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Abstract— For decoding low-density parity-check (LDPC)
codes on discrete memoryless channels, a method to quantize
messages and to find message-passing decoding functions for
the variable and check nodes is developed. These are used
to obtain noise thresholds by density evolution. The message-
passing decoding alphabet is restricted to be discrete with a
fixed maximum alphabet size. Discrete quantization is required
to obtain this fixed alphabet size; a greedy algorithm which uses
the mutual information between the code bit and message is
presented. It is argued that using this message-passing decoding
framework is more efficient for approaching channel capacity
than simply quantizing the belief-propagation algorithm. This
method is evaluated using regular LDPC codes on the binary
symmetric channel. Using a maximum alphabet size of 16 (4
bits), noise thresholds close to those of belief propagation are
obtained.

I. INTRODUCTION

Low-density parity check codes allow for reliable com-
munications arbitrarily close to the theoretical capacity of
a number of channels models [1]. The decoding algorithm
for LDPC codes iteratively passes messages between variable
nodes and check nodes. At each node, outgoing messages are
computed from incoming messages. Under belief-propagation
(or sum-product) decoding, the messages are probabilities,
and the node implements functions derived from properties
of probability e.g. Bayes’ rule. Belief propagation decoding
is bit-error optimal on cycle-free graphs, and has excellent
performance on graphs even with cycles [2] [3]. Belief-
propagation decoding, or an algorithm derived from it, is
widely used in practice.

However, in their landmark paper on LDPC codes, Richard-
son and Urbanke described a more general message-passing
decoding of LDPC codes, where the messages are from an
arbitrary alphabet, and the check and variable nodes have
arbitrary decoding mappings from input alphabets to output
alphabets [4]. Belief-propagation decoding is the most impor-
tant example of message-passing decoding. Message-passing
decoding is reviewed in Section II.

The subject of this paper is the development of discrete
message-passing decoding mappings which are not derived
from quantized belief-propagation, and the determination of
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the corresponding noise thresholds. A reasonable design crite-
ria is to maximize the mutual information between a code bit
and its message, since the goal is to communicate as close
as possible to channel capacity, and channel capacity is a
maximization of mutual information. Further, EXIT charts, an
iterative decoding analysis tool, are also based upon mutual
information [5]. A discrete memoryless channel is assumed,
and the message alphabets are also discrete.

Before discussing density evolution, the quantization of
the output of a discrete memoryless channel is considered.
Specifically, an arbitrary discrete memoryless channel has
binary inputs X and output Y . Then Y is quantized to another
variable Z. The quantizer should be selected to maximize
mutual information I(X; Z), subject to the constraint that
the alphabet size of Z is no larger than a fixed value,
M . We propose a greedy combining quantization algorithm,
where maximizing mutual information is used as the one-step
combining criteria; it is not, however, guaranteed to be globally
optimal. This quantization problem and the greedy combining
approach are presented in Section III.

The rest of the paper is given to using this quantization
approach to obtain message distributions and noise thresholds
by density evolution. Each step of decoding is decomposed
into a sequence of mappings in two discrete variables. Each
node represents a function of code symbols, either equality
at the variable node or addition at the check node. Given
this function, it is straightforward to compute the output
message distribution. At each stage of the decoding algorithm,
a new joint distribution is formed. If iterations are allowed
to progress, this quantized distribution will strongly resemble
the one produced by standard density evolution. However,
with each decoding step, the alphabet size will increase,
making analysis difficult. Thus, a large discrete alphabet is
mapped onto a smaller alphabet, which is the quantization
of a discrete memoryless channel. With a reduced alphabet
size, density evolution proceeds, with quantization performed
at each step. Whereas traditional density evolution requires
the channel satisfy a symmetry condition, in this paper, joint
densities are used and the approach is valid for arbitrary
discrete memoryless channels. This is described in detail in
Section IV.

Richardson and Urbanke also described a specific decoder
map for message-passing decoding which uses an alphabet
of size three and has intuitive decoding mappings. This
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Algorithm E had modest performance loss relative to the
more complicated belief propagation on the binary symmetric
channel [4]. The proposed techniques are more general than
Algorithm E in that the alphabet size M is arbitrary. However,
the proposed algorithm with M = 3 has the same noise
thresholds as Algorithm E. By increasing the alphabet size, the
noise thresholds of belief-propagation decoding can be more
closely approached.

