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Abstract—A rewriting code construction for flash memories
based upon lattices is described, where the values stored in
flash cells correspond to lattice points. This construction encodes
information to lattice points in such a way that data can be
written to the memory multiple times without decreasing the
cell values. The construction partitions the flash memory’s cubic
signal space into blocks, which aids with encoding. The minimum
number of writes is approximately linear in one of the code
parameters. Using the E8 lattice as an example, the average
number of writes can be increased by introducing randomization
in the encoding.

I. INTRODUCTION

Rewriting codes are a coding-theoretic approach to allow
rewriting to memories which have some type of write re-
striction, typically values stored in memory may only be
increased. While codes for binary media were proposed in the
1980s [1], [2], within the past few years, a large number of
rewriting codes directed at flash memory have been described
[3], [4], [5], [6], [7]. Most of these these floating codes or
flash codes are designed for flash memory cells that can store
one of q discrete levels, where the values can only increase
on successive rewrites.

However, in the physical flash cell, charge is stored during
write operations. Charge, read as a voltage, is an inherently
continuous quantity. Commercial flash memory uses analog-
to-digital conversion, and present log2 q bits per cell of digital
data externally. Currently, any coding, for error-correction and
rewriting, must operate on these discrete values. However, one
might expect that future coding schemes may have access to
the continuous, or analog values stored in the flash memory
cells.

This paper describes a rewriting code based upon lattices,
and assumes that the analog values are available for coding.
The values stored in flash cells correspond to lattice points.
From a lattice perspective, conventional rewriting codes store
data at the points {0, . . . , q − 1}n in a rectangular lattice.
However, rectangular lattices are inefficient, and there exist
lattices that have many desirable properties such as better
packing efficiency.

Because the flash cell values are continuous quantities, this
paper takes the signal-space viewpoint that has long been
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used for the AWGN channel. Among other results, it is now
known that lattices can achieve the capacity of the AWGN
channel [8] [9], and lattices appear to be a promising practical
approach for bandwidth-constrained channels [10]. In fact, a
related technique, trellis-coded modulation, has already been
considered for error-correction in flash memories [11].

The power constraint and the associated shaping region
are important considerations in designing lattice codes for
both flash memories and AWGN channels. Shaping for the
AWGN channel is computationally expensive, requiring lattice
quantization in order to shape the codebook into a sphere-like
set of lattice points [9]. But for flash memories, the power
constraint is cubic, that is, all points are within the cube
(0, q− 1)n, corresponding to the fact that the voltage on each
cell has a minimum and maximum possible value. Fortunately,
lattice quantization is not required for encoding, because there
is an efficient encoding which results in a cubic shaping region,
when the lattice generator matrix is triangular [12]. This paper
includes a slight generalization of this method.

The flash memory model used in this paper has n cells
which have values in the range (0, q − 1), and the values are
continuous. Successive writes can only increase the values.
For fixed constraints, the code construction should maximize
the number of times that data can be written. Note that while
many existing rewriting code constructions allow modifying
a single information bit, the code presented here changes the
entire information sequence with each write.

In the proposed code, the cell values are points of an
n-dimensional lattice inside the cube (0, q − 1)n. To allow
rewriting, there is a one-to-many mapping between from
the information to the codebook. To encode an information
sequence, the encoder searches over the candidate codewords
and selects one. To aid this encoding and search, the codebook
is partitioned into subcodebooks, most with a one-to-one
mapping (some subcodebooks at the boundary may have fewer
codewords than possible information sequences). Adding a
random component to the encoding will improve the average
number of writes. The proposed code construction is detailed
in Section II. Since the average number of writes appears to
be difficult to evaluated analytically, numerical evaluation is
presented in Section III, where there is a clear tradeoff between
the code rate and the average number of writes.

The paper concludes with Section IV, which discusses the
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Information u = (u1, u2)

Hash sequence a = (a1, a2)

Hash function:

ai = ui +mi mod M

where random m are:

d = (0, 0) =⇒ m = (0, 0)

d = (1, 0) =⇒ m = (4, 3)

d = (0, 1) =⇒ m = (3, 2)

d = (1, 1) =⇒ m = (2, 0)

Fig. 1. Illustration of the proposed code for two dimensions, n = 2, G = [1 0; 1
2
1],M = 5, D = 2. Refer to Subsection II-E for an example using this

construction.

hypothesis that the number of rewrites depends upon the
“depth” q of the cell more so than number of cells n. In
addition, lattices have a significant error-correction capability,
and the use of lattices for both rewriting and error-correction
is discussed.

