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Abstract—The continuous approximation is a technique to
separate the shaping gain and coding gain of a channel code.
In this paper, this technique is applied to codes for write-once
memories (WOM codes) based upon lattices. For a lattice of
arbitrary dimension n, a hyperbolic shaping region is optimal in
the sense of maximizing the sum rate in the worst case, when
there are two writes. Then, asymptotic results are obtained when
the rates for two writes are equal. Under this condition, the sum
rate assuming two equal rates closely approaches, but not achieve,
the capacity which allows two unequal rates.

I. INTRODUCTION

Flash memories physically deteriorate, and tolerate a limited
number of erase cycles before they fail. With the motivation
to extend the life of flash memories, recent coding-theoretic
approaches allow multiple writes to flash memories without
erasing [3], [4]. This has revived interest in the earlier work
of Rivest and Shamir [5] on codes for “write-once memories,”
called WOM codes.

While some WOM codes have been constructed considering
error-correction [6], many constructions lack the capability to
correct errors. Since flash memory read and write processes
introduce noise, powerful error-correcting codes, typically
BCH and LDPC codes, are used in practice. When an error-
correcting code is applied to multi-level cells, typically using
Gray coding, the codewords form a sphere packing [7].

An alternative approach is to perform error-correction using
lattices. Lattices are linear sphere packings, and in particular,
an n-dimensional lattice forms an additive subgroup of Rn.
While lattices have been studied for at least a century, only
comparatively recently has it been shown that lattices can
achieve the Shannon capacity of the AWGN channel [8].

However, the WOM-like properties of lattices are not well
understood. A lattice-based construction with efficient en-
coding was proposed and evaluated from the perspective of
average number of writes [9]. An earlier version of the present
paper [1] first proposed using a continuous approximation of a
lattice, and hypothesized that hyperbolic shaping regions were
optimal for two writes for two-write lattices in arbitrary lattice
dimension n. Based upon that work, Bhatia, Iyengar, and
Siegel showed that hyperbolic shaping regions were optimal
for an arbitrary number of writes, when the dimension is n = 2
[2]. They also constructed some specific codes for n = 2.

The present paper continues this line of research. First,
code constructions and their rates based on shaping regions

and lattices are given. Then, the continuous approximation
is invoked and a corresponding definition of code rate is
given. Stronger justification is given for the claim, for arbitrary
dimension n and two writes, that hyperbolic shaping is optimal
in the sense of maximizing the sum rate. Finally, applying this
construction to the condition of two writes of equal rate, a
lower bound on the sum rate is given. This sum rate closely
approaches, but not achieve, neither the capacity (condition
of two unequal rates) nor known upper bounds on achievable
rates (condition of two equal rates).

II. CODE CONSTRUCTION

A. Lattices and Generalized Inequality

An n-dimensional lattice Λ is defined by an n-by-n gener-
ator matrix G. The lattice consists of the discrete set of points
x = (x1, x2, . . . , xn)t for which

x = G · b, (1)

where b = (b1, . . . , bn)t is from the set of all possible integer
vectors, bi ∈ Z. The Voronoi region is region of Rn which
is closer to x than to any other point, and the volume of this
region Vol (Λ) is the determinant of G:

Vol (Λ) = |detG|. (2)

A partial ordering for two vectors x and y is:

x � y (3)

if and only if xi ≤ yi for all i = 1, 2, . . . , n. A point y is said
to be “accessible” from x if x � y. This can be seen as a gen-
eralize inequality [10, Sec. 2.4], defined by a cone given by the
unit vectors in n dimensions: (1, 0, . . . , 0), · · · , (0, . . . , 0, 1).

B. Codebook

The construction of the codebook concentrates on selection
of a lattice Λ, and the partition of this codebook into sub-
codebooks which correspond to WOM writes. This is distinct
from any encoding, that is, any mapping from information to
elements of the codebook.

An overview of the codebook construction follows. The
code is described by a lattice Λ with a generator matrix G.
Define a shaping region for the code as A ⊆ Rn, which forms
the code L as:

L = Λ ∩ A. (4)
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Fig. 1. An example of the proposed codebooks, illustrated with some key variables.