In prior work by Lee and Thorpe, an LDPC decoder
using a quantizer which maximizes mutual information is also
designed. The decoder produced impressive results, coming
within 0.1 dB of belief propagation performance using 4 bits
per message, when using a block-length 8000 LDPC code on
the binary-input AWGN channel. However, the technique for
selecting the quantizer was not described, and they stated that
a significant amount of hand optimization was required [6].

The density evolution algorithm in this paper is explicitly
described and requires only one parameter: the maximum
message alphabet size, M . Our attention is restricted to finding
thresholds for discrete memoryless channels. It is found that
for the binary symmetric channel, using about 16 message
levels (corresponding to 4 bits), that noise thresholds using
the techniques proposed in this paper can come very close
to those obtained by belief-propagation decoding. Numerical
noise thresholds for regular LDPC codes of various rates on the
binary symmetric channel are given in Section V, as well as a
discussion contrasting the proposed approach with quantized
belief-propagation decoding.

II. LDPC CODES

The following notation is used. A discrete random variable
X takes on a value x from an alphabet X , with probability
Pr(X = x) or PX(x). The alphabet size is |X |.

A. LDPC Codes

A binary LDPC code is the set of binary {0, 1} code vectors
(X1, . . . , Xn) of n elements such that over the binary field,

(X1, . . . , Xn)Ht = 0, (1)

where H is a sparse parity check matrix with constant column
weight dv and row weight dc. The rate of the code is 1−dv/dc.
From here, infinite-length block codes are assumed so that the
effects of loops in the bipartite graph for LDPC codes can be
ignored, and density evolution is exact.

The binary code symbol X is transmitted over a two-input
discrete memoryless channel, received as W from an output
alphabet W . The channel transition probability is Pr(W =
w|X = x).

B. Message-Passing Decoding Algorithm

In message-passing decoding [4], the variable-to-check mes-
sages R are from the message alphabet R. Similarly, the
check-to-variable messages L are from the message alphabet
L.

At iteration `, the check node with degree dc com-
putes outgoing message Ldc using the incoming messages

Fig. 1. Check node: mappings χi, input messages Ri, internal messages Si,
output message Ldc .

R1, . . . , Rdc−1, by a mapping function χ(`) : Rdc−1 → R. A
mapping finds the message for a variable from the messages
for two or more other variables.

As a simplification, the mapping χ is decomposed into
a series of mappings, χ1, . . . , χdc−2, each in two variables.
Introduce Si, i = 1, . . . , dc − 3 which are messages for the
partial sum X1 + · · · + Xi+1 (at the check node, X1 + · · · +
Xdc = 0). Thus, the decomposition is:

χ
(`)
1 : R×R → S1, (2)

for i = 2, 3, . . . , dc − 3,

χ
(`)
i : Si−1 ×R → Si, (3)

and finally,

χ
(`)
dc−2 : Sdc−3 ×R → L. (4)

The check node mapping is shown in Fig 1.
Similarly, at iteration `, the variable node with degree dv

finds the outgoing message Rdv using the channel value W
and incoming messages L2, . . . , Ldv−1, by a mapping function
Φ(`) : W ×Ldv−1 → R.

As a simplification, the mapping Φ(`) is decomposed into
a series of mappings, Φ1, . . . , Φdv−1, each in two variables.
Intermediate variables Ai are introduced as:

Φ(`)
1 : W ×L → A1, (5)

for i = 2, 3, . . . , dv − 2

Φ(`)
i : Ai−1 × L → Ai, (6)

Φ(`)
dv−1 : Adv−2 × L → R. (7)

In this paper, the channel output alphabet W and the
message-passing alphabets R, L, S and A are discrete.
However, belief-propagation decoding can be described using
the above framework. The message alphabets are probabilities,
that is R = L = [0, 1]. The check node decoding map χ can
be obtained by sum-product rules. The variable node decoding
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Fig. 2. Quantizer for the output of a DMC.

map Φ is obtained by “belief propagation” i.e. multiplication
of probabilities.

