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Abstract—A new method for decoding low-density lattice codes
is given, wherein the belief-propagation decoder messages are
single Gaussian functions. Since the message can be represented
by two numbers, a mean and a variance, the complexity of
this decoder is lower than previous decoders, which either
quantized the mixture, or used a mixture of Gaussians. The
computational complexity at the check node is also lower. The
performance of various code designs, under single-Gaussian
decoding, is evaluated by noise thresholds. In particular, the
proposed decoding algorithm has noise threshold within 0.1 dB
of the quantized-message decoder, which is considerably more
complex.

I. INTRODUCTION

Lattices play an important role in various information theo-
retic problems, including coding for the AWGN channel, dirty-
paper coding and lossy source coding. Low-density lattice
codes (LDLC) are lattices defined by a sparse inverse generator
matrix, decoded using a belief-propagation algorithm [1].
Sommer, Feder and Shalvi proposed this lattice construction,
described its belief-propagation decoder, and gave extensive
convergence analysis. With decoding complexity which is
linear in the dimension, it is possible to decode LDLC lattices
with dimension of 106. When used on the unconstrained-power
AWGN channel, a noise threshold appeared within 0.6 dB of
capacity. These characteristics make LDLC lattices a suitable
candidate for these information theoretic problems.

In belief-propagation decoding of LDLC lattices, the mes-
sages are mixtures of Gaussian functions; contrast this with de-
coding of low-density parity-check codes, where the messages
are real numbers. The Gaussian-mixture nature of the decoder
messages is appealing is for a decoder implementation. LDLC
lattices and their belief-propagation decoder are reviewed in
Section II.

Unfortunately, the number of Gaussians in the mixture
grows doubly exponentially in the number of iterations, and a
naive implementation using Gaussians is infeasible. Currently,
there are two methods to represent this message in the decoder.
One is to quantize the function; fine quantization is required,
as many as 1024 points [1]. The main source of complexity is a
discrete-Fourier transform taken at the check node. The other
is to approximate the mixture of Gaussians using a smaller
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number of Gaussians, via a mixture-reduction algorithm; the
messages can be accurately represented by a maximum of 30
numbers (the mean, variance and mixing coefficient of 10
Gaussians) [2]. Here, the main source of complexity is the
Gaussian mixture-reduction algorithm.

This paper proposes a decoder for LDLC lattices where the
messages consist of a single Gaussian. A single Gaussian is
represented by just two parameters, the mean and variance.
This is an improvement in memory storage, compared to
previous methods. The check node and variable node functions
are also simplified. The check node finds the convolution
of the incoming messages. However, since the inputs are
single Gaussians, and the convolution of Gaussians is another
Gaussian, the check node function only sums the means
and variances of the inputs. The variable node finds the
product of the incoming messages. The product of Gaussians
is also another Gaussian. Since there are multiple Gaussians
(corresponding to the multiple integer solutions in lattice
decoding), an approximation is introduced. Moment matching,
also called method of moments, is used to approximate this
mixture by a single Gaussian. This method is distinct from the
aforementioned mixture-reduction algorithm, which allows for
multiple Gaussians in the output. In Section III, the single-
Gaussian belief-propagation decoding algorithm is described.

The penalty for using a simplified decoder is performance
loss. Comparisons are performed by finding noise thresholds,
evaluated using a Monte Carlo approach. In particular, we
find that the single-Gaussian decoder comes within 0.1 dB
of the performance of a much more complex decoder. Noise
thresholds are also found for a variety of LDLC codes. This
is described in Section IV. Section V is the conclusion.

It was observed during the Monte Carlo simulations that
the means and variances had several interesting properties, for
example, the message mean, was itself, a Gaussian random
variable. These properties are described in the Appendix.