In this paper, Vol (A) denotes the volume of the finite con-
tinuous region A, and |L| denotes the cardinality of the finite
discrete set L.

Generally, the region A is the rectangular parallelepiped
[0, `1] × [0, `2] × · · · × [0, `n], and the volume is V (A) =∏n

i=1 `i. In the case of flash memories, each cell takes a value
from 0 to ` and this forms a hypercube, and V (A) = `n. Since
the lattice can be scaled arbitrarily, it will be convenient to
assume ` = 1.

To construct a rewriting code for two writes, two subcode-
books are constructed by partitioning A into disjoint regions
A1 and A2:

A = A1 ∪ A2 (5)

and A1 ∩ A2 = ∅. Let B be the manifold that forms the
boundary between A1 and A2

A subcodebook Li is:

Li = Λ ∩ Ai, (6)

for i = 1, 2, where each lattice point belongs to exactly one
subcodebook.

C. Code Rates

This paper uses a normalized code rate, rather than the
conventional code rate. For the first write, the conventional
code rate is 1

n log2 |L1| bits per dimension. The normalized
code rate R̃i is independent of the uncoded rate. For the rate
for the first write is R̃1:

R̃1 =
log2 |L1|
log2 |L|

. (7)

With the normalization, 0 ≤ R̃1 ≤ 1.
To define a rate for the second write, consider that the

number of accessible points depends upon the current state
s. First, let Li(s) be the subset of Li which is accessible from
s:

Li(s) = {x ∈ Li|x � s}. (8)



(To be clear, adding the argument s to Li makes a distinct
Li(s), and Li(s) is a subset of Li.) Then, the minimum
number of messages available for the second write is M2:

M2 = min
s∈L1

|L2(s)| (9)

The normalized rate for the second write is:

R̃2 =
log2 M2

log2 |L|
. (10)

This definition results in the generally-accepted notion that the
code rate for the second write should be independent of the
data written for the first write. This applies in the worst-case
scenario that is considered in this paper.

III. CONTINUOUS APPROXIMATION

A. Continuous Approximation

From here, it is assumed that the lattice is sufficiently
fine that the code rates can be approximated by continuous
volumes. Forney and Wei introduced the continuous approxi-
mation as a method to separate the contribution of the shaping
region and the lattice Λ to the total transmit power in coded
modulation for AWGN channels [11]. Here, the same approx-
imation is used with the goal of describing idealized shaping
regions for WOM codes. Under the continuous approximation,
the number of codewords |L| is approximated as:

|L| ≈ Vol (A)

Vol (Λ)
(11)

Using this notion, code rates can be defined with respect to
the volume of the shaping regions. As in the previous section,
the entire space is partitioned into disjoint regions, A1 and A2.

B. Code Rates Under the Continuous Approximation

It is assumed ` = 1, and so that the entire space is the
unit n-cube, that is A = [0, 1]n and Vol (A) = 1. Because the
continuous approximation has been made, this results in no
loss of generality. Further, rather than working with discrete
code points, continuous volumes are of interest.

Analogous to Li(s), let Ai(s) denote the subset of Ai that
remains accessible when the current state is s, that is:

Ai(s) = {x ∈ Ai|x � s}, (12)

and furthermore define Vi(s) as the volume of Ai(s):

Vi(s) = Vol (Ai(s)). (13)

Analogous to M2, define V2 as:

V2 = min
s∈A1

Vol (A2(s)). (14)

Define V1 = Vol (A1).
For Li, which has |Li| codewords, the continuous approxi-

mation gives:

|Li| ≈
Vi

Vol (Λ)
. (15)

Explicitly, the normalized rate under the continuous approx-
imation is obtained by applying (11) and (15):

R̃1 =
log2 |L1|
log2 |L|

≈
log2

V1

Vol(Λ)

log2
1

Vol(Λ)

and (16)

