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Abstract— The concatenation of an arbitrary discrete mem-
oryless channel with binary input followed by a quantizer is
considered. For a restricted quantizer alphabet size, it is shown
that the maximum of the mutual information between the channel
input and the quantizer output can be found by dynamic
programming. Numerical examples are given to illustrate the
results. This problem is shown to be an example of concave
programming.

I. INTRODUCTION

For a communication system consisting of a discrete mem-
oryless channel (DMC) followed by a quantizer, the problem
of maximizing the mutual information between the channel
input and the quantizer output is considered. For binary input
channels, this paper gives a method to find the quantizer which
maximizes mutual information, among all discrete quantizers.
This method uses a dynamic programming approach.

The DMC-quantizer problem is of interest in channel cod-
ing. In particular, many implementations of belief-propagation
decoders for LDPC codes and turbo codes quantize messages.
If the message alphabet is discrete, then the iterative decoder
can be viewed as a sequence of discrete decoding mappings
[1]. One technique for designing such decoding mappings
is to find a quantizer for a discrete memoryless channel
derived during density evolution [2]. Since these codes can
communicate near channel capacity, a reasonable selection
criteria for this quantizer is maximization of mutual informa-
tion. Indeed, LDPC decoders have been designed considering
mutual information [3]; these result in non-uniform message
quantization. For both the AWGN and the binary symmetric
channels, such decoders using only four bits per message can
come quite close to unquantized performance. Conventional
uniform quantization requires about six bits per message.

Designing efficient LDPC decoders is tied to the problem
of quantizing channel outputs, and there are many prior
studies on quantizing the channel output. The cutoff rate can
easily be computed, and has been suggested as a criteria for
designing channel quantizers [4, Sec. 6.2], and this was done
in conjunction with decoding of turbo codes [5].

On the other hand, it is more difficult to maximize mutual
information, and a limited amount of prior work has con-
centrated on continuous-to-discrete quantization of the binary-
input AWGN channel. For the special case of three outputs,
it is straightforward to select a single parameter which max-
imizes mutual information [6]. However, for a larger number
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Fig. 1. A discrete memoryless channel followed by a quantizer. Given pj ,
Pi|j and K, find Qk|i which maximizes I(X; Z).

of outputs, global optimization is difficult, although local
optimization methods are better than uniform quantization [7].

This paper considers arbitrary DMCs, rather than specific
continuous-output channels. The problem setup, summarized
in Fig. 1, is given in detail in Section II. Then, Section III
describes a dynamic programming method which can find a
quantizer and the associated mutual information, when the
channel input is binary. Under a suitable assumption, this
method gives the globally optimal quantizer among all discrete
quantizers. Section IV gives some numerical results. Section V
has comments on the convexity of the mutual information, and
it is shown that the problem is distinct from the well-known
computation of channel capacity of Arimoto and Blahut [8]
[9]. The paper concludes with discussion in Section VI.

II. QUANTIZATION OF THE OUTPUT OF A DMC

The problem setup is as follows: a discrete memoryless
channel has input X and output Y . This Y is then quantized
to Z, as shown in Fig. 1. The sequence X → Y → Z forms
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a Markov chain. For convenience, define:

pj = Pr(X = j),
with j = 1, . . . , J,

ri = Pr(Y = i),
with i = 1, . . . , I,

qk = Pr(Z = k),
with k = 1, . . . ,K,

Pi|j = Pr(Y = i|X = j),
Qk|i = Pr(Z = k|Y = i), and

Tk|j = Pr(Z = k|X = j) =
∑

i

Qk|iPi|j .