II. CODE CONSTRUCTION

A. Lattices

An n-dimensional lattice Λ is defined by an n-by-n gener-
ator matrix G. The lattice consists of the discrete set of points
x = (x1, x2, . . . , xn)t for which

x = Gb, (1)

where b = (b1, . . . , bn)t is from the set of all possible integer
vectors, bi ∈ Z. The Voronoi region is region of Rn which
is closer to x than to any other point, and the volume of this
region is the determinant of G:

V (Λ) = |detG|. (2)

The i, j entry of G is denoted gij .

B. Codebook

An overview of the codebook construction follows. The
code is described by a lattice Λ with a lower-triangular
generator matrix G, and two parameters D and M . The
codebook consists of the intersection of Λ and a cube of

volume (DM)n. It is allowed that D is not an integer, and let
D = dDe. The codebook is partitioned into D

n
subcodebooks,

each the intersection of Λ and, if D is an integer, a cube of
volume Mn. If D is not an integer, then some subcodebooks
do not correspond to cubes. Also, M must satisfy the condition
that that M/gii is an integer, where gii are the diagonal entries
from the generator matrix, for i = 1, . . . , n. Throughout this
paper, it is assumed that:

D ·M = q − 1, (3)

where q is an integer, which will satisfy the constraint that that
each component of the lattice point is in the range (0, q− 1).

More precisely, the codebook construction is given as fol-
lows. Let B be an n-cube, given by:

0 ≤ xi < D ·M, (4)

for i = 1, . . . , n, which has volume (DM)n. Then the
codebook of the proposed code is:

C = Λ ∩B. (5)

Subcodebooks are created by partitioning the cube B into
D

n
blocks. The blocks are indexed by d, given by:

d = {d1, d2, . . . , dn}, with di ∈ {0, 1, . . . , D − 1}. (6)

Each block Bd is given by the set of x ∈ Rn such that:

diM ≤ xi < (di + 1)M and xi < DM, (7)
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for i = 1, . . . , n. If D is an integer, then each block has volume
Mn. If D is not an integer, then blocks with one or more index
components di equal to D−1 will have volume less than Mn.
Then the subcodebook Cd consists of the lattice points inside
each block:

Cd = Λ ∩Bd. (8)

The number of elements of the full codebook and the
maximum number of elements of any subcodebook are:

(D ·M)n

|detG|
and

Mn

|detG|
, (9)

respectively. Within each block with volume Mn, there is a
one-to-one mapping from information to subcodewords, thus
the rate of the code, expressed in information bits per cell is:

R =
log2

(
Mn/|detG|

)
n

= log2M, (10)

if |detG| = 1 is used. Also, there is a one-to-many mapping
between information and the full codebook.

C. Encoding

An overview of the encoding scheme is as follows. An in-
formation sequence u is mapped randomly, but invertibly, to a
“hashed” integer sequence a. Then, a is encoded into multiple
subcodebooks Cd, for various values of d. Considering the
current state of the memory, s, the encoding from one of the
subcodebooks, called x, is selected and written to memory.
The codebooks and the encoding is illustrated in Fig. 1 for
n = 2, and an example is described in Subsec. II-E.

The details of the encoding follow. The information is the
vector of integers u = (u1, . . . , un). The data range for each
ui depends on gii, with ai ∈ {0, 1, . . . , M

gii
−1}, so M/gii must

be an integer. Note that the product of the diagonal entries of
the triangular matrix G is equal to |detG|.

A random “hash” h maps information u to hashed se-
quences a = (a1, . . . , an). This hash depends upon d:

h(d) : u→ a. (11)

The purpose of the hash is to introduce randomness to the
subcodes to increase the average number of writes. Suppose
that the current state s is in block d′ and that the information
sequence u in this block maps to x[d′]. If x[d′] − s has any
negative components, then x[d′] cannot be selected. However,
due to the nature of the encoding scheme, the encoding of
the same u in some adjoining block, e.g. d′′, may also have
negative components in x[d′′]−s, with some significant prob-
ability, and similarly x[d′′] cannot be selected. By introducing
block-dependent randomization, this problem is avoided.