R̃2 =
log2 M2

log2 |L|
≈

log2
V2

Vol(Λ)

log2
1

Vol(Λ)

, (17)

where Vol (A) = 1 was used.
Thus, the normalized rate for write i = 1, 2 is:

R̃i ≈ 1− log2 Vi

log2 Vol (Λ)
. (18)

The normalized sum rate R̃ for two writes is:

R̃ = R̃1 + R̃2 = 2− log2 V1 + log2 V2

log2 Vol (Λ)
. (19)

Some of these sets and variables are expressed in Fig. 1
using the D2 lattice (the integral version of the D2 checker-
board lattice has points where the sum of the two coordinates
is even).

C. Restriction to Boundary B
It is shown that the boundary B determines V2:

min
s∈A1

Vol (A2(s)) = min
s∈B

Vol (A2(s)), (20)

and thus we can instead use B for determining V2 in (14).
Note that the volume of A2(s) is:

Vol (As(s)) = (1− s1)(1− s2) · · · (1− sn), (21)

and so (14) is a linear optimization problem. It is known that
the solution to (14) can only occur at an extreme point of A2

[12, Theorem 1.19], and the extreme points are only on the
boundary, B. Thus, it is sufficient to consider the boundary.

D. Characterization of B as a Hyperbola

This section shows that the boundary B separating A1 and
A2 which maximizes the normalized sum rate R̃1 + R̃2 is a
hyperbola. To do so, the following Lemma is key.

Lemma Making V2(s) equal to a constant V2 independent
of s ∈ B will maximize V1 + V2.

Proof sketch The proof is by contradiction. Consider some
boundary B with two distinct u, v ∈ B which satisfies
the hypothesis, that is V2(u) = V2(v). Then, consider an
alternative boundary B′ for which the hypothesis does not
hold, say:

V2(u) < V2(v′), (22)

for distinct u, v′ ∈ B. Here, B and B′ share a common u.
In addition, let V ′1 and V ′2 be the volumes corresponding to
region B′. Refer to Fig. 1.

Since V2 ≤ min(V2(u), V2(v)), clearly V2 ≤ V2(u) alone.
Since V2(u) < V2(v′), it must hold that V ′1 < V1 (intuitively,
this can be shown as some incremental volume moved from



A1 to A2 will decrease the volume of A1 = V1.) Now, assume
the opposite, that B′ maximizes V1 + V2, so that:

V1 + V2 < V ′1 + V ′2 . (23)

Since V ′2 ≤ V2 and V ′1 < V1, this assumption cannot hold,
and selecting B such that Vol (A2(s)) is independent of s will
maximize V1 + V2. �

Let s = (s1, s2, . . . , sn) be any point on B. By the above
lemma, for any such s:

V2 =

n∏
i=1

(
1− si

)
(24)

This describes a multidimensional hyperbola. It is convenient
to characterize B with a parameter ω, where (ω, 0, 0, . . . , 0),
or any permutation of positions, is a point on B, so that:

V2 = 1− ω, (25)

for 0 ≤ ω ≤ 1.

E. Computation of V1

A1 is the region bounded by the hyperbola B and the
hyperplanes xi ≥ 0. The volume is V1, which is expressed
as an n− 1-fold integral. Fortunately, it is possible to find V1

in closed form. By a defining parameter z:

z = − loge(1− ω), (26)

(equivalently ω = 1− e−z), the volume V1, is:

V1 = 1− e−z
n−1∑
m=0

zm

m!
. (27)

This relationship can be found using symbolic mathematical
software. The key is to solve an (n − 1)-fold integral recur-
sively. The description is omitted.