The alphabet sizes of X , Y and Z are J , I and K, respectively.
The quantizer is given by Qk|i. This concatenation of the
discrete memoryless channel P and quantizer Q can be
regarded as a single discrete memoryless channel with input
distribution pj and transition probabilities Tk|j . It is clear that
the maximum possible rate for this concatenation is:

C(P,Q) = I(X;Z), (1)

where the mutual information is:

I(X;Z) =
∑

k

∑
j

pjTk|j log
Tk|j∑

j′ pj′Tk|j′
. (2)

The problem statement is as follows: given an input distri-
bution pj , a channel Pi|j and an integer K, find the maximum
possible rate C(P ),

C(P ) = max
Q

C(P,Q) = max
Q

I(X;Z),

and, find the quantizer Q∗ which achieves this maximum,

Q∗ = arg max
Q

I(X;Z). (3)

Here, the mutual information I(X;Z) is given explicitly by

I(X;Z) =
∑

k

∑
j

pj

∑
i

Qk|iPi|j log
∑

i′ Qk|i′Pi′|j∑
j′ pj′

∑
i′ Qk|i′Pi′|j

.

Clearly, if K ≥ I , then a trivial quantizer which maps each
channel output to a unique quantizer output will result in no
loss of information and can achieve the maximum possible
rate of C(P ) = I(X;Y ).

Accordingly, the focus of this paper is on non-trivial quan-
tizers for which K < I . In particular, note that the data
processing inequality [10] gives,

I(X;Y )− I(X;Z) ≥ 0. (4)

An alternative perspective of this problem is to find a quantizer
with fixed K that minimizes this difference. Also, with K
levels allowed, it is not meaningful to consider fewer levels
K ′ < K. If Z ′ denotes an optimal quantizer with K ′ outputs,
then max I(X;Z) ≥ max I(X;Z ′) [11, Ch. 2]. That is, there
can be no benefit to considering fewer than K quantizer levels.

III. DYNAMIC PROGRAMMING FOR BINARY CASE

This section describes a method to find the optimal quantizer
when the channel input is binary, that is J = 2. The
method is a dynamic programming algorithm. Only discrete
quantizers are considered; this is a reasonable restriction from
an engineering perspective. Also, it is assumed that when the
channel outputs are ordered according to log-likelihood ratios,
that the optimal quantizer will only combine adjacent channel
outputs.

A. Supporting Proposition

Begin by noting that for a deterministic quantizer Qk|i, for
any fixed i, there is exactly one value k∗, for which Qk∗|i = 1,
and for all other values of k, Qk|i = 0. For a given k, let the
set Ak contain the values i for which Qk|i = 1. Then, the
mutual information objective function can be written as:

I(X;Z) =
∑

k

∑
j

pj

∑
i∈Ak

Pi|j log

∑
i′∈Ak

Pi′|j∑
j′ pj′

∑
i′∈Ak

Pi′|j′
.

Next, assume that the indices of Y are ordered according
to their log likelihood ratios, that is,

log
Pi|1

Pi|2
< log

Pi′|1

Pi′|2
if and only if i < i′. (5)

Then, we make the following assertion, which is given without
proof.

Proposition 1 For the quantizer which maximizes mutual
information, each set Ak consists of adjacent index values.
Thus, A1 is the set {1, 2, . . . , a1}, and A2 is the set {a1 +
1, . . . , a2}, etc. and AK is the set {aK−1 +1, . . . , I} (assume
a0 = 1 and aK = I). Each Ak has at least one element.

For an arbitrary set A the partial sum of the mutual
information, g(A), is defined as,

g(A) =
∑

j

pj

∑
i∈A

Pi|j log

∑
i′∈Ak

Pi′|j∑
j′ pj′

∑
i′∈Ak

Pi′|j′
.

For notational convenience, Ak may be written as ak−1 → ak,
and so the mutual information may be written as:

I(X;Z) =
∑

k

g(ak−1 → ak).

B. Dynamic Programming

Dynamic programming can be used to find a quantizer.
Under the adjacent-index proposition, it is sufficient to find
the set boundaries a1, . . . , aK−1.