II. LDLC LATTICE BACKGROUND

A. Lattices and Unconstrained Power AWGN System

A lattice is a regular infinite array of points in Rn. An
n-dimensional lattice Λ is defined by an n-by-n generator
matrix G. The lattice consists of the discrete set of points



x = (x1, x2, . . . , xn) ∈ Rn with

x = Gb, (1)

where b = (b1, . . . , bn) is the set of all possible integer vec-
tors, bi ∈ Z. Lattices are linear, in the sense that x1 +x2 ∈ Λ
if x1 and x2 are lattice points.

We consider the unconstrained power system, as was used
by Sommer, et al. Let the codeword x be an arbitrary
point of the lattice Λ. This codeword is transmitted over
an AWGN channel, where noise zi with noise variance σ2

is added to each code symbol. Then the received sequence
y = {y1, y2, . . . , yn} is:

yi = xi + zi, i = 1, 2, . . . , n. (2)

A maximum-likelihood decoder selects x̂ as the estimated
codeword, and a decoder error is declared if x 6= x̂.

The capacity of this channel is the highest noise power
σ2 at which a maximum-likelihood decoder can recover the
transmitted lattice point with error probability as low as
desired. In the limit that n becomes asymptotically large, there
exist lattices which satisfy this condition if and only if [3]:

σ2 ≤ |det(G)|2/n

2πe
. (3)

In the above |det(G)| is the volume of the Voronoi region,
which is the measure of lattice density.

B. LDLC Lattices

A low-density lattice code is a dimension n lattice with
a non-singular generator matrix G, for which H = G−1 is
sparse with constant row and column weight d. For a given
V = |detG| and a parameter w, the inverse generator H is
designed as follows. Let

h = [1, w, w, . . . , w, 0, . . . , 0] (4)

be a row vector with a single one, followed by d − 1 w’s
(w ≥ 0), followed by n − d zeros. The matrix H can be
written as permutations πi of h, followed by a random sign
change Si, followed by scaling by k > 0:

H = k


S1 · π1(h)
S2 · π2(h)

...
Sn · πn(h)

 (5)

such that the permutations result in H having exactly one 1
in each column, and exactly d − 1 w’s in each column. The
sign-change matrix Si is a square, diagonal matrix, where the
diagonal entries are +1 or -1 with probability one-half. Then,
k is selected to normalize the determinant to V :

k = V 1/n

∣∣∣∣∣ det


S1 · π1(h)
S2 · π2(h)

...
Sn · πn(h)


∣∣∣∣∣
−1/n

. (6)

An example of an n = 8, d = 3 LDLC with w = 1/2
and V = −1.505 is shown in Fig. 1-(a). The corresponding
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Fig. 1. (a) An inverse generator matrix H for LDLC codes, with det H =
−1.505. (b) The corresponding bipartite graph.

bipartite graph is shown in Fig. 1, where circles represent
variable nodes (rows of H) and squares represent checks
(columns of H).

The above is a special case of the standard LDLC con-
structions, which are characterized by a parameter α ≥ 0.
Belief-propagation decoding of LDLC lattices will converge
exponentially fast if and only if α ≤ 1 [1, Theorem 1]. For
the construction considered here, α = (d− 1)w2, or,

w =
√

α

(d− 1)
. (7)

Thus, in this paper, LDLC lattice constructions characterized
by the parameters n, d and α are considered. For convenience,
it is assumed that |V | = 1.

C. LDLC Belief-Propagation Decoder

To establish notation, the LDLC belief-propagation decoder
[1] is described. The bipartite-graph contains nd edges, so
there are nd variable-to-check messages qk(z), and nd check-
to-variable messages rk(z), k = 1, 2, . . . , nd. And, a Gaussian
with mean m and variance v is denoted as:

N (z;m, v) =
1√
2πv

e−
(z−m)2

2v . (8)

On an AWGN channel with variance σ2, node i has
the channel output yi, and the initial message is qk(z) =
N
(
z; yi, σ