III. QUANTIZATION OF THE OUTPUT OF A DMC

A. Preliminaries

In this section, we consider the following general problem,
which will be of interest in finding probability densities for
density evolution.

A symbol X distributed as Pr(X = x) is transmitted over
a discrete memoryless channel with Pr(Y = y|X = x). The
channel output Y is then quantized to Z by a quantizer Q,
as shown in Fig. 2. This problem has been formulated as
communication over a discrete memoryless channel because
it is intuitively appealing, however note that Pr(X = x) is
given; this is distinct from channel capacity computation where
the objective often is to find Pr(X = x).

The problem is to find the quantization mapping Q,

Q : Y → Z (8)

which maximizes the mutual information between X and Z,

Q = arg max
Q

I(X; Z) subject to |Z| ≤ M, (9)

where M is the fixed maximum alphabet size of Z.
The statement of this problem appears similar to the

computation of minimum or maximum mutual information
as proposed by Arimoto and Blahut, but is distinct. The
computation of rate-distortion functions in source coding, and
channel capacity in channel coding, can be found by an
alternating minimization or maximization algorithm [7, Sec.
13.7]. However, we have not found a formulation of (9) which
can be put into the alternating maximization form.

As an aside, note that it is possible to write the quantizer Q
as a matrix QY = qij where qij = 1 if i = (y1, y2) quantizes
to j = z, and qij = 0 otherwise. If the joint probability
distribution PXY is written as an |X |-by-|Y| matrix, then the
joint distribution PXZ is the |X |-by-|Z| matrix:

PXZ = PXY · QY . (10)

It is this joint distribution PXZ which will be used in density
evolution.

B. Quantization by Greedy Combining

A greedy combining algorithm is proposed to find a quan-
tizer Q. Each step of the algorithm constructs temporary
random variable T which is an approximation of Y . At each
iteration, the joint distribution of T and X is replaced with by
a new joint distribution which has one fewer values over the
alphabet T . This is repeated iteratively until the alphabet size
of T is reduced to M .

A quantizer Q may be found by greedy combining:

1) Initialize. T ← Y and Pr(X = x, T = i) ← Pr(X =
x, Y = i) for all x, i.

2) For each distinct pair t, s ∈ T , construct a temporary
random variable (or message) Tt,s, with |Tt,s| = |T |−1,
obtained by combining t, s to a single element z ∈ Tt,s.
There are

(|T |
2

)
such pairs. The remaining elements are

not modified. The joint distribution is:

Pr(X = x, Tt,s = i) (11)

=


Pr(X = x, T = i), if i 6= z

Pr(X = x, T = t)
+Pr(X = x, T = s), if i = z.

The mutual information for the pairing of t, s is:

It,s = I(X; Tt,s). (12)

3) Select the pair t̂, ŝ, which maximizes the mutual infor-
mation:

t̂, ŝ = arg max
t,s

It,s (13)

4) Accept this combination of t̂ and ŝ as the new approx-
imation, T ← Tt̂,ŝ and Pr(X = x, T = i) ← Pr(X =
x, Tt̂,ŝ = i) for all x, i.

5) If |T | > M , go to Step 2. Otherwise accept T as the
final approximation, that is Z ← T and Pr(X = x,Z =
i) ← Pr(X = x, T = i) for all x, i.

This is a greedy search algorithm, and thus no claims about
its optimality in maximizing mutual information can be made.
Nonetheless, as will be shown in the numerical results section,
the results obtained using this algorithm are reasonable.

The complexity of this algorithm is proportional to |Y|2, due
to the initial computation of the mutual information between
all distinct pairs in Y . Following steps only recompute the mu-
tual information between the new element all the unchanged
elements.