IV. ASYMPTOTIC RESULTS FOR EQUAL RATES

A. Equal rates

Of practical interest is the situation where the normalized
rates R̃1 and R̃2 are equal:

1− log2 V1

log2 Vol (Λ)
= 1− log2 V2

log2 Vol (Λ)
(28)

which is equivalent to:

V1 = V2. (29)

The parameter z∗n for which the two rates are equal is the root
of:

1− e−z
n−1∑
m=0

zm

m!
= 1− (1− e−z), (30)

Unfortunately, z∗n can be found only numerically when n ≥ 2.
However, a z∗n upper bound can be found by using the series
expansion of ez . Eqn. (30) can be written as:

1 =
zn

n!
+

zn+1

(n + 1)!
+

zn+2

(n + 2)!
+ · · · . (31)
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Since all terms are positive, an upper bound on the root z∗n is
a root of 1 = zn/n!, that is:

z∗n ≤ (n!)
1
n (32)

which appears to be reasonably tight. Noting that:

n
√
n!

n
≥ 1

e
and lim

n→∞

n
√
n!

n
=

1

e
, (33)

the numerical values for z∗
n

n and its bound are compared in
Fig. 2 for small n. In addition, the following lower bound is
hypothesized:

1

e

hyp

≤ z∗n
n
≤ 1

n
n
√
n!, (34)

for n ≥ 2. Here “hyp” indicates the bound is hypothesized.
Thus, for two writes with equal rates:

exp
(
− n
√
n!
)
≤ V1, V2

hyp

≤ exp
(
−n

e

)
(35)

since V1 = V2 = e−z
∗
.

B. Asymptotic Rate for Cubic Lattice

The lattice Λ considered is 1
q−1Z

n, which corresponds to the
conventional coding schemes applied to cells with q-ary val-
ues. The volume of the Voronoi cell is Vol (Λ) = 1/(q − 1)n.

In the case of two equal rates, the bounds on the normalized
sum rate (19) is obtained from (35):

2−
2 log2 exp

(
− n
√
n!
)

−n log2(q − 1)
≤ R̃

hyp

≤ 2−
2 log2 exp

(
−n

e

)
−n log2(q − 1)

(36)

where we should take care to note that Vol (Λ) < 1 so
log2 Vol (Λ) < 0. This reduces to:

2− 2

loge 2

1

log2 q − 1

(
n
√
n!

n

)
≤ R̃

hyp

≤ 2− 2

loge 2

1

log2 q − 1

1

e
.



The main object of interest is the asymptotic n → ∞
normalized sum rate. Noting the the lower bound converges
to the upper bound:

lim
n→∞

R̃ = 2− 2

e loge 2

1

log2(q − 1)
, (37)

using (33).
The capacity was found by Fu and Han Vinck [13]. For t

writes with q levels, a (conventional) sum rate of:

Rcap = log2

(
q + t− 1

t

)
, (38)

is achievable. The reader may recall that this paper deals with
a normalized rate, see (7). Converting Fu and Han Vinck’s
capacity to a normalized sum rate when t = 2 gives:

R̃cap =
Rcap

log2 q
(39)

= 1− 1

log2 q
+

log2 q − 1

log2 q
, (40)

so that 0 ≤ R̃cap ≤ 2, since t = 2.
In addition, Gabrys and Dolecek gave lower and upper

bounds on the capacity of q-ary code for two writes, when
the rate for the two rates are equal, that is R1 = R2 [14]. The
upper bound is:

Requal
cap ≤ 2

3
logq

(q(q + 1)(2q + 1)

6

)
(41)

The hyperbolic shaping bound (37), the capacity (40), as
well as the upper (41) and lower bounds [14, Theorem 3] on
Requal

cap are plotted in Fig. 3 for various values of q (normalized
rates are shown). It can be seen that the hyperbolic shaping
bound gradually approaches, but does not achieve, the upper
bound of Gabrys and Dolecek.

There are several possible explanations for this gap. One is
that since (37) is based on a bound, the bound is not tight.
Another possibility is that (41) is not tight. A third possibility
concerns achievability of encoding methods. This paper only
gave a codebook construction method, but encodings, that is
mappings from information to codewords, were not discussed.
While it is clear there is a bijective mapping from information
to the first codebook L1, the second codebook L2 requires
multiple lattice points that correspond to the same information.
For n = 2, a construction that effectively uses all the lattice
points is possible [2], but for n ≥ 3, this remains an open
question.
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