The dynamic program iteratively computes partial sums of
the mutual information. In particular, the dynamic program
has a state value Sk(a) which is the maximum partial sum
of mutual information for the first k groups, and the state a
represents the last index of group k, in particular,

Sk(ak) = max
a1,··· ,ak−1

k∑
k′=1

g(ak′−1 → ak′). (6)
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The dynamic program computes the following recursively.
For each k = 1, . . . ,K − 1, compute the state metric for
a = ak, ak+1, . . . , aI−K+k:

Sk(a) = max
a′

Sk−1(a′) + g(a′ → a). (7)

The recursion is initialized with S0(1) = 0.
Finally, the dynamic program computes C(P ) as,

C(P ) = max
a1,···aK−1

∑
k

g(ak−1 → ak), (8)

= SK(I), (9)

where SK(I) is found by evaluating (7) with k = K and
a = I .

The quantizer values may be found by:

ak = arg max
a′

Sk−1(a′) + g(a′ → a). (10)

This recursion may be thought of being analogous to the
Viterbi algorithm, where the group index k is time, Sk(a) are
the state metrics and g(a′ → a) are the transition metrics. The
quantizer value is analogous to the traceback operation.

Under Proposition 1, this dynamic program produces the
optimal quantizer.

IV. NUMERICAL EXAMPLES

This section gives some numerical examples to illustrate the
results.

Symmetry plays a role in the decoding of LDPC codes. For
both analytical and practical purposes, it is desirable that if an
input distribution is symmetrical then the output distribution
should also be symmetrical. However, the following is an
example of an optimal quantizer which produces an output
distribution which is not symmetrical.

The following definition of symmetry is is used. Assume a
binary input X with p1 = p2 = 1/2, and let,

L(y) =
∑

i

δ
(
y − log

Pi|2

Pi|1

)
, (11)

where δ(·) is the Dirac delta function. Then the distribution is
symmetric if

L(y) = L(−y). (12)

Example 1 Let a J = 2, I = 6 channel be given by the
following, which produces a symmetrical distribution,

P =
[

0.001 0.01 0.02 0.04 0.2 0.729
0.729 0.2 0.04 0.02 0.01 0.001

]
,

which has I(X;Y ) = 0.8759. When K = 4, two optimal
quantizer are found:

Q(1) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1

 , Q(2) =


1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (13)
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Fig. 2. Mutual information for a variation on the Z-channel.

Both quantizers result in I(X;Z) = 0.8623, a loss of
0.0136. As can be seen, each quantizer is asymmetric, and
produces an asymmetric output distribution qk. However, if
the corresponding output distributions are q

(1)
k and q

(2)
k , then

1
2q

(1)
k + 1

2q
(2)
k , is symmetric. Thus, by using time-sharing, a

symmetric output distribution is produced. This is distinct from
using a single quantizer 1

2Q(1) + 1
2Q(2), which is suboptimal.

Also, when K = 3 or K = 5 a single optimal quantizer
was found, which were both symmetrical.

Example 2. The binary Z-channel with error probability δ
has the conditional output distribution,[

1− δ δ
0 1

]
. (14)

Consider two parallel Z-channels, with inputs X1 and X2 and
corresponding output Y1 and Y2. Construct a derived channel
which has as input the mod-2 sum X = X1 + X2 and output
the pair (Y1, Y2). This model is of interest when considering
the implementation of LDPC codes over the Z-channel. The
conditional channel output distribution is:

P =
1
2

[
(1− δ)2 δ(1− δ) δ(1− δ) 1 + δ2

0 1− δ 1− δ 2δ

]
,

which has I = 4 corresponding to the four possible received
sequences.

When quantizing to K = 2 levels, the optimal quantizer
depends on δ. When δ < 0.407, an optimal quantizer is:

Q =


0 1
1 0
1 0
0 1

 (15)
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Fig. 3. Illustration of extrema problems. (a) Mutual information is concave
in pj ; for the channel capacity problem, the maximum mutual information
is found using Lagrange multipliers. (b) Mutual information is convex in
Qk|i; for the rate-distortion problem, the minimum is found using Lagrange
multipliers but for the present problem, the maximum is at the boundary.

otherwise, an optimal quantizer is:

Q =


0 1
1 0
1 0
1 0

 (16)

The mutual information vs. δ is shown in Fig. 2, and the
crossover of 0.407 is shown by a circle.