IV. MESSAGE-PASSING DENSITY EVOLUTION FOR
BINARY LDPC CODES

In the density evolution method presented here, joint distri-
butions are tracked rather than conditional message distribu-
tions. Subsection IV-A describes how the joint distributions are
found at any given decoding step. Subsection IV-B describes
how these are combined to perform density evolution.
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A. Finding Joint Distributions

In generic terms, each mapping Y1 × Y2 → Z given in
(2) to (7) describes decoding for a deterministic function
X = f(X1, X2). The joint distributions Pr(X1, Y1) and
Pr(X2, Y2) are given. This subsection describes how to obtain
the joint distribution Pr(X,Y ) where Y = (Y1, Y2). Then,
given Pr(X,Y ), the quantizer Q : Y → Z is found, to obtain
the joint distribution Pr(X,Z).

At the check node, consider a variable X which is a
deterministic function of variables X1 and X2, specified by
X = f(X1, X2) = X1 +X2. At an arbitrary point in message
computation, the messages for X1 and X2 are Y1 and Y2,
respectively, and the node function finds Y , the message for X .
Let the alphabet of Y be Y = Y1×Y2. The joint distributions
Pr(X1, Y1) and Pr(X2, Y2) are independent,

Pr(X1, X2, Y1, Y2) = Pr(X1, Y1) · Pr(X2, Y2),

as is usually assumed in density evolution. The joint distribu-
tion Pr(X,Y ) is found as follows:

Pr
(
X = x, Y = (y1, y2)

)
= (14)∑

x1,x2:f(x1,x2)=x

Pr(X1 = x1, Y1 = y1)

·Pr(X2 = x2, Y2 = y2).

For the variable node, the above procedure is largely the
same. The code symbol X is transmitted over two independent
discrete memoryless channels and the received symbols are
Y1 and Y2, with joint distributions Pr(X,Y1) and Pr(X,Y2).
Again, letting Y = Y1 × Y2, the joint distribution is:

Pr(X,Y ) = Pr(X,Y1, Y2)

=
1

Pr(X)
Pr(X,Y1) · Pr(X,Y2).

The term Pr(X1) can be ignored because of normalization.
Eqn. (14) may be applied to the variable node with the
following deterministic function f ,

f(x1, x2) =
1
2
(
x1 + x2

)
, (15)

where addition is over the reals, rather than the finite field.
The above function has the property that it is 0 (respectively
1) only when x1 and x2 are both 0 (respectively 1).

The above may be regarded as transmission over two
discrete memoryless channels, where X1 and X2 are re-
ceived as Y1 and Y2. In the above procedure, we first found
Pr(X1, X2, Y1, Y2), and then applied f(·) to get the joint
distribution Pr(X,Y ). This is shown in Fig. 3-(a) for check
nodes and (b) for variable nodes.

Note that the alphabet size |Y| is equal to |Y1| · |Y2|. If this
is applied recursively, as will be done in density evolution,
then the alphabet size will grow rapidly. Thus, quantization
is introduced. Specifically, the greedy quantization algorithm
is applied to this joint distribution, which produces a discrete
random variable Z and its joint distribution Pr(X,Z) which
is will be used in the following step of density evolution.

Fig. 3. Constructing the composition of the output of two DMCs. (a) Check
node (b) variable node.

B. Density Evolution

Density evolution finds the joint densities for the messages
R, L, S and A that were described in Section II. Those joint
densities are Pr(X,R), Pr(X,L), Pr(X,S) and Pr(X,A),
respectively. The only parameter for this density evolution
is M , which is the maximum alphabet size allowed after
quantization has been performed.

For each iteration ` = 1, 2, · · · , iterate between the check
node and variable node as follows.

Check Node The input to the check node step is the joint
distribution Pr(X,R). On the first iteration only, the channel
joint distribution Pr(X,W ) is used in place of the variable-
to-check distribution Pr(X,R). In particular, R = W , and
Pr(X = x, R = r) = Pr(X = x,W = r), for all x ∈
X , r ∈ R.

1) Using Pr(X,R) twice, compute Pr(X,S1).
2) For i = 2, . . . dc − 3, use Pr(X,Si−1) and Pr(X,R)

to compute Pr(X,Si).
3) Use Pr(X,Sdc−3) and Pr(X,R) to compute Pr(X,L).