A simple hash is simply to add a random constant modulo
M/gii:

ai = ui +mi,d mod
M

gii
, (12)

where md is a hash vector for block d,

md =
(
m1,d,m2,d, · · · ,mn,d

)
. (13)

The hash vector element mi,d is selected with uniform prob-
ability from {0, 1, . . . , M

gii
− 1}.

The sequence a is then then encoded to a lattice point
x[d] ∈ Cd for any block d, as follows. This method is a slight
generalization of an existing method [12], in that non-unity
elements are allowed on the diagonal of the generator matrix.

In general, G · a is not in Bd. Instead, the encoding finds

b = a +Mk, (14)

with k = ( k1

g11
, . . . , kn

gnn
) such that

x = G · b (15)

is in the cube Bd. Define δ(di) as:

δ(di) = min
(

(di + 1)M,DM
)
. (16)

Because the generator matrix is lower triangular, the ki can
be found by solving the inequality (7):

diM ≤
∑i−1

j=0 gjibj + gii
(
ai + M

gii
ki) < δ(di) (17)

for ki, which is unique. First k1, then k2, . . . , kn are found in
sequence. In particular:

ki =
⌈diM −∑i−1

j=0 gjibj − giiai
M

⌉
, (18)

where the computation at step i depends upon b1, . . . , bi−1.
Note that if D is not an integer, then some subcodebooks do
not have images of all information sequences, and encoding
in such cases is not possible.

It is necessary to find the codeword x to write to memory,
from the various candidates x[d]. The current state of the
memory is s. So, for any such codeword x, all components of
x − s must be positive. Since there is no a priori knowledge
about future data sequences, it is reasonable that the codeword
choice should maximize the number of codeword points that
remain “available” to future writes, that is, the number of
codewords in the positive direction should be maximized.
While it is computationally difficult to count these points, a
reasonable approximation is the volume that remains after the
point is written. In particular, if x is to be written, then the
remaining volume is:

n∏
i=1

(
D ·M − xi

)
(19)

and the encoder should write:

x = max
d:(s−x[d])≥0

n∏
i=1

(
D ·M − xi[d]

)
. (20)

This maximization is computationally complex as the lattice
dimension n increases. Generally, however there will be a
codeword in a neighboring block. Thus, the search can be
performed not over all d, but only over those positive neigh-
bors of the block that contains the current state s. This results
in complexity proportional to 2n.

Note that many conventional q-ary rewriting codes allow
rewriting one bit at a time. For this lattice-based code, the
entire word is rewritten.
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Fig. 2. Average number of word writes using the E8 lattice, with q − 1 =
DM and code rate R = log2 M .

D. Decoding

Decoding is straightforward. Let the decoder input be the
lattice point x̂. The encoded integers are simply b̂ = G−1x̂,
and from these, â is obtained as:

âi = b̂i mod
M

gii
, for i = 1, . . . , n. (21)

The information sequence û is obtained by inverting the hash
function:

ûi = âi −mi,d mod
M

gii
, (22)

where mi,d is defined as before.

E. Example

Here, an example of encoding is given, based upon the code
in Fig. 1, which has n = 2 G = [1 0; 1

2 1], M = 5 and D = 2.
This corresponds to q = 11. This code can write log2 5 bits per
cell into 2 flash cells, where the cell can store values between
0 and 10. The information symbols u are from the alphabet
{0, 1, 2, 3, 4} × {0, 1, 2, 3, 4}.

Assume that the state of the memory is s = (4, 3) (indicated
in the figure), and the information to be written is u = (1, 3).
The hash vectors are m0,0 = (0, 0), m1,0 = (4, 3), m0,1 =
(3, 2) and m1,1 = (2, 0).

For each d, the hashed value is computed, and the candidate
vector is found:

d = (0, 0) : u = (1, 3) → a[d] = (1, 3) → x[d] = (1, 3.5)
d = (0, 1) : u = (1, 3) → a[d] = (0, 1) → x[d] = (5, 3.5)
d = (1, 0) : u = (1, 3) → a[d] = (4, 1) → x[d] = (4, 7)
d = (1, 1) : u = (1, 3) → a[d] = (3, 3) → x[d] = (8, 7).

These x[d] are indicated in Fig. 1 by “(A)”. For the first
candidate (1, 3.5), the difference x[(0, 0)] − s is negative in
the first component, and so this point cannot be written. For

each of the remaining three, the product
∏

i(DM − xi[d]) is
computed. Candidate point x[(0, 1)] maximizes this product,
and so it is selected as the point to be written, x (indicated in
the figure).