2
)

for all edges k connected to variable node i.
1) Check Node: The input and output messages are qk(z)

and rk(z), respectively, for k = 1, 2, . . . , d. The associated
edge labels from H are h1, . . . , hd. Without loss of generality,
the output rd(z) is found by first computing the convolution:

r̃d(z) = q1

( z

h1

)
∗ q2

( z

h2

)
∗ · · · ∗ qd−1

( z

hd−1

)
, (9)



Kurkoski, Yamaguchi, Kobayashi.  University of Electro-Communications, Tokyo /22

q1(z) r4(z)

q̃1(z) r̃4(z), r̃′
4(z)

q2(z) q3(z)

q̃2 q̃3

h1 h2 h3 h4

xa xb xc xd
(a)

Kurkoski, Yamaguchi, Kobayashi.  University of Electro-Communications, Tokyo /22

1

xa xb xc

haxa hbxb hcxc

haxa + hbxb + hcxc

b− (h1xa + h2xb + h3xc),
b = · · · ,−1, 0, 1, · · ·

b− (h1xa + h2xb + h3xc)
h4

1
h4

Variables

qi(z)

Messages for Those Variables

q̃i(z)

r̃4(z)

r̃′
4(z)

r4(z)
xd =

(b)

Fig. 2. Check node (a) bipartite graph, (b) sample messages.

followed by a stretching operation,

r̃′d(z) = r̃d(−hdz). (10)

The last check node operation is a shift-and-repeat extension
operation for the unknown integer b,

rk(z) =
∞∑

b=−∞

r̃′k(z − b

hd
). (11)

A bipartite graph labeled with messages is illustrated in
Fig. 2-(a). Samples of messages illustrating the unstretch,
convolution, extension and stretch operations are in Fig. 2-(b).

2) Variable Node: Without loss of generality, consider the
variable node inputs r̃k(z), k = 1, . . . , d−1 and output qd(z).
The channel message is a single Gaussian y(z) = N

(
z; y, σ2

)
.

At variable node i, take the product of incoming messages, and
normalize:

Product:

q̂d(z) = N
(
z; yi, σ

2
) d−1∏

i=1

ri(z). (12)

Normalize:

qd(z) =
q̂d(z)∫∞

−∞ q̂d(z)dz
. (13)

The check-to-variable messages are periodic, but the chan-
nel message is not. Thus, the variable-to-check node is not
periodic, and most of its energy is concentrated within a fixed
interval.

III. SINGLE GAUSSIAN BELIEF-PROPAGATION DECODER

The previous section described belief-propagation decoding
of LDLC lattices in general terms. For AWGN channels, the
messages r(z) and q(z) are always mixtures of an imprac-
tically large number of Gaussians. Prior approaches either
quantized the message [1] or used another Gaussian mixture
approximation.

This section describes a special case of the Gaussian-
mixture decoder: all messages will be approximated by a
single Gaussian function. The key step is performing the
approximation, and here moment matching (or method of
moments) is used. Because the target is a single-Gaussian mes-
sage, moment matching is optimal, in the sense of minimizing
the divergence between the original Gaussian mixture and the
single Gaussian approximation.

3) Check node: The input to the check node
q1(z), . . . , qd−1(z) are single Gaussians with mean mi

and variance vi

qi(z) = N (z;mi, vi) . (14)

Since the convolution of Gaussians is a Gaussian, the result
of the shaping operation can be written as:

r̃′d(z) = N (z;m, v) , (15)

where,

m = − 1
hd

d−1∑
k=1

hkmk, and (16)

v =
∑d−1

k=1 h2
kvk

h2
d

. (17)

Variable Node The input to the variable node is
r̃′1(z), . . . , r̃′d−1(z) are single Gaussians with mean mi and
variance vi,

r̃′i(z) = N (z;mi, vi) . (18)

and h1, . . . , hd−1 are the associated edge coefficients. Now,
r(z), after shift and repeat, is a mixture of Gaussians, but it
is internal to the variable node:

rk(z) =
∑
b∈B

N
(

z;
b

hk
+ mk, vk

)
. (19)

The variable node function (12) can be re-written as:

qd(z) ≈ rd−1(z)

(
· · ·
(
r2(z) ·

(
r1(z) · y(z)

)))
,

where ≈ is written to indicate that the moment matching
approximation will be used.

