correlated with signal [7]. Due to this correlation, the optimal
α is not equal to αm for small dimension as shown in [7],
however, for large dimensions α Ñ αm. It is observed from
the figure that αm outperforms other cases and as expected the
SER increases as α deviates from αm. Hence, we conclude
that the optimal α “ αm for dimension as small as n “ 100.

The symbol error rate versus average SNR for n “ 10000
is plotted in Fig. 6. The degree of rows of H and constellation
sizes are selected as in [6] which correspond to R “ 1
bits/dimension and used nested lattice shaping. We observe
„ 0.6 dB performance gain with the use of scaling. Further,
it is only „ 0.7dB away from the bound of uniform input
distribution without scaling. We have to note that due the use
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Fig. 6. Symbol error rate versus SNR for n “ 10000 with R “

1bits/dimension.

of coarse constellation for the unprotected integers, there is a
power loss of „ 0.8dB and this loss can be further reduce by
selecting better constellation sizes. We conclude that with the
use of scaling, the LDLC even perform well at low rates.

V. CONCLUSION

We have studied the value of MMSE scaling for low density
lattice codes, showing significant performance improvement
at low SNR and low rates. Further, we have shown that,
belief propagation principles alone can be applied to obtain
the MMSE scaling coefficient by considering the shaping
region. MMSE scaling has potential to substantially improve
the performance of practical lattice schemes.

REFERENCES

[1] R. de Buda, “Some optimal codes have structure,” IEEE J. Select Areas
Commun., vol. 7, no. 6, pp. 893–899, Aug. 1989.

[2] R. Urbanke and B. Rimoldi, “Lattice codes can achieve capacity on
the AWGN channel,” IEEE Trans. Inform. Theory, vol. 44, no. 1, pp.
273–278, Jan. 1998.

[3] H.-A. Loeliger, “Averaging bounds for lattices and linear codes,” vol. 43,
no. 6, pp. 1767–1773, Nov. 1997.

[4] N. Sommer, M. Feder, and O. Shalvi, “Low-density lattice codes,” IEEE
Trans. Info. Theory, vol. 54, no. 4, pp. 1561–1585, July 2008.

[5] B. Kurkoski and J. Dauwels, “Message-passing decoding of lattices
using gaussian mixtures,” in Information Theory, 2008. ISIT 2008. IEEE
International Symposium on, 2008, pp. 2489–2493.

[6] N. Sommer, M. Feder, and O. Shalvi, “Shaping methods for low-density
lattice codes,” in Information Theory Workshop, 2009. ITW 2009. IEEE,
2009, pp. 238–242.

[7] U. Erez and R. Zamir, “Achieving 1
2
logp1 ` SNRq on the AWGN

channel with lattice encoding and decoding,” IEEE Trans. Inform.
Theory, vol. 50, no. 10, pp. 2293–2314, Oct. 2004.

[8] R. Zamir, “Lattices are everywhere,” in Information Theory and Appli-
cations Workshop, 2009, San Diego, CA, Feb. 2009, pp. 392–421.

[9] G. Poltyrev, “On coding without restrictions for the AWGN channel,”
IEEE Trans. Inform. Theory, vol. 40, no. 2, pp. 409–417, Mar. 1994.

[10] Y. Yona and M. Feder, “Efficient parametric decoder of low density lat-
tice codes,” in Information Theory, 2009. ISIT 2009. IEEE International
Symposium on, 2009, pp. 744–748.

[11] H.-A. Loeliger, Personal communication, 2008.