III. NUMERICAL RESULTS

In order to make a fair normalization in the absence of noise,
the scale of the lattice must be selected. For conventional q-
ary rewriting codes, the rectangular lattice with integer spacing
applies; the volume of the Voronoi region of this lattice is 1.
The same scaling is applied to the lattice Λ. That is, a scalar
α is selected such that:

|detαG| = αn|detG| = 1. (23)

It should be fairly clear that the minimum number of
guaranteed writes is bDc. In a worst-case scenario, a codeword
is written in block d = (0, . . . , 0) followed by d = (1, . . . , 1)
until d = (D−1, · · · , D−1). This may be visualized in Fig. 1
by first writing a codeword near the upper-right-hand corner
of block (0, 0), and then (1, 1). Since a fractional number of
minimum writes is not meaningful, bDc is written.

To evaluate the average number of writes, the E8 lattice is
used. This lattice, with dimension n = 8, has good packing
properties, as well as an efficient decoding algorithm [13], and
one possible generator is:

G =



1/2 0 0 0 0 0 0 0
1/2 1 0 0 0 0 0 0
1/2 −1 1 0 0 0 0 0
1/2 0 −1 1 0 0 0 0
1/2 0 0 −1 1 0 0 0
1/2 0 0 0 −1 1 0 0
1/2 0 0 0 0 −1 1 0
1/2 0 0 0 0 0 −1 2


.(24)

It has a lower-triangular form, and so it is suitable for the
proposed construction.

Naturally, there is a tradeoff between code rate and the
average number of writes, and this is demonstrated in Fig. 2,
obtained by computer simulation. Values of q were fixed, with
q − 1 = DM ; powers of two were chosen for q, but this is
not a requirement. The code rate R = log2M , and D was
allowed to be a non-integer. The most striking feature is that
the number of writes depends strongly upon q. Also, while
not shown here, it was observed numerically that the average
number of writes increased roughly linearly in D, much as the
minimum number of writes is also linear in D.

Also shown in Fig. 2 is the average number of writes if
hashing is not used, that is, the hash vector m is all-zeros.
At low rates, the random hash increases the average number
of writes. But as the rate increases, this advantage diminishes.
Note that the hash has no influence on the minimum number
of writes.

IV. DISCUSSION

A point to note is that the rewriting capability of lattices
presented in this paper does not appear to substantially depend
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upon the dimension n. That is, the minimum number of writes
is bDc, and there is a well-defined relationship between D,
and R, q and M ; but not n. However, the lack of dependence
on n appears to not be surprising. In 1984, Fiat and Shamir,
working with very general memory models, those based upon
directed acyclic graphs (DAG), observed: “The significant
improvement in memory capability is linear with the DAG
depth. For a fixed number of states a ‘deep and narrow’
DAG cell is always preferable to a ‘shallow and wide’ DAG
cell” [14]. That is, a deep cell has a large value of q, and a
narrow cell has small n. Likewise, for the lattice-based codes
presented in this paper, increasing q strongly increases the
number of rewrites.

When q and n are both small, the lattice-based construction
does have a weakness, because the maximum value cannot
be written in all cells; conventional q-ary floating codes do
not have this problem. This is a type of boundary problem,
where there is an inefficiency at the boundary where some
cells cannot be written. However, as either q or n increases, the
efficiency increases, and the problem can become negligible.

Another point is that lattices have an inherent error-
correction property, although that was not the subject of this
paper. While rewriting codes for flash memories have received
some research attention, error-correction coding for flash
memories is of considerable practical importance [15] [16].
There have been only a few studies on dual-purpose codes
which can both correct errors and allow rewriting [17] [18]
[19]. Unfortunately, the simple concatenation of a rewriting
code and an error-correction code appears to be problematic.
Encoding the rewriting code followed by a systematic error-
correction code means that parity bits are not rewritable.
On the other hand, switching the concatenation results in no
guarantees of minimum distance, since most rewriting codes
do not appear to be systematic. However, lattices considered in
this paper have a natural error-correction property, due do the
Euclidean distance that separates the points. Thus, it appears
that lattices may be used simultaneously for both rewriting and
error-correction in flash memories. One lattice which appears
to be particularly attractive for flash memories are low-density
lattice codes [10], which have high coding gain and an efficient
decoding algorithm [20].
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