The above can be written as a recursion on ai(z), initialized
with

a1(z) = y(z), (20)

and for i = 1, 2, . . . , d− 1:

ai+1(z) ≈ ri(z) · ai(z), (21)
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Fig. 3. Steps at the variable node. (a) Single Gaussian input from check
node. (b) Repeated message and single Gaussian for recursion. (c) Product.
(d) Moment matching.

where the output is qd(z) = ad(z). Again, ≈ shows that the
moment matching approximation will be used at each step in
the recursion.

Let ai(z) be a single Gaussian with mean ma and variance
va, and let r(z) be a shift-and-repeated Gaussian, with mean
mc, variance vc and period 1/h. The product two Gaussians
is Gaussian, so the right-hand side of (21) is the Gaussian
mixture:

ri(z) · ai(z) =
∑
b∈B

c′(b)N (z;m′(b), v′) (22)

with

m′(b) =
vcva

vc + va

( b

vch
+

mc

vc
+

ma

va

)
(23)

v′ =
vcva

vc + va
(24)

c′(b) ∝ exp
(
− 1

2
(b/h + mc −ma)2

vc + va

)
, (25)

where a proportionality constant is chosen so c′(b) sum to 1.
Since moment matching is being performed, the output

ai+1(z) is the single Gaussian which has the same mean m
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Fig. 4. Noise thresholds, measured in distance from capacity, for various
LDLC lattices with parameters d and α. “Full complexity” at 0.6 dB refers to
the SNR of the waterfall for a dimension 106 lattice with d = 7 [1], decoding
using a quantized implementation.

and variance v as (22):

ai+1(z) = N (z;m, v) , (26)

which is given by:

m =
∑
b∈B

c′(b)m′(b) and (27)

v = v′ +
∑
b∈B

c′(b)
(
m′2(b)

)
−
(∑

b∈B

c′(b)m′(b)
)2

.(28)

An example of the various functions involved in the one-
step recursion are shown in Fig. 3. This figure is exaggerated;
usually r(z) · ai(z) is well-approximated by only one or two
Gaussians.

IV. NOISE THRESHOLDS

Noise thresholds are used to characterize the performance of
LDLC lattices and the belief-propagation decoder. The noise
threshold is the lowest SNR for which belief-propagation de-
coding of an asymptotically large dimension lattice converges.
Finite-dimensional lattices are not evaluated in this paper;
using noise thresholds simplifies evaluation by eliminating the
lattice dimension n as a parameter.

Density evolution is the term used for a class of methods
used to find the noise thresholds. True density evolution can
be used for binary low-density parity-check codes on the
AWGN channel, because the decoder messages are scalars, and
the density (or distribution), can be discretized [4]. However,
Monte Carlo density evolution is used for other types of codes,
such as non-binary low-density parity-check codes, because
the message consists of multiple parameters, and true density
evolution is impractically complex [5].

The belief-propagation decoder for LDLC lattices presented
here uses two numbers for each message, a mean and a
variance. Performing true density evolution, in the sense of



binary low-density party-check codes, would require a joint
distribution in two variables. While not intractable, is nonethe-
less computationally demanding. Instead, Monte Carlo density
evolution will be used, as is done for non-binary low-density
parity check codes, as follows.

At each half iteration samples for Ns = 105 nodes were
randomly drawn from an input pool, and then placed in an
output pool. The pool has two types of messages to distinguish
the edges with label 1 from those with label w. The output
pool becomes the input pool for the next half iteration,
and this procedure repeats until convergence was detected.
The mean of the variable-to-check message v for the w-
labeled edge was used to check convergence. When the mean
(over all Ns samples) fell below 0.001, within 50 iterations,
then convergence was declared. For the lattice construction
considered in this paper, h = [1, w, · · · , w, 0, · · · , 0], and with
w < 1, the power is suitably normalized, since such lattices
have 1/|detH| = VΛ → 1 as the dimension becomes large.

