Notes on Indexing Cosets of Lattice Codes

Brian M. Kurkoski Japan Advanced Institute of Science and Technology, Nomi, Japan kurkoski@jaist.ac.jp

Let Λ_c and Λ_s be two lattices in the *n*-dimensional Euclidean space. If $\Lambda_s \subseteq \Lambda_c$, then Λ_c/Λ_s is a quotient group over the set of cosets. If the coset leaders C are those set elements inside the zero-centered Voronoi region of Λ_s , then C is a finite lattice code with a sphere-like distribution, which is highly suitable for coding on the AWGN channel. In addition, the group property makes the code suitable for physical layer network coding, compute-and-forward relaying and so forth.

Nested lattice codes are a common choice for constructing C. If $\Lambda_s = M\Lambda_c$ where $M \ge 2$, then all of the above properties are obtained. In addition, the indexing operation is simple — indexing means mapping the information (a finite subset of \mathbb{Z}^n) to C. However, $\Lambda_s = M\Lambda_c$ may not always be a good choice. For example, Λ_c may not simultaneously be good for coding and shaping, or there may be complexity constraints associated with performing the shaping operation. If Λ_s is not a scaled version of Λ_c , but $\Lambda_s \subseteq \Lambda_c$ still holds, then code C exists, but the indexing operation is not necessarily simple.

The subject of this talk is an indexing scheme for the cosets of Λ_c/Λ_s . Given a generator matrix for Λ_s and a check matrix for Λ_c , a condition is given on the existence of a simple indexing scheme. This serves as a guide for practical schemes, where for example, the shaping lattice Λ_s may be fixed as a well-known lattice with a low-complexity shaping algorithm (for example E_8), and the coding lattice Λ_c has some freedom in the design parameters (for example, the non-zero coefficients for a low-density lattice code).

This work is supported in part by the Ministry of Education, Science, Sports and Culture; Grant-in-Aid for Scientific Research (B) number 26289119.