The output is the joint distribution Pr(X,L).
Variable Node The inputs to the variable node step are the

message distribution Pr(X,L) and the channel distribution
Pr(X,W ).

1) Use Pr(X,W ) and Pr(X,L) to compute Pr(X,A1).
2) For i = 2, . . . dv − 2, use1 Pr(X,Ai−1) and Pr(X,L)

to compute Pr(X,Ai).
3) Use Pr(X,Adv−2) and Pr(X,L) to compute

Pr(X,R).
The output is the joint distribution Pr(X,R).

Termination The above process iterates. Convergence is
declared if the mutual information I(X; R) approaches 1. If
instead a maximum number of iterations is reached, then non-
convergence is declared.

1For Algorithm E, use M = 6 in this step only; in all other steps, M = 3.
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Fig. 4. Noise thresholds on the binary symmetric channel for the proposed
message-passing density evolution technique, with maximum alphabet size M
(M = 16 corresponds to 4-bit messages). Standard belief propagation noise
thresholds and channel capacity are also shown. Regular LDPC codes with
variable node degree 3 are used.

Noise threshold The noise threshold for a single-parameter
discrete memoryless channel is the value for the most degraded
channel for which convergence is obtained.

In traditional belief-propagation density evolution, the
marginal message probability distributions are used under the
assumption that the all-zeros codeword is transmitted, rather
than the joint distributions used here. The channel must satisfy
a symmetry property for belief-propagation density evolution
analysis to be valid for an arbitrary codeword.

In the joint density evolution presented here, no assump-
tions were made about the discrete memoryless channel,
in particular channel symmetry was not required. However,
we have not performed convergence analysis. Nonetheless,
density evolution closely tracks the performance of large block
length codes, and it is reasonable that this analysis holds for
general channels. Also, while joint distributions, for example
Pr(X,R), have been used throughout, it is possible to use
conditional distributions, for example Pr(R|X), as well.

V. NUMERICAL RESULTS, DISCUSSION AND CONCLUSION

The proposed density evolution technique was applied to
regular LDPC codes used on the binary symmetric channel,
and the noise thresholds obtained are shown in Fig. 4. Belief
propagation noise thresholds and channel capacity are also
shown. Increasing the maximum alphabet size M improves
the noise threshold. In particular, using M = 16 gives noise
thresholds which are close to those of belief-propagation
decoding. For M = 3, we obtain similar thresholds for
Richardson and Urbanke’s Algorithm E.

A byproduct of the proposed meothod is that the message-
passing decoding maps χ

(`)
i and Φ(`)

i can be created at each
step. These are precisely the mapping functions required for
decoding. Such maps would be of interest in finite-length

LDPC decoding. If the asymptotic results shown in Fig. 4
extend to finite-length decoding, then it would be expected that
using approximately 16 levels (four or fewer bits) to represent
messages would provide minimal performance loss, consistent
with the results of Lee and Thorpe [6].

Quantized belief-propagation decoders are of great practical
importance and these can be viewed in the same framework
of discrete message-passing decoding. A message-passing
decoding map could be derived by first selecting quantization
points for continuous-valued messages (probabilities or log-
likelihood ratios), and then finding the decoding maps χ and
Φ by using nearest-neighbor quantization. Such an approach
generally requires an a priori choice of a quantizer, often
selected uniformly for convenience. These schemes are not
optimized for the channel distribution (although they are
general enough for arbitrary channels), and disregard mutual
information measures. On the other hand, for a fixed channel,
we argue that the proposed density evolution analysis of
message-passing decoding will be more efficient than a quan-
tized belief-propagation decoder. The quantization points are
selected non-uniformly. The quantization maps are designed
using a mutual information criteria, which is appropriate for
channel coding.

In conclusion, a density evolution technique to compute
noise thresholds using not belief-propagation decoding, but
instead more general message-passing decoding has been
proposed. Message-passing decoding maps were found by a
quantization algorithm which uses mutual information criteria;
a greedy optimization algorithm to do this was proposed.
For the binary symmetric channel, it was found that using
a maximum message alphabet size of M = 16 (4 bits) gave
thresholds that were quite close to those obtained by standard
belief-propagation density evolution.
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