V. COMMENTS ON THE CONVEXITY OF I(X;Z)

Superficially, the information maximization problem, given
by eqn. (3), appears similar to either the computation of the
rate-distortion function or the computation of DMC capacity
[10, Sec. 13.7], but it is distinct. This section discusses the
distinctions.

The convexity of mutual information plays an important role
in these extremum problems. Mutual information, as given
in eqn. (2), is concave in pj , but convex in Tk|j , which is
illustrated in Fig. 3. Note that it is easy to show that I(X;Z)
is convex in Qk|i as well as Tk|j . The relationship Tk|j =∑

i Qk|iPi|j is an affine transform, and affine transformations
do not change the convexity of functions [12].

The rate-distortion function of the quantization from Y to
Z is found using a two-step alternating minimization. Mutual
information is convex in Qk|i, and Largrange multipliers are
used in one of the two steps to find the Qk|i which minimizes
mutual information, with a fixed output distribution. However,
in the present problem, mutual information is maximized over
Qk|i. Further, the rate-distortion problem is subject to a dis-
tortion measure, which does not exist in the current problem.
Instead, the quantizer restriction is through the alphabet size
K.

In the computation of the capacity of the DMC from X
to Y , the channel is fixed and the capacity-achieving input
distribution pj is found by a two-step alternating maximiza-
tion. Although mutual information is concave in pj , since the
objective is to maximize mutual information, this is a convex
programming problem. Again, Lagrange multipliers are used
in one of the two steps to find the pj which maximizes mutual
information, for a fixed Pr(X|Y ). However, for the present
problem the input distribution pj is fixed and quantizer Qk|i
is found by an optimization method.

Now, the information maximization problem, given by eqn.
(3) can be seen as maximization of a convex function, which
is equivalent to minimization of a concave function. Such
problems can be solved by concave programming. Concave
programming (also known as concave minimization or con-
cave optimization) is a class of mathematical programming
problems which has the general form: min f(x), subject to
x ∈ S, where S ⊆ Rn is a feasible region and f(x) is a
concave function [13] [14]. As distinct from linear program-
ming and convex programming, where the local minimum is
the global minimum, in concave programming problems, there
are multiple local minima. While there are numerous concave
programming approaches, this type of global optimization
problem is known to be NP-complete.

Also, another information extremum problem is the infor-
mation bottleneck method, from the field of machine learning
[15]. The problem setup is identical, using the same Markov
chain X → Y → Z. However, the problem statement is
distinct:

min
Q

I(Y ;Z)− βI(X;Z), (17)

where β ≥ 0 is a Lagrange multiplier that sweeps a kind
of rate-distortion curve. The information bottleneck method
also uses alternating minimization. In the limit β → −∞, the
two problems agree, but β < 0 is undefined, and these two
problems are also distinct.

VI. DISCUSSION

This paper considered the problem of quantizing the output
of a DMC in order to maximize mutual information between
the channel input and quantizer output. Besides theoretical
interest, this problem has practical application, because the
quantizer can be used to find non-uniform message quantizers
for belief-propagation decoders.

For a binary-input channel, we gave an explicit method that
finds the optimal quantizer among all deterministic quantizers.
It was assumed that the optimal quantizer always combines
adjacent channel outputs, when the log-likelhood ratios are
sorted. This assumption clearly holds for DMC’s derived from
the binary-input AWGN channel. However, the extension to
non-binary cases may be difficult, which lack a convenient
ordering of log-likelihood ratios.

In the numerical results section, we were concerned about
the symmetry of the quantizer. Symmetry is important both
for analysis, for example, designing irregular LDPC codes,
and for practical implementations which can exploit symmetry
to simplify designs. It was found that optimal quantizers
did not produce a symmetric output, even if the input was
symmetrical.

We also showed that this problem is distinct from the
computation of the rate-distortion function and computation
of DMC capacity. These algorithms of Arimoto and Blahut
are basically convex programming problems. However, the
problem in this paper is a concave programming problem.
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Unfortunately, concave programming is NP-complete in gen-
eral, which also indicates that extension to higher-order input
alphabets may be difficult.
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