These thresholds, obtained using the single-Gaussian de-
coder, are shown in Fig. 4 for LDLC lattices with various pa-
rameters d and α. The noise thresholds improve for increasing
α and d. In most cases, increasing α above 0.7 had little or no
benefit for improving the threshold. Also, the noise threshold
gradually improves for increasing d, however there appears to
be marginal benefit for increasing beyond d = 7, as was found
by Sommer, et al. Since the complexity is proportional to d,
increasing d beyond this value is not a promising means to
improve the threshold.

Note that the d = 7, α = 0.7 ∼ 0.9 noise threshold looses
about 0.1 dB with respect to a high-dimension lattice (with
similar parameters d and α) decoded using quantized belief-
propagation implementation. This 0.1 dB penalty appears to be
a small price to pay for the benefit of a much simpler decoder.

V. CONCLUSION

LDLC lattices are powerful coding lattices, and have poten-
tial application for use on AWGN channels, dirty paper coding
and lossy source coding. This paper introduced a decoder for
LDLC lattices which uses a single Gaussian as message, and
we demonstrated that this decoder has a noise threshold within
0.1 dB of a much more complex decoder. Monte Carlo density
evolution was used to find thresholds, and a natural extension
of this work is to use true density evolution. True density
evolution operates faster than the Monte Carlo methods, so this
could then be used to design of capacity-approaching irregular
LDLC lattices.

APPENDIX

When the messages are treated as random variables, three
properties of interest emerge. Under a tree-like assumption, the
messages r(z) are independent, and the object of interest is
the probability distribution on this message, and in particular,
since r(z) is represented by two scalars, mc and vc, it is of
interest to find properties of the distributions of mc and vc.
Similarly, properties of q(z), specifically the distributions of
mq and vq are of interest.

The three properties can be found by making a simplifying
assumption.

Assumption 1 The one-step variable node function (27) and
(28) can be well approximated by:

m =
vavc

va + vc

(ma

va
+

mc

vc

)
(29)

v =
vavc

va + vc
. (30)

This approximation drops the dependence on b, which is
surprising. While this simplification is not precise, it allows
us to derive the following three properties, which appeared to
hold approximately during Monte Carlo density evolution.

Property 1 The variances vc and vq are constants.
On the first iteration, the messages q(z) and r(z) are

Gaussians with variance equal to the channel variance σ2. On
successive iterations, (30) has no dependence on the means, so
the variances remain constant. In the Monte Carlo simulations,
the variances were observed not to be constant, but tightly
distributed.

Property 2 The means mc and mq are zero-mean Gaussian
random variables.

Since the channel value y is a zero-mean Gaussian, both
q(z) and r(z) on the first iteration are also zero-mean
Gaussians. On successive iterations, since the variances are
constant, we observe from (29) that the new mean is a scaled
sum of means. The distribution of a sum is the convolution,
and the distributions are Gaussian, so the convolution of
Gaussians is Gaussian. Inductively, the Gaussian property of
the means is maintained as iterations progress. In the Monte
Carlo simulations, the means appeared Gaussian.

Property 3 On any given iteration, the variance of mc is
equal to the constant vc, likewise the variance of mq is equal
to the constant vq.

This property also holds on the first iteration. To show that it
holds inductively, assume that Var ma = va and Var mc = vc

and then find the variance of (29) as:

Var
( vavc

va + vc

(ma

va
+

mc

vc

))
=

vavc

va + vc
, (31)

which is the same as (30). This property was also observed
empirically during Monte Carlo simulations.

For all of these properties, similar inductive arguments can
be made for the function at the check node.
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