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Abstract— Vector quantization of the BCJR and Viterbi al-
gorithms’ state metrics for detection of finite-state channels is
considered. An estimate is given for the gain associated with
vector quantization, over conventional implementations. This
is expressed using the volume of the recurrent region, and
the maximum state metric difference, which are both intrinsic
properties of the channel detector. One application of this gain
is the complexity evaluation of a previously proposed lookup-
table BCJR implementation. The BCJR algorithm is of interest
in turbo equalization used for communication over intersymbol-
interference and finite-state Markov channels.

I. INTRODUCTION

The Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm is a key
component in turbo equalization, a technique which can be
used to approach the capacity of channels with memory.
Intersymbol interference (ISI) channels and finite-state Markov
(FSM) channels, such as the Gilbert-Elliot channel, are used as
models in applications such as wireless and wireline commu-
nications, magnetic and optical recording. Turbo equalization
has been well-studied for ISI channels [1] [2]. Using turbo
codes and low-density parity check (LDPC) codes to commu-
nicate over FSM channels, such as the Gilbert-Elliot channel,
has also attracted research interest [3] [4] [5] [6]; proposals
often use the BCJR algorithm to detect the channel state, and
can be viewed as an instance of turbo equalization. Analysis
and performance of turbo equalization often relies on the
BCJR algorithm, and it is desirable to have an understanding
of the algorithm’s state metrics.

The BCJR algorithm operates on an M -state trellis and it
computes forward and backward state metrics which nominally
are scalars. In this paper, we consider the state metrics as an
M (or M−1) dimensional vector. As the state metric recursion
continues forward, the state metric vector has a particular
property: there is a distinct region of the vector space which
supports the state metrics. This region of reachable space is
called the recurrent region, and has been studied for certain
ISI channels [7].

We propose a search technique which finds the rectangular
lattice points inside the recurrent region. This method can
be applied in a straightforward manner to arbitrary trellises,
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s quantization of the transition metrics. The technique
although applicable for continuous transition metrics,
s extensive calculations.
characterization of the recurrent region is of interest
lyzing a lookup-table based implementation of the
lgorithm [8]. In this implementation, only those state
inside the recurrent region are used in the lookup
e will use this characterization to estimate the lookup

ize. Vector quantization is also useful for analytical
ues which approximate the true BCJR algorithm by
uantized state metrics.
on II gives an overview of the system under consid-
, and describes the BCJR algorithm as it is used to
SI and FSM channels. Section III defines the recurrent
and gives the proposed technique by which the set

angular lattice points inside the recurrent region can
d. Also given is a bound on the gain associated with
uantization. Section IV considers numerical results for

posed technique, and an application with the implemen-
f the lookup table algorithm. Finally, Section V gives
clusions.

II. SYSTEM MODEL AND BCJR ALGORITHM

em Model

assume that an error-correcting code with a suitable
ut, soft-output decoder, such as a LDPC or turbo code,
to communicate over an ISI or FSM channel. At the

r, turbo equalization is performed by the BCJR detector
appropriate decoder iteratively sharing soft information.
nsmitted codeword sequence is xk, k = 1, · · · , N , for
of block length N . The received symbol sequence is
detector-to-decoder message is Uk, a log-probability
he decoder-to-detector message is Gk = log P (xk =

k = 0).
ISI channel model has binary input and real output,
causal impulse response h(D) =

∑ν
i=0 hiD

i, where
e delay operator, and ν is the length of the channel
ence, so that the number of states is M = 2ν . The
ree channel output is c(D) = h(D)x(D). The receiver
s yk = ck + nk, where nk is memoryless noise with
distribution.
the FSM channel, data is transmitted over one of M
symmetric channels; the channel is chosen according



to a hidden Markov model with M states, with transition
probability from state i at time k, to state j at time k + 1 is
given by the matrix P = {pij}. The crossover error probability
for binary symmetric channel m, m = 0, · · · ,M − 1 is given
by Q = qm. The error pattern is zk, so that the received
sequence is yk = xk + zk, modulo 2. It is assumed that the
Markov model is stationary and irreducible. If M = 2, the
FSM is the Gilbert-Elliot channel model.

Both channels can be described by a trellis section, with
state sk, sk+1 ∈ {0, · · · ,M − 1} at time k, k + 1. For each
trellis edge e, let sS(e), sE(e), represent the starting and
ending state, respectively; for the ISI model, x(e) and y(e)
represent the input and output edge labels. For the FSM model,
there are parallel transitions between states, corresponding to
the possible error patterns zk = {0, 1}.

B. BCJR Algorithm
Both the ISI channel and the FSM channel can be detected

using the BCJR algorithm. For the general model, the transi-
tion metrics using edge notation are:

Hk(e) = −Gk(x(e)) − log P (yk|e) − log psS(e),sS(e).

For the ISI model, the term P (yk|e) is interpreted to mean
P (yk|y(e)), and this can be computed from the known noise
distribution of the channel. Further, psS(e),sS(e) is a constant
which does not affect the output of the algorithm, and so
can be dropped. For the FSM channel, the term P (yk|e) is
interpreted to mean P (yk|x(e), sS(e), sE(e)), and the channel
error probability Q is sufficient to calculate this term.

Define the min∗() “min-star” operation as:

min∗(A,B) = min(A,B) − log(1 + e−|A−B|).

The min∗() operation is associative, so operations on more
than two arguments are well defined.

The forward BCJR state metrics at time k for state m,
Ak(m), are recursively computed as:

Ak+1(m) = min∗
e:sE(e)=m(Hk(e) + Ak(sS(e))). (1)

If the min operation replaces the min∗ operation, then (1)
becomes the Viterbi state metric recursion [9]. This representa-
tion, rather than the usual max∗-log-MAP [10], permits ready
comparison with results for Viterbi detection of ISI channels,
for which there is a wider variety of known results. For low
channel noise, the min∗ ≈ min approximation becomes good.

Consider the state metrics at time k as a vector:

Ak = (Ak(0), · · · , Ak(M − 1)).

The state transitions Hk depend upon the algorithm inputs Gk

and yk. Then, the forward state metric recursion (1) can be
represented as a function fA:

Ak+1(m) = fA(Ak, yk, Gk).

Let the similar Viterbi state metric recursion function be
f v

A(Ak, yk, Gk).
The backward state metrics Bk(m) are computed in a

similar fashion. The a posteriori output of the BCJR algorithm
is Uk.
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circuit implementation of the BCJR or Viterbi algo-
he state metrics Ak(m) are scalar quantized, but often
ers are determined ad hoc. An analytical approach to
blem is to find the maximum difference between any
te metrics; this bound can be used to determine the

riate dynamic range of the state metric quantizer. This
n studied for certain cases such as Viterbi detection of
nnels [11], and BCJR [12] and Viterbi [13] decoding
olutional codes.
i,j and ∆v

i,j be the maximum state metric difference
n states i and j at any time k, for the BCJR and Viterbi
m state metrics, respectively. Let ∆∗ be the maximum
etric difference for all BCJR state metric differences,
axi,j ∆i,j . Similarly, ∆∗,v is the maximum difference

of the Viterbi state metric differences. It is sufficient
CJR implementation to quantize the state metrics in the
0,∆∗). However it is common in practice to quantize
e metrics in the range (0, 2∆∗). The state metrics are
ed to overflow and a normalization step is avoided, but
tional bit of storage per state metric is required.
a conventional implementation refers to the BCJR or

algorithm quantizing the M state metrics Ak(m),m =
M − 1 individually, using scalar quantization. Note
e quantity Ak is a vector, and so the conventional
ation scheme is rectangular quantization of the vector
y Ak.

le Lookup Implementation

iously, we proposed a lookup-table implementation of
JR algorithm [8]. The nominal complexity is three table
operations per bit, one lookup each for the forward
n, backward recursion and the computation of the a

ori output.
inputs yk and Gk are quantized to ŷk and Ĝk, respec-
and the quantized state metrics are Âk. The forward
n is implemented by a single lookup table fA,Q:

Âk+1 = fA,Q(Âk, ŷk, Ĝk).

plementation has lower complexity and requires less
etric storage than the conventional approach. However,
eoff is the size of the lookup table required. An appli-

of the results in this paper is an analytic determination
ookup table size.

III. RECURRENT REGIONS

nition and Search Technique

region of space which can be occupied by the state met-
or is called the recurrent region. Much as convolutional
nd ISI channels have an distance spectrum which is an
c property of the trellis, we also regard the recurrent
as an intrinsic trellis property.
ition If at some fixed time the state metrics are initial-
A = (0, 0, . . . , 0), then the forward BCJR recurrent

is the set of state metrics which can be reached by



an arbitrary number of forward recursion steps of the BCJR
algorithm. Similarly, the forward Viterbi recurrent region is
the set of state metrics which can be reached by an arbitrary
number of forward recursion steps of the Viterbi algorithm.

Backward recurrent regions also exist, and are distinct from
the forward recurrent regions. They are similarly defined to the
forward regions, and time is allowed to be negative.

The inputs yk and Gk are bounded between a specified
maximum and minimum value, ymin, ymax, Gmin, Gmax. If
these inputs are bounded, then the recurrent region is finite.
The recurrent region does not depend upon the distribution of
yk and Gk, but it does depend upon the non-zero range.

We propose a technique which searches for the set of
rectangular lattice points with spacing δ which are inside the
Viterbi recurrent region. Let this set of lattice points be A.
Recurrent Region Search Technique

1) Choose a starting step size δ0 and initialize a search set
vector Ry = {ymin, ymin + δ0, ymin + 2δ0, · · · , ymax}
and RG = {Gmin, Gmin +δ0, Gmin +2δ0, · · · , Gmax}.

2) Let Ai be the candidate set of lattice points on iteration
i of the algorithm. Initialize A0 = {(0, 0, . . . , 0)}.

3) Find the set A′
i = {f v

A(A, y,G)} for all A ∈ Ai−1, y ∈
Ry, G ∈ RG.

4) Update Ai = A′
i

⋃Ai−1.
5) If Ai = Ai−1, then stop, A = Ai is the set of lattice

points inside the recurrent region. Otherwise, go to step
3.

If the arguments of the min() function, including Ry and
RG, are rational with denominator d, then the state metrics
are also rational numbers with denominator d. In this way,
the Viterbi state metric vectors will be points on a rectangular
lattice with spacing δ which is an integral multiple 1/d.

This algorithm is effective for finding the Viterbi algorithm’s
recurrent region for a specified trellis. The min() function
approximates the min∗() function, and empirical evidence
suggests that the Viterbi recurrent region is a good approx-
imation of the BCJR recurrent region at signal-to-noise ratios
of interest.

To illustrate the recurrent region search technique, con-
sider the combination of the even-mark modulation constraint,
which permits ones to occur only in pairs, and the partial-
response class one channel, h(D) = 1 + D. The combined
trellis for this EMM-PR1 channel has three states. Fig. 1 shows
the lattice points with spacing δ = 0.5 within the EMM-PR1
recurrent region. In the legend, Ai \ Ai−1 denotes the points
added on iteration i. The search terminated after iteration
number 7. Also shown is the recurrent region for continuous
transition metrics [7], labelled “bound.”

A constant can be added to the state metrics without
affecting the output of the BCJR or Viterbi algorithms. The
state metric Ak(M − 1) is normalized to zero; thus A can be
considered to be a set of points in an (M − 1)-dimensional
space.
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Fig. 1. Recurrent region search technique.

me of the Recurrent Region

recurrent region has a volume V , which is independent
selected quantizer. We can bound this volume V from
by observing that each point in A is an element of
ngular lattice with spacing δ, and is the center of a
)-dimensional cube with side length δ. This cube has
δM−1. The recurrent region is a subset of the union of

ubes, since the cubes on the boundary of the recurrent
are partially outside of the recurrent region. The total
of these cubes forms an upper bound on V:

V ≤ |A| δM−1. (2)

ns by Recurrent Region Quantization

uantizing only the recurrent region, it is possible to
the amount of state metric quantization required relative
entional implementations. Here, we estimate this gain,
ed in the number of quantization bits per state metric.
he conventional implementation, assume that M met-

scalar quantized between (0, 2∆∗), using uniform
between codepoints of δ. Thus, log2(2∆∗/δ) bits of

ation are required, per state.
he other hand, A represents the intersection of the
nt region and the (M − 1)-dimensional rectangular
with spacing δ. A vector quantizer using A has
e distortion as the conventional quantizer, and uses

log2 |A| bits per state metric.
ngain

b represent the number of bits per state metric
by quantizing only the recurrent region. Then,

ngain
b = log2(2∆∗/δ) − (1/M) log2 |A|,

= log2

(
2∆∗

δ M
√|A|

)
.

pplying the volume bound (2):

ngain
b ≤ log2

2∆∗
M
√V − log2

M
√

δ.



Thus, the gain is separated into two portions, one which
depends upon intrinsic properties of the trellis, and the other
which depends upon the quantization scheme selected. In the
limit δ → 0, the volume approximation becomes exact and:

ngain
b ≈ log2

2∆∗
M
√V . (3)

In this case, the gain associated with quantizing only the
recurrent region depends only on the intrinsic trellis properties.

IV. NUMERICAL RESULTS

A. Estimation of the Recurrent Region

Fig. 2 shows A for the three-state finite-state Markov
channel proposed by Suematsu and Imai (SI channel) for burst
errors in magneto-optical recording. This channel has:

P =

 .999876 1.05358 × 10−4 1.79010 × 10−5

.752429 .247571 0
0.0458725 0 .954127


and Q =

(
2.31163 × 10−4, .4902, .4902

)
[14]. In this case,

the log probabilities were rounded to the nearest integer in
the computation of Hk(·); this approximation permits using
the search technique to find the recurrent region without
substantially modifying the state metric recursion. Note that
for this channel, the recurrent region consists of disjoint
regions.

For several channels of interest, Table I shows an upper
bound on the recurrent region volume. Also shown are the
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Fig. 2. Lattice points inside the recurrent region for the SI channel.
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A. The four-state PR2 channel, h(D) = (1+D)2 is of
in optical recording, and the eight-state EPR4 channel,
(1−D)(1+D)2, is of interest in magnetic recording.

ns for Lookup-Table Implementation
ugh the nominal complexity of the lookup-table BCJR
entation is three table lookup operations per bit, the
mplexity lies in the table size. An application of (3) is

ate this table size. Assume that the received symbol
uantized to ny bits. With the conventional BCJR state
quantized to nb bits per state, we find the size of the
table which gives the same state metric quantization
he lookup table size for the forward recursion, for ISI

ls (with zero a priori information) is:

2(nb−ngain
b ) M+ny × �(nb − ngain

b ) M�bits.

okup table sizes with received symbol quantization
bits are shown in Table I. The comparison is made with

ventional implementation with state metric quantization
= 6 bits/state. Also shown is the lookup table size that

be required for detecting the SI channel, assuming that
riori information Gk is quantized with 5 bits, and the
d information yk is 0 or 1.

lication to Turbo Equalization
application of the lookup-table BCJR implementation
C-coded turbo equalization is considered, for the case
ilbert-Elliot channel with:

P =
(

1 − p01 p01

.06 .94

)
= (0.01, 0.50). It was found by the search technique

non-zero state metric Ak(0) was bounded between
and that Bk(0) was bounded between (−4, 8). Only
quantizers were considered for quantization of the

etrics. Fig. 3 shows the bit error rate performance
rious spacing δ in the forward and backward recursion
er. As can be seen, as the quantizer codepoint spacing
ases, the performance rapidly approaches that of the
qualized system using a floating-point BCJR imple-
on. Also shown is the performance of a non-turbo-
ed system, where the decoder assumes that the channel
ary symmetric channel with the same error rate as the
ry error probability of the Gilbert-Elliot channel. As
seen, turbo equalization imparts an advantage to such

m.
TABLE I
QUANTIZATION GAINS ASSOCIATED WITH VARIOUS FINITE-STATE CHANNELS, WHEN VECTOR QUANTIZATION IS USED.

Channel M Recurrent Region Max State Gain approximate
Volume Bound Metric Difference ngain

b Forward Recursion
V ∆∗,v Table Size

EMM-PR1 3 91 13 2.5 bits/state 215.5 × 11 bits (62 kbytes)
PR2 4 210 21 3.4 bits/state 215.4 × 11 bits (58 kbytes)

EPR4 8 40107 24 3.7 bits/state 223.4 × 19 bits (25 Mbytes)
SI 3 30 19 3.6 bits/state 213.2 × 8 bits (9 kbytes)



V. CONCLUSIONS

We have proposed a technique to find the recurrent region
for the trellises of ISI channels and FSM channels. One
application of this technique is to find benefits of vector
quantization of state metrics. For the channels considered, this
improvement was approximately 3 bits per state. This is also
a contribution in understanding quantization and the vector
nature of state metrics for the BCJR and Viterbi algorithms.
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