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I. Introduction

The erasure channel is perhaps the simplest communica-
tions channel model. A symbol from a q-ary alphabet is input
into the channel, and either the symbol is received correctly
with probability 1 − p, or is converted to an erasure symbol
with probability p. In this paper, we compare the maximum
likelihood (ML) sequence decision and the maximum a poste-
riori (MAP) symbol decision for codes which are transmitted
over the erasure channel.

II. Equivalence of ML and MAP

When decoding convolutional codes transmitted over an
AWGN channel, it is widely known that the probability of
symbol error for the Viterbi algorithm (which is a sequence
ML decoder) is generally higher than that for the more com-
plex BCJR algorithm (which is a symbol MAP decoder). The
Viterbi algorithm is often preferred in practice because of its
lower complexity, even though it is suboptimal in the symbol
error sense. However, when decoding on the erasure channel,
the two algorithms have the same probability of symbol error.
In fact, we show for linear codes in general:

Theorem 1 When a codeword from a linear error-correcting
code with elements from the field GF(q) is transmitted over a
q-ary erasure channel, the symbol error rate of the maximum
likelihood (ML) sequence decision is the same as that of the
symbol maximum a posteriori (MAP) probability decision.

Theorem 1 is distinct from the well-known result that for
equally-likely sequences, the sequence ML and the sequence
MAP decisions are the same.

III. Viterbi and BCJR State Metrics

The similarities between the Viterbi algorithm’s forward
recursion and the BCJR algorithm’s forward recursion have
often been noted, recently in [1]. The state metrics of the
Viterbi algorithm are often logarithms of probabilities, but
here we use probabilities. At time t, the metric for state m of
the Viterbi algorithm is St(m). For the forward recursion of
the BCJR algorithm, the state metrics are At(m), which are
also probabilities.

Theorem 2 For the decoding of convolutional codes trans-
mitted over the erasure channel:

1. The state metrics of the Viterbi and BCJR algorithm
are identical, that is St(m) = At(m),

2. The state metrics take on only one of two values, either
a constant λt, or 0,
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3. The number of state metrics with value λt is qit , it a
non-negative integer.

Statement 1 assumes that the state metrics are normalized
such that

∑
m

St(m) =
∑

m
At(m) = 1. If the state metrics

are not normalized, the Viterbi state metrics will be propor-
tional to the BCJR state metrics, and the remaining state-
ments hold. The constant λt depends on time, but at any
instant in time, all the non-zero state metrics have the same
value. Statement 3 implies λt = 1/qit , where the integer it
depends upon the erasure pattern.

For decoding on general channels, the state metric recur-
sion A1, A2, . . . forms a first-order Markov chain, where At is
the vector of state metrics at time t. For decoding on the era-
sure channel, Theorem 2 establishes that the number of state
metric vectors for the BCJR algorithm is finite and thus the
number of states in this Markov chain is also finite. This prop-
erty has been exploited to write exact analytic expressions for
both the thresholds of turbo codes [2], and the bit-error rate
of the BCJR algorithm decoding convolutional codes [3].

IV. Probability of First Error Event

Theorem 2 implies that it is also possible to construct a
finite-state Markov chain for the state metric recursion of the
Viterbi algorithm. The Markovian state describes not only
the value of the state metrics at time t, but also which trellis
states, if ultimately included in the traceback path, corre-
spond to an error event beginning at some time t0. Using this
Markov chain, it is possible to find an exact analytic expres-
sion for the probability of an event error. For the rate-1/2
systematic convolutional code with parity generator polyno-
mial 1 + D, the probability of an error event PEV beginning
at some time t0 is given by:

PEV =
1

4
· 2p3 − 2 p4 + p5
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=

1

2
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1

2
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4
p5 + · · · .

At low probability of channel erasure, the error event probabil-
ity is dominated by the leading term 1/2 p3, which corresponds
to the code’s minimum distance